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Faster-ADNet for Visual Tracking∗

Tiansa ZHANG†,††, Nonmember, Chunlei HUO††, Member, Zhiqiang ZHOU†a),
and Bo WANG†, Nonmembers

SUMMARY By taking advantages of deep learning and reinforce-
ment learning, ADNet (Action Decision Network) outperforms other ap-
proaches. However, its speed and performance are still limited by factors
such as unreliable confidence score estimation and redundant historical ac-
tions. To address the above limitations, a faster and more accurate approach
named Faster-ADNet is proposed in this paper. By optimizing the track-
ing process via a status re-identification network, the proposed approach is
more efficient and 6 times faster than ADNet. At the same time, the accu-
racy and stability are enhanced by historical actions removal. Experiments
demonstrate the advantages of Faster-ADNet.
key words: visual tracking, deep learning, status re-identification

1. Introduction

The aim of visual tracking is to track the target robustly and
fast. In recent years, a variety of new approaches [1]–[6]
have been proposed. Hong [1] utilized CNN features and
an online SVM to distinguish the target and background.
Danelljan [2] improved the accuracy by adaptively decon-
taminating the training set. Fan [3] suggested verifying the
results at intervals for balancing tracking performance and
efficiency. Qi [4] constructed a stronger tracker for precise
target localization by combining weak trackers at different
CNN layers. Nam [5] proposed the multi-domain structure
to extract more discriminative features. Despite the im-
proved accuracy, the above approaches are limited in the
efficiency since they ignored adjusting the tracking strategy
to different tracking difficulties at different frames. On the
basis of [5], ADNet [6] adopted the reinforcement learning
and improved searching strategy for improving the tracking
speed (i.e., 2.9 fps). However, ADNet is still far from meet-
ing the real-time requirement, and it is urgent to develop
efficient tracking strategy.

As illustrated in Fig. 1, ADNet is overloaded by fre-
quent re-detection, online fine-tuning and samples gen-
eration. Firstly, in testing, ADNet is impacted by the
time-consuming target re-detection and network fine-tuning
caused by the unreliable estimation of confidence score S1.
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In fact, S1 evaluates the input image patch cropped at the
bounding box of the previous state, which has no strong re-
lation to the success of the predicted result. And S1 fails
to capture the appearance changes without frequent online
fine-tuning. For this reason, the confidence score S1 will be
unreliable if the target appearance varies across frames even
if tracking results are correct, and it will take ADNet many
time for frequent re-detection and online fine-tuning. Sec-
ondly, in visual tracking, only the target appearance at the
first frame is available. To address this problem, at every
frame in testing, a large number of samples are generated
by ADNet to collect the target appearances. However, many
repetitive appearances are collected by generating samples
too frequently since the appearance change is small at most
time, which is inefficient. Samples generation is the most
time-consuming step (10 times slower than the prediction
step). In addition, online fine-tuning based on duplicated
samples will cause the network overfitting. With 3% de-
crease in accuracy, ADNet-fast [6] generates a small num-
ber of samples per frame, which can not solve the problem
fundamentally.

To address the above limitations, a new approach
named Faster-ADNet is proposed. Compared with tradi-
tional methods, our algorithm is faster and more accurate.
Specifically, Faster-ADNet is 6 times faster than ADNet
with higher accuracy.

2. The Proposed Approach

As shown in Fig. 2, the main rationale of Faster-ADNet
is to optimize the testing procedure by reliable status re-
identification and efficient hierarchical decision. Specifi-
cally, a status re-identification network is added to provide a
reliable confidence for the latter decision, and a hierarchical
decision procedure is presented to reduce redundant opera-
tors and accelerate the tracking speed. Below, we elaborate
our improvements in detail.

2.1 Status Re-Identification Network

To evaluate the predicted result fast and reliably, the sta-
tus re-identification network is implemented by Siamese
network [7], which is trained using the multi-domain strat-
egy [5] with tracking datasets [8]–[10]. The input of
Siamese network is the image pair, i.e., the intra-class pair
and the inter-class pair. The intra-class pair is the image pair
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Fig. 1 Network structure, flow diagram and time consuming of ADNet [6]. Generating samples is per-
formed in every frame. Re-detection and online fine-tuning are performed when tracking fails. ADNet
captures the target by sequential actions. Re-detection is done by generating Nre (= 256) target position
candidates and choosing the one with the highest confidence score. The stop condition is reached by
selecting the stop action or falling in the oscillation case (i.e., the sequential actions are obtained as
{right, left, right}).

Fig. 2 Network structure and flow diagram of Faster-ADNet. The role of status re-identification
network is utilizing the similarity score to determine the latter re-detection, samples generation and
online fine-tuning operations.

with the same semantic label (i.e., both are the backgrounds
or the target), and the inter-class pair is the image pair with
different semantic labels. Two images xi and zi can be ex-
pressed as (xi, zi, yi), where yi = 1 denotes the intra-class
pair, and yi = 0 denotes the inter-class pair. Compared with
individual images, the Siamese network is more promising
for capturing the intra-class similarities and the inter-class
differences. In detail, the appearances of the same target un-
der different perspectives, xi and zi, may have a large dis-
tance in the image feature space, but they should have a
smaller distance than the inter-class pair after training since
they have the same semantical label. In this context, the
Siamese network can reliably decide whether the predicted

result is the target.
Siamese network achieved the above goals by the fol-

lowing contrastive loss [7],

L =
1

2N

N∑

i=1

yd2
i + (1 − yi)max(m − di, 0)2 (1)

Where di = ‖ai − bi‖2 denotes the Euclidean distance of two
image features ai and bi, ai = P(xi) and bi = P(zi) are the
outputs at the final layer, m is the threshold and we set it to
1. The image pairs are obtained by cropping patches around
the ground truth. These patches are divided into target and
background categories according to the IOU between the
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patch and the ground truth (i.e. the patch with IOU > 0.7
belongs to the target class, otherwise the background class).

In testing, for the predicted result x j and the patch z j

from the target set, the similarity score is obtained as,

S2 = m − d j = m − ∥∥∥P(x j) − P(z j)
∥∥∥

2
(2)

There may be more than one patch in the target set, and the
highest score is used as the similarity score. Another ad-
vantage of Siamese network is when the target appearance
changes, only the inputs need updating without the demand
of fine-tuning the network, which saves a lot of time in track-
ing. Each re-identification operator only takes less than 0.01
seconds.

2.2 Faster Testing Based on Hierarchical Decision

As shown in Fig. 2, hierarchical decision procedure bases on
the confidence score S1 and the similarity score S2, which
can reduce unnecessary calculations in testing. For easy
frames, the predicted position will be obtained according
to the action directly. For hard frames, the predicted po-
sition will be re-identified with Siamese network. The time-
consuming steps (e.g., re-detection, samples generation and
online fine-tuning) are only required when the result of re-
identification is failed.

Different target appearances are stored in the target set
for identifying the predicted result. At first, only the ground
truth was stored. In tracking, the target set is updated adap-
tively. The representative sample sampled at every Nl (= 25)
frames will be added if the sample number is less than Ns

(= 8) and no overly similar samples have been stored. The
bad sample will be deleted, which has the most similar ap-
pearance with the current failing position or produces the
failure tracking but with continuous low confidence score
S1 and high similarity score S2. The profit of the hierar-
chical decision strategy is that the following operators were
reduced, 85% of generated samples, 40% of re-detection,
80% of online fine-tuning and the speed is improved by 6
times.

Another improvement is the removal of redundant his-
torical actions. In fact, in many cases such as the Human2
sequences [11], the target is in the view of a moving cam-
era. Since the camera does not move linearly and uniformly,
the historical actions are stochastic. As shown in Fig. 3, the
tracker will be disturbed and make the wrong decision due
to the hysteretic historical actions. For this reason, the his-
torical actions are not utilized.

3. Experiments

We evaluated our method on the Object Tracking Bench-
mark (OTB) [11], [12]. To demonstrate the effectiveness
of the proposed approach, the following 6 state-of-the-
art trackers are used for comparison: HDT [4], SRDCF-
decon [2], CNN-SVM [1], DeepSRDCF [13], ADNet [6]
and ADNet-fast [6]

We used the same training datasets as ADNet [6] from

Fig. 3 Illustration of historical actions disturbance on Human2 [11], the
target has been moving to the left, but the camera starts moving since the
90th frame, so the person moves quickly to the right.

Fig. 4 Performance comparison of different trackers on OTB-100.

Table 1 Performance comparison on OTB-50 [12].

Algorithm Prec (20px) AUC FPS GPU
Faster-ADNet 0.924 0.687 16.7 O

ADNet 0.903 0.659 2.9 O
ADNet-fast 0.898 0.670 15.0 O

HDT 0.889 0.603 5.8 O
SRDCFdecon 0.870 0.653 1.7 X

CNN-SVM 0.852 0.579 < 1 O
DeepSRDCF 0.849 0.641 < 1 O

VOT2013, 2014, 2015 [8]–[10] and ALOV300 [14]. The ac-
tion decision network and status re-identification network
are fine-tuned T (= 300) iterations at the initial frame. In
the online adaptation, N1 (= 3000) samples are obtained
in the initial frame, and N2 (= 250) samples are obtained
when tracking fails. The tracking performance was mea-
sured based on the following metrics: FPS, overlap ratio
and center location error [12]. Performances of different ap-
proaches are shown in Fig. 4 and Table 1. The advantages of
Faster-ADNet can be validated by visually comparing pre-
cisions and success rates of different methods.

To understand how our modifications work, Faster-
ADNet is compared with two variants by considering AD-
Net as the baseline:

1) ADNet+re-identification. “ADNet+re-identifi-
cation” aims to improve ADNet by adding status re-
identification in testing, which achieves the speed of 16 fps,
and it does not remove the historical actions.

2) ADNet-HA. “ADNet-HA” aims to improved AD-
Net by removing historical actions, and it does not have the
status re-identification procedure.

Performances of various variants are shown in Fig. 5.
Owe to the status re-identification network, the speed of
“ADNet+re-identification” can reach 16 fps and precision
is also improved by 0.7%. “ADNet-HA” achieves 1.7% im-
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Fig. 5 Performance comparison of different variants on OTB-50.

Fig. 6 Comparison of confidence score and similarity score with respect
to IOU on Car24 [12]. (a) and (c): IOU and confidence score. (b) and (d):
IOU and similarity score.

provement, which is the new model without historical ac-
tions in both training and testing. The performance differ-
ences illustrate the effectiveness of status re-identification
and historical actions removal. By combing the above two
modifications, the precision of Faster-ADNet is 2.1% higher
than ADNet, and the speed is 6 times faster. To validate the
effectiveness of status re-identification network, the confi-
dence score and the similarity score are compared with re-
spect to IOU in Fig. 6. In (a) and (b), each predicted posi-
tion was evaluated and obtained the confidence score and the
similarity score during testing on Car24 [12]. Results show
that the similarity score is more stable than the confidence
score while the IOU remains quite well in testing, which
means the status re-identification process can reduce many
misjudgments. When the tracking result is poor, the similar-
ity score can also accurately identify it (e.g., the black box
in (a) and (b)). In (c) and (d), each point represents a sam-
ple generated around the target while testing on Car24 [12].
The X axis represents the IOU between the sample and the
ground truth, the Y axis represents the confidence score or
the similarity score of the sample. The distribution between
IOU and confidence score is much more scattered. In short,
the similarity score is more discriminative and robust for

evaluating the tracking status.

4. Conclusion

In this paper, Faster-ADNet is proposed, which reduces
tracking status mis-classification by status re-identification
network and avoid time-consuming processes by hierarchi-
cal decision and redundant historical action removal. Com-
pared with ADNet, the proposed approach is 6 times faster
and more accurate.
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