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Quality Index for Benchmarking Image Inpainting Algorithms with
Guided Regional Statistics

Song LIANG†, Member, Leida LI†, Bo HU†, and Jianying ZHANG†a), Nonmembers

SUMMARY This letter presents an objective quality index for bench-
marking image inpainting algorithms. Under the guidance of the masks
of damaged areas, the boundary region and the inpainting region are first
located. Then, the statistical features are extracted from the boundary and
inpainting regions respectively. For the boundary region, we utilize Weibull
distribution to fit the gradient magnitude histograms of the exterior and in-
terior regions around the boundary, and the Kullback-Leibler Divergence
(KLD) is calculated to measure the boundary distortions caused by imper-
fect inpainting. Meanwhile, the quality of the inpainting region is measured
by comparing the naturalness factors between the inpainted image and the
reference image. Experimental results demonstrate that the proposed met-
ric outperforms the relevant state-of-the-art quality metrics.
key words: quality evaluation, image inpainting, GRS, gradient magni-
tude, naturalness

1. Introduction

Image inpainting is to automatically restore a damaged im-
age region without leaving visible artifacts. A great num-
ber of image inpainting algorithms have been proposed in
the literature. However, how to evaluate the performances
of inpainting algorithms remains an open problem, and ob-
jective quality metrics are highly desired for this purpose.
Traditional image quality assessment (IQA) metrics are usu-
ally designed for distortions that are evenly distributed in the
whole image. However, in image inpainting, the degraded
regions are typically localized, which can be determined by
user-defined masks. Therefore, traditional IQA metrics are
not suitable for benchmarking image inpainting algorithms.

Recently, several works have been done towards the ob-
jective quality evaluation of image inpainting. Inspired by
the structural similarity (SSIM) [1] metric, Wang et al. [2]
proposed the parameter weight for image inpainting qual-
ity (PWIIQ) index by combining luminance, definition and
gradient similarities. However, PWIIQ is not effective for
images with large inpainting areas. Another group of im-
age inpainting quality metrics are based on visual saliency,
such as the average squared visual salience (ASVS) [3], de-
gree of noticeability (DN) [3], gaze density inside the hole
region (GDin) [4], gaze density outside the hole region (GD-
out) [4], border saliency (BorSal) [5] and StructBorSal [5].
Moreover, Dang et al. [6] used the visual coherence of the
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recovered regions and the visual saliency to develop their
metric. These metrics are based on the fact that visual
saliency indicates the observable artifacts and the change
of salient regions due to inpainting is consistent with im-
age quality. Nevertheless, they do not comprehensively con-
sider the overall visual appearance of an image, which may
be problematic for relatively high quality images and could
only handle a limited number of possible inpainting arti-
facts. Furthermore, Mariko et al. [7] developed a ranking-
by-learning index to estimate the ordering of inpainted im-
ages, which is actually a variant of the visually saliency al-
gorithm.

This letter presents a new objective metric for image
inpainting quality assessment (IIQA) based on guided re-
gional statistics (GRS), which evaluates the overall qual-
ity of image inpainting by simultaneously considering the
impacts of both boundary and inpainting regions. The dis-
tributions of gradient magnitude (GM) histograms between
the exterior and interior boundary region are used to mea-
sure the distortion of the inpainting boundary. Moreover,
the loss of naturalness in the inpainting region is measured.
Finally, an overall quality score is produced by combining
the above two aspects. The performance of the proposed
metric is evaluated by experiments.

The contributions of this letter are as follows: (1) We
re-labeled the public inpainting database TUM-IID [8], in-
creasing its usability and providing a new experimental plat-
form for IIQA. (2) The statistical features, namely, GM
statistics and naturalness, are innovatively introduced to
evaluate the quality of inpainted images. (3) A new objec-
tive IIQA metric is proposed for benchmarking image in-
painting algorithms, which outperforms the relevant state-
of-the-art traditional IQA and IIQA.

2. Proposed IIQA Index

Figure 1 shows the flowchart of the proposed IIQA metric.
With the inpainting mask, an image is divided into the in-
painting region Ω and the non-inpainting region Φ. Quality
evaluation of the inpainted image is achieved from two as-
pects, namely bounadry distortion evaluation and inpainting
region naturalness evaluation.

2.1 Boundary Feature

An ideal inpainting algorithm is expected to restore the mask
region naturally so that the exterior and interior boundary
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Fig. 1 Flowchart of the proposed IIQA metric.

Fig. 2 Illustration of boundary features. Images (a) to (d) are the images inpainted by different algo-
rithms in [11]. Plots (e) to (h) are the corresponding probability distributions of the GM maps in the
exterior and interior regions. The horizontal axis shows the range of pixel values in the GM map and
the vertical axis is the probability value.

regions look similar. Therefore, the statistical difference be-
tween the exterior and interior sides of the mask boundary
is closely related to the inpainting quality. The GM feature
measures the strength of local luminance change and builds
the basic elements (i.e., local contrast) of image semantic
structures, which is hence closely related to the perceptual
quality of inpainted images. Motivated by this, we measure
the quality of the boundary region based on the GM statis-
tics.

For a given inpainted image, the contour of the inpaint-
ing mask is first determined, from which the same distances
are respectively expanded to both the outer and inner direc-
tions. Two pixel strips of the same width are thus formed,
namely, the exterior and interior regions, which are respec-
tively marked in salmon pink and palegreen as illustrated in
Fig. 1. In this letter, we empirically set the specific width
to 16 pixels by experiments. Then, the GM map of the in-
painted image I can be computed as [9]:

GI =

√
[I ⊗ hx]2 + [I ⊗ hy]2, (1)

where ⊗ denotes the convolution operation and hd, d ∈
{x, y}, denotes the Gaussian partial derivative in horizontal
or vertical direction,

hd(x, y|σ) =
∂

∂d
g(x, y|σ)

= − 1
2πσ2

d
σ2

exp
(
− x2 + y2

2σ2

)
, (2)

where g(x, y|σ) = 1
2πσ2 exp

( − x2+y2

2σ2

)
denotes the two-

dimensional isotropic Gaussian function and σ is the scale
parameter. Then, the Weibull distribution is employed to fit
the histogram probability density of the GM map for the ex-
terior and interior boundary regions, respectively. Finally,
the Kullback-Leibler Divergence (KLD) [10] is calculated
to measure the distance of the two GM distributions, which
is defined as follows:

KLD(Pint, Pext) =
n∑

i=1

Pint(i)ln
Pin(i)
Pext(i)

, (3)

where Pext and Pint denote the probability distributions of
exterior and interior boundary regions, n denotes the vari-
able values in each probability vector. Considering the
asymmetry property of KLD and to avoid negative value,
the following formula is calculated to generate the final fea-
ture:

f1 =
1
2

[KLD(Pint, Pext) + KLD(Pext, Pint)]. (4)

In Fig. 2, an example is given for illustration purpose.
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We can easily observe that the shapes of the fitted curves de-
pend on the inpainting algorithms, and different algorithms
produce different curves. The order of (a), (b), (c), (d) is
ranked in sequence from best to worst according to the qual-
ity of inpainted images, which is highly consistent with the
deviation degree of the corresponding fitting curves.

2.2 Inpainting Region Naturalness

In addition to the boundary feature, we also evaluate the in-
painting quality by measuring the loss of naturalness be-
tween the original image and the inpainted image in the
mask region. Here, we employ the naturalness factor
(NF) [11], whcih is defined as:

NF = (1 − θ) T1

T pr
1

+ θ
T2

T pr
2

, (5)

where Ti and T pr
i , i ∈ {1, 2}, denote the empirical parame-

ter of the given image and the prior parameter learned from
the natural-scene dataset respectively, and θ ∈ [0, 1] is the
weight. For a given image, T1 and T2 are obtained by us-
ing two parametric distribution models in [11] to severally
approximate the cumulative distribution functions (CDF) of
the gradient and the Laplace CDF. The corresponding prior
values are set as: T pr

1 = 0.38,T pr
2 = 0.14. More details

on the calculation of the naturalness factor can be found
in [10]. Finally, the naturalness loss of the inpainted re-
gions between the reference image and the inpainted image
is computed as:

f2 = |NFOriginal
Ω

− NFInpainted
Ω

|. (6)

2.3 Pooling

With the boundary feature f1 around the inpainting region

Fig. 3 Interface for user study.

boundary and the naturalness feature f2 of the inpainting re-
gion, an overall quality score Q is generated by:

Q = α · f1 + (1 − α) · f2, (7)

where α ∈ [0, 1] is the weight used to balance the relative
importance of the boundary feature and the naturalness fea-
ture in the quality assessment of inpainted images. In this
letter, we set α = 0.6 by experiments. This is because in
contrast to the relatively uniform artifacts in the inpainting
region, the influence of boundary distortions on the human
visual system (HVS) is more dominated, especially for large
inpainted regions.

3. Experimental Results and Analysis

3.1 Experiment Settings

The experiments are conducted on the TUM-IID
database [8], which contains 17 reference images with di-
verse visual contents, 4 masks with different size and shape,
and the corresponding 272 inpainted images based on four
state-of-the-art image inpainting methods. Since the orig-
inal database is only partially labelled, we further conduct
a user study to collect the ground truth quality rankings of
images generated by different inpainting algorithms. To be
specific, 31 observers were invited to rank the quality of a
group of four inpainted versions of each original image in
the whole database using the interface shown in Fig. 3. The
quality of each group of four inpainted images is ranked
from “1” to “4”, where “1” represents the worst quality and
“4” is the best. Further, the original reference image is also
displayed to facilitate the rating process.

For performance comparison, Spearman Rank Order
Correlation Coefficient (SROCC) and Kendalls Rank Order
Correlation Coefficient (KROCC) are adopted to measure
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Table 1 Performance comparison of state-of-the-art IQA metrics and
our proposed metric on TUM-IID database. The best-performing metric
is highlighted in bold for each category. TIQA: trational IQA; FR: full
reference; NR: no reference.

Category Metrics Type SROCC KROCC

TIQA

SSIM [1] FR −0.2256 −0.1845
FSIM [13] FR 0.5664 0.4830

MSSSIM [14] FR −0.0178 −0.0076
PSNR [15] FR −0.3560 −0.3213
VSI [16] FR 0.6576 0.4830

IIQA

PWIIQ [2] FR 0.6101 0.5905
ASVS [3] NR −0.4528 −0.3944

DN [3] FR −0.4774 −0.4135
GDin [4] FR 0.5450 0.4674

GDout [4] FR 0.0485 0.0365
BorSal [5] FR 0.4980 0.4282

StructBorSal [5] FR 0.6017 0.5174
GRS f1 FR 0.7904 0.7193
GRS f2 FR 0.7963 0.7340

GRS FR 0.8434 0.7781

the prediction monotonicity between the subjective rank-
ings and the objective scores generated by IQA metrics [12].
Note that the calculation of both SROCC and KROCC is
based on a group of images, which have the same content
but processed by different inpainting algorithms. The TUM-
IID database consists of 68 groups, so the mean values are
reported here. The final value ranges from −1 to 1, where
“1” indicates that the predicted scores are totally consistent
with the subjective ratings, and “−1” is opposite.

3.2 Performance Evaluation

In this part, we compare the performance of the proposed
method with the relevant state-of-the-art quality assessment
metrics, including both traditional IQA and IIQA. The ex-
perimental results are listed in Table 1.

It is observed from Table 1 that the proposed GRS met-
ric achieves the best performance in terms of both SROCC
and KROCC, and it also outperforms the general IQA met-
rics and other IIQA metrics. Specifically, from the results,
the quality scores of several metrics show weak correlations
(negative correlation values) with the subjective rankings,
especially for ASVS [3] and DN [3]. In addition, the per-
formance of the proposed two component features (GRS f1

and GRS f2) is also superior to other metrics. At the quality
score pooling stage, the influence of different regions on the
quality perception of HVS is taken into account, so combin-
ing the two features is more effective.

4. Conclusion

In this letter, a new IIQA metric has been proposed by com-
prehensively considering the changes of statistical informa-
tion around and inside the inpainted regions. Boundary fea-
tures and inpainting region naturalness features are utilized
to measure the boundary and regional statistics under the
guidance of the inpainting mask. Experiments have been

conducted based on the TUM-IID database and the results
confirm the superiority of the proposed metric in contrast to
the state-of-the-art quality metrics.
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