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Density of Pooling Matrices vs. Sparsity of Signals for Group
Testing Problems∗

Jin-Taek SEONG†a), Member

SUMMARY In this paper, we consider a group testing (GT) problem.
We derive a lower bound on the probability of error for successful decod-
ing of defected binary signals. To this end, we exploit Fano’s inequality
theorem in the information theory. We show that the probability of error is
bounded as an entropy function, a density of a pooling matrix and a sparsity
of a binary signal. We evaluate that for decoding of highly sparse signals,
the pooling matrix is required to be dense. Conversely, if dense signals are
needed to decode, the sparse pooling matrix should be designed to achieve
the small probability of error.
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1. Introduction

Group Testing (GT) was first introduced in 1943 by
Dorfman [1], which is a class of the combinatorial problems.
Since then, a lot of algorithms for solving this combinatorial
problem were developed. And recently, GT has extended
to probabilistic approaches. In 2006, Compressed Sensing
(CS) introduced by Donoho [2] is a linear inverse problem
which dealt with sparse signals. CS is a variant of GT prob-
lems [3]. The advent of CS has led to the rediscovery of the
traditional GT. So far, a number of theoretic results for GT
problems have been presented over the past decade [4]–[7].

First, GT was found in a report written by Dorfman [1].
During World War II, the government of the United State
embarked a project to find out all syphilitic men out of a
number of soldiers. At the time, individual syphilis test-
ing was expensive and inefficient as well as long took to
inspect all soldiers individually. Suppose that the number
of syphilitic men is very small out of all soldiers. In fact,
it makes sense. Since most soldiers were not infected, the
result of the sample test combined with two or three sol-
dier’s blood samples would be negative. Grouping blood
samples from a few soldiers not only reduces the number of
tests, but also enables fast testing for efficiency. This is the
background in which GT has emerged at first. A number
of remarkable results for GT problems have been presented
and improved by the basic idea of this GT.

GT is briefly described as follows. The core question
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of GT problems is that when K samples out of N samples
have defects, how many measurements are needed to find
all defective samples. This is like a question studied in CS.
The difference between both of them is an operation method.
In other words, while CS deals with linear systems in real
or complex numbers, but GT is about logical systems, e.g.,
AND and OR. Except for the logical or real-valued opera-
tion, both systems are much similar.

Let us consider a syphilis testing as follows. Blood
samples from several soldiers are collected and measured
whether the corresponding result is positive or negative.
And then, a subset of blood samples from soldiers mixed
for a syphilis testing is called a pool. If the result of this
pool is positive, it is observed that at least one of the sol-
diers is infected with syphilis. On the other hand, if the
result is negative, it means that all the soldiers in this pool
were not infected with syphilis. Such blood test is called the
GT [3]. In other words, GT is a class of logical systems with
operation of AND and OR.

In this paper, we aim to analyze performance of GT
problems with respect to density of pooling matrices and
sparsity of binary signals. The density of the pooling matrix
determines the size of pools participating in a single group
testing. This is a constraint condition to design a pool. The
performance of GT problems depends on how much sparse
of pooling matrices with different sparsity of binary signals.
The remain part of this paper will provide a low bound on
the number of tests using Fano’s inequality. And we show
how much relationship between density of the pooling ma-
trix and sparsity of the binary signal for a necessary condi-
tion on successful decoding of all defective samples.

2. Group Testing

2.1 Problem Statement

In this section, we will more clearly define the GT problem
with mathematical expressions. Let x ∈ {0, 1}N be the binary
signal with size of N. If the ith entry of the binary signal x is
defective, it is represented as xi = 1. Otherwise, xi = 0. In
this paper, each element of the binary signal x is identically
independent distributed (i.i.d.) as the following Bernourlli
distribution,

Pr{xi = θ} =
{

1 − δ if θ = 0,
δ if θ = 1,

(1)

where δ := K/N is the sparsity ratio of the binary signal x
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and θ is a dummy variable with binary field, 0 or 1. The
sparsity ratio of the binary signal x is assumed as 0 < δ <
0.5. This can be called as a defective rate.

Next let A ∈ {0, 1}M×N be the pooling matrix with M
rows and N columns. If the ith entry of the binary signal x
is pooled in the jth test, the corresponding element of the
pooling matrix is expressed as Aji = 1. Otherwise, Aji = 0.
In other words, the pooling matrix has a role of collection of
entries of the binary signal x participating in a single group
test. Each element of the pooling matrix A with i.i.d. is
defined as follows,

Pr{Aji = θ} =
{

1 − γ if θ = 0,
γ if θ = 1,

(2)

where γ is the density ratio of the pooling matrix. If the
density ratio is large, it means that the probability that the
element of the pooling matrix has 1 is high. That is, most of
the elements of the vector x is pooled in each test. Note that
to collect many elements of the binary signal x is costly.
In order to perform efficient testing, we need to be small
density of the pooling matrix.

Using the binary signal x and the pooling matrix A, the
mathematical expression of the GT problem follows as

y = A � x (3)

where y is the testing signal and the symbol � denote the
element-wise logical operation. The following example
more clearly describes the mathematical expression in the
GT problem,

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1
1 1 0
1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (4)

where the first element of the left hand side in (4) is 1 be-

cause
[

0 1 1
]
�

[
0 0 1

]T
= (0 AND 0) OR (1

AND 0) OR (1 AND 1) = 1. Other elements are obtained
by using the same logical operation. The result for a pool
participating one or more defective samples as shown in the
example above is positive. Conversely, if all the elements
participating in the pool are all negative, the result is nega-
tive.

Next, we describe a decoding scheme to find defective
samples. We assume that there is a decoder to estimate all
defective samples. This decoder finds a binary signal x using
the given information of the pooling matrix A and the testing
signal y. In this paper, we assume that the decoder uses an
estimated function Ψ which determines a binary signal x.
Using this function Ψ, we obtain an estimated signal x̂ of
the binary signal x from x̂ = Ψ(A, y). The probability of
error Pe for this decoder is defined as follows,

Pe = Pr {Ψ(A, y) � x} (5)

The above decoder is aimed at minimizing the probability
of error. Assume the decoder is used so that the probability
of error is as small as possible.

2.2 Related to Bounds for Performance Evaluation

In this section, we discuss bounds on performance of GT
problems known so far. In [3], the answer to the critical
questions of GT problems was reported by analyzing a lower
bound on the performance of the probability of error. If we
use an algorithm of the GT problem with that the probability
of error is 0, the minimum number needed to find K defect
samples out of N samples is

M ≥ log2

(
N
K

)
. (6)

This is bounded by the fact that the sample space is split into
two disjoint subsets for each test which corresponds to one
of two feasible sets. The theoretic lower bound as called the
information bound in even small GT problems is unachiev-
able [4]. Recently, in [7], the authors showed that the indi-
vidual testing scheme for more than 0.3471 of the sparsity
ratio is optimal. It means that it is impossible for the GT
problems to decode the range out of highly dense signals.

The upper bound on the probability of success is ob-
tained with the number of tests. One algorithm of the GT
problem satisfies the following probability of success Ps

with respect to the number of tests [4],

Ps ≤ M log2

(
N
K

)−1

, (7)

This is the same of the upper bound for the adaptive group
testing schemes.

3. A New Lower Bound

3.1 Derivation of Lower Bound

In this section, we aim at deriving a new lower bound on the
probability of error. In the field of the information theory,
Fano’s inequality is used for a converse proof between the
probability of error and conditional entropy [8]. For the GT
schemes, we exploit Fano’s inequality to derive the lower
bound on the probability of error. In this work, we assume
that there is a noiseless system and the decoding error for an
arbitrary decoder in (5) is ignored.

Lemma 1 (Fano’s inequality [8]): For arbitrary estima-
tor function Ψ such that x → (A, y) → x̂, we have the fol-
lowing inequality,

H(Pe) + Pe log (|X| − 1) ≥ H(x|x̂) ≥ H(x|(A, y)) (8)

where the probability Pe is the probability of error for the
estimator function Ψ and the cardinality of the random vari-
able x is denoted by |X|.

We use Fano’s inequality to derive the lower bound on
the probability of error for any lossless systems. Note that
our new lower bound is independent of the estimator func-
tion Ψ and the pooling matrix A.
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Theorem 2: For any pooling matrix in (2) and any de-
coder in (5), if 0 < δ ≤ 1/2, the probability of error is
bounded by

Pe ≥ Hb(δ) − M
N

Hb(ε) − 1
N

(9)

where the function Hb(·) is the binary entropy, ε is the prob-
ability that the element of y is 0.

Proof: The probability of error using an arbitrary de-
coder can be obtained as follows,

H(x) = I(x; y) + H(x|y)
(a)≤ I(x; y) + H(Pe) + Pe log2 (|X| − 1)
(b)≤ I(x; y) + 1 + Pe log2|X|
(c)
= H(y) − H(y|x) + 1 + NPe

(d)
= H(y) + 1 + NPe

(10)

where I(·) denotes the mutual information and the first line
of (10) comes from the definition of the mutual informa-
tion: I(x; y) = H(x) − H(x|y). And inequality (a) is from
Fano’s inequality. Inquality (b) is due to the fact that an er-
ror event is a binary variable, i.e., correct or wrong. There-
fore, H(Pe) ≤ 1. Equality (c) uses the cardinality of the set:
|X| = 2N andX ∈ {0, 1}N . In the noiseless case, since y is the
function of x, i.e., y = A � x, if we know x, there is no ran-
domness in y. Hence, we lead to the following conditional
entropy as H(y|x) = 0. Equality (d) of (10) holds as follows:

NHb(δ) ≤ H(y) + 1 + NPe (11)

Next we aim to find out the entropy of y: H(y) =
H(y1, y2, y3, · · · yM). We know that each element of y is bi-
nary. Using chain rule of conditional entropy, we obtain the
entropy of y as follows,

H(y) = H(y1) + H(y2|y1) + H(y3|y2, y1)

+ · · · + H(yM |yM−1, · · · , y2, y1)
(a)≤ H(y1) + H(y2) + · · · + H(yM)
(b)
= MH(y1)

(12)

where the first equality of (12) is from the chain rule of the
conditional entropy and inequality (a) derives from the fact
that the conditional entropy is greater than or equal to the
entropy. Inequality (b) exploits the following fact that the
random variables y1, y2, · · · , yM are independent with each
other. The binary entropy H(y1) can be obtained from the
following definition,

Hb(ε) = −ε log2 ε − (1 − ε) log2(1 − ε) (13)

The probability ε can be obtained from the definitions (1)
and (2) as follows,

ε = (1 − δγ)N (14)

Using equations from (11) to (14), we finally derive the
lower bound on the probability of error as follow,

Pe ≥ Hb(δ) − M
N

Hb(ε) − 1
N

(15)

This is the end of the proof for Theorem 2. �
Equation (15) means that the probability of error is

larger than or equal to the right hand side of (15) even if
we use any decoder for finding all defective samples. In or-
der for the probability of error Pe to converge to zero, the
right hand side of (15) should be negative. This is a neces-
sary condition for error free. Therefore, This result in the
following necessary condition to solve the GT problems de-
fined by (3).

M >
NHb(δ) − 1

Hb(ε)

≥ NHb(δ) − 1
(16)

where the second line for inequality derives from Hb(y1) ≤
1. From (16), we see two interesting results. First, the
number of tests for successfully decoding all defective sam-
ples in GT problems satisfies the following condition: M >
NHb(δ). Second, when the following condition Hb(ε) = 1
satisfies, the necessary condition for successfully decoding
without the probability of error holds. In other words, we
can rewrite this condition for Hb(ε) = 1,

δγ = 1 −
(

1
2

) 1
N

(17)

From (17), we show that both the sparsity ratio δ and the
density ratio γ are inverse with each other. Therefore, for
completely estimating of densely defective samples we need
a very sparse pooling matrix. However, if there are sparsely
defective samples for decoding, a more denser pooling ma-
trix is required to successfully decode their unknown sam-
ples.

3.2 Numerical Evaluation

In this section, we show numerical results for the lower
bound. The lower bound on the probability of error has been
derived from in Theorem 2. The lower bound is a function
of the sparsity ratio δ, the density ratio γ and the number of
the total samples N. In our evaluation, we use the number
of samples N = 1000 for Fig. 1 to 3.

In Fig. 1, we evaluate the number of tests M for suc-
cessful decoding of the GT problem in (16). For example,
if we decode the sparsity ratio δ = 0.05 of the binary sig-
nal, i.e., averaged 50 defective samples out of total 1000
samples, the number of tests M is at least 287 which is ob-
tained in 0.013 density ratio of the pooling matrix. This
density ratio means that the number of samples in a pool
is included averaged 13 different samples out of 1000 sam-
ples. As shown in Fig. 1, the curves of the number of tests
are convex for different sparsity ratios δ. The interesting
point in Fig. 1 is that as the sparsity ratio δ increases, the
optimal band of the density ratio γ becomes narrow. This
observation suggests that for successful decoding with high
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Fig. 1 The number of tests M for successful decoding of the GT scheme
with various sparsity ratio δ and density ratio γ and N = 1000.

Fig. 2 The relationship between the sparsity ratio δ and the density ratio
γ for achieving the number of tests M with N = 1000.

sparsity ratios the pooling matrix should be designed in a
narrow range of the density ratio γ without different classes
of GT problems.

For the evaluation of the relationship between the spar-
sity ratio δ and the density ratio γ we show Fig. 2 for archiv-
ing the number of tests with N = 1000. This result provides
an important core for the design of the pooling matrix. In
other words, the density of the pooling matrix should be de-
signed by the sparsity of the binary signals. If unknown
binary signals are very sparse, we have to use dense pool-
ing matrices. Conversely, sparse pooling matrices are used
to decode dense binary signals. The core question of the
GT problems is how many tests are required for successful
decoding. This answer is shown in Fig. 3.

Fig. 3 The number of tests M for successful decoding of the GT scheme
with different sparsity ratio δ with N = 1000.

4. Conclusion

In this paper, we considered the GT problem. We derived
the lower bound on the probability of error. To this end, we
used Fano’s inequality exploited in the information theory.
We showed that the probability of error is expressed as the
entropy function of the density ratio of the pooling matrix
and sparsity ratio of the binary vector. We showed that for
decoding of highly sparse signals, the pooling matrix is re-
quired to be dense. Conversely, if dense signals are needed
to decode, the sparse pooling matrix should be designed to
achieve the small probability of error.

References

[1] R. Dorfman, “The detection of defective members of large pop-
ulations,” The Annals of Mathematical Statistics, vol.14, no.4,
pp.436–440, Dec. 1943.

[2] D.L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory,
vol.52, no.4, pp.1289–1306, April 2006.

[3] D.-Z. Du and F.-K. Hwang, Pooling Designs and Nonadaptive Group
Testing: Important Tools for DNA Sequencing, World Scientific,
2006.

[4] L. Baldassini, O. Johnson, and M. Aldridge, “The capacity of adaptive
group testing,” IEEE Int. Sym. Inf. Theory (ISIT), pp.2676–2680, Oct.
2013.

[5] M. Aldridge, L. Baldassini, and O. Johnson, “Group tesing algo-
rithm: Bounds and simulations,” IEEE Trans. Inf. Theory, vol.60,
no.6, pp.3671–3687, June 2014.

[6] T. Wadayama, “Nonadaptive group testing based on sparse pooling
graphs,” IEEE Trans. Inf. Theory, vol.63, no.3, pp.1525–1534, March
2017.

[7] A. Agarwal, S. Jaggi, and A. Mazumdar, “Novel impossibility results
for group-testing,” IEEE Int. Sym. Inf. Theory (ISIT), pp.2579–2583,
June 2018.

[8] T.M. Cover and J.A. Thomas, Elements of Information Theory, 2nd
Edition, Wiley, 2006.

http://dx.doi.org/10.1214/aoms/1177731363
http://dx.doi.org/10.1109/tit.2006.871582
http://dx.doi.org/10.1142/9789812773463
http://dx.doi.org/10.1109/isit.2013.6620712
http://dx.doi.org/10.1109/tit.2014.2314472
http://dx.doi.org/10.1109/tit.2016.2621112
http://dx.doi.org/10.1109/isit.2018.8437471
http://dx.doi.org/10.1002/047174882x

