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Quantum Algorithm on Logistic Regression Problem

Jun Suk KIM†a), Nonmember and Chang Wook AHN†b), Member

SUMMARY We examine the feasibility of Deutsch-Jozsa Algorithm,
a basic quantum algorithm, on a machine learning-based logistic regres-
sion problem. Its major property to distinguish the function type with an
exponential speedup can help identify the feature unsuitability much more
quickly. Although strict conditions and restrictions to abide exist, we re-
confirm the quantum superiority in many aspects of modern computing.
key words: quantum machine learning, Deutsch-Jozsa Algorithm, logistic
regression, feature selection

1. Introduction

Quantum computing has already been in the center of argu-
ments and concerns by computer scientists for nearly two
decades, primarily due to its exotic complexity and poten-
tial to significantly outperform existing machines for ex-
pensive problems, which are inaccessibly costly for clas-
sical computers [1]. In spite of several technological diffi-
culties, endeavors to press beyond the horizon are steadily
yielding remarkable advances [2]. Consequently, it is not
too early to bring the quantum ideas into artificial intelli-
gence, more specifically, machine learning, a versatile tool
that can help integrate massive data into essential and pre-
cise information. Arguably, quantum advantages can pro-
vide higher time-efficient means to machine learning pro-
cessing in various aspects. In this paper, we analyze their
usefulness on machine learning using the simple quantum
algorithm, Deutsch-Jozsa Algorithm.

2. Quantum Context

The basic computation unit of a quantum computer is a
qubit, theoretically implementable with a polarized photon.
Unlike a bit, its classical analog, a qubit can be represented
as a mixture of probabilities of its two definite states of 0 and
1. In other words, the law of quantum superposition imposes
single qubit to reside in multiple states with certain proba-
bilities at the same time as if it exists in numbers, implying
the feasibility of simultaneous and parallel computation [3].

Deutsch-Jozsa Algorithm, one of the earliest and sim-
plest forms of quantum algorithm, utilizes superposition to
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Table 1 Constant and balanced functions of Deutsch’s Algorithm.

x → f (x) Function Type
0, 1 → 0, 0 Constant
0, 1 → 1, 1 Constant
0, 1 → 0, 1 Balanced
0, 1 → 1, 0 Balanced

enable function evaluation speedup. It is a generalized vari-
ant of Deutsch’s Algorithm [4], which is illustrated in Ta-
ble 1. With a binary digit as a given input, if f (0) = f (1),
call the function “constant”; if f (0) � f (1), call it “bal-
anced.” The problem to be solved with the algorithm is
to determine whether a chosen function is constant or bal-
anced. In classical evaluation, one needs to perform two
queries of calculation, i.e., calculate f (0), then calculate
f (1). Deutsch’s Algorithm, on the other hand, shows that the
function can be identified with single quantum query by ex-
ploiting a superposition of qubits. Deutsch-Jozsa Algorithm
also completes the evaluation in one query, but this time with
its input as a binary string, capable of evaluating multiple
qubits simultaneously. With an input string in length of n,
classical evaluation would require 2(n−1) + 1 times of query
to solve the problem, so the quantum application provides
an exponential speedup.

The basic structure of quantum circuit for Deutsch-
Jozsa Algorithm consists of Hadamard operators (H) and
a unitary “black-box” oracle (U f ). The top qubit, initially
in the state of |000 . . . 0〉, is the input, and the bottom qubit,
|1〉, is the auxiliary qubit that controls the input. Both qubits
pass through the Hadamard operators to become superposed
and enter the oracle, which is fundamentally a query to con-
duct function evaluation. Finally, the top qubits proceed
with another Hadamard operation to exit the superposition,
ready for measurement. Mathematically, the overall qubit
states at the final stage of the circuit can be written as

[
∑

(−1) f (x) |0〉
2n

][
|0〉 − |1〉√

2
], (1)

So we can determine the function by measuring the first
part of (1); it is (±1) |0〉 if f is constant; it is 0 |0〉 if f is bal-
anced. All the |0〉 state terms become either +1 or −1 in the
constant case because every outcome must be the same. Ex-
actly half of them cancel the other half out and result 0 |0〉 in
the balanced case. For more thorough mathematical expla-
nation, refer to [3]. Note that we can identify the function
with single query as promised, regardless of amount of the
input.
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3. Adaptation to Machine Learning

In supervised machine learning, one of widely used tech-
niques for data classification is Logistic Regression. It is in-
tuitively clear and comparatively simple to implement, yet
provides a decent outcome utilizable in many branches of
industries. The basic idea is grouping: it assigns an ap-
propriate amount of weight to each feature of input training
set values so that the features’ composition, or hypothesis,
draws a proper border that divides a set of training individ-
uals into their respective groups. Whether a regression hy-
pothesis is good or bad depends on how well it fits with both
the training and test sets. Although avoiding underfitting by
obtaining precise hypotheses that accurately fit with their
training sets is prioritized, overfitting raises risk of inflexi-
bility, failing to generalize to new, other data sets. To avoid
overfitting, two main options exist: reduce the number of
features of input set, or conduct regularization.

Here, we examine how Deutsch-Jozsa algorithm can
help analyze overfitting issues by feature reduction. Con-
sider a simple logistic regression problem with an overfit
hypothesis function that shows high accuracy over training
sets and low accuracy over validation sets. We would like to
discard several features so that the hypothesis becomes more
general and thus more likely to fit with new, arbitrary data.
For this particular problem, we decide to manually choose
features to get rid of. Figure 1 represents our newly defined
“fitting status” function. x1 and x2 are the binary indication
of inclusion of two features that we suspect are contributing
to the overfitting the most. For example, x1x2 = 01 means
that we keep one feature and dispose of the other from our
hypothesis. f (x), on the other hand, shows if the fitting turns
better with respect to the input string x1x2. f (x) = 0 indi-
cates that the hypothesis now shows the better fitting, while
f (x) = 1 means that the fitting is still unsatisfactory either
by overfitting or by underfitting. We expect that the degree
of such dissatisfaction can be tracked down by setting proper
ranges of measures such as root mean squred error (RMSE).
Note that the terms “better” and “unsatisfactory” above are
not strictly defined and would thus mean various degrees in
different cases.

The size of the input for our function will grow expo-
nentially as the number of the considered features increases;
with just 10 features there are 1024 inputs to go over. Ap-
parently, checking them one by one is virtually impractica-
ble with classical computing. If such work is done in single
query regardless of the amount of input, however, we can

Fig. 1 Indication of feature inclusion and fitting change.

attempt a few simple, disposable “blind shootings” which
verify some of our rough guesses with trivial costs. We
demonstrate how Deutsch-Jozsa Algorithm achieves it with
the following trick: x1x2 = 11 means that we do not get rid
of any features from our original list, so the fitting should
remain unchanged. Therefore, the input 11 always results
the output 1 because any unchanged fitting stays unsatisfac-
tory. Now suppose that neither of the two features we have
chosen is the main cause of the overfitting, meaning that the
input 00 should give us the output 1. Nonetheless, we can’t
hastily conclude that these features have nothing to do with
our feature selection yet because even if they do not mainly
contribute to the overfitting, their absence might cause un-
derfitting, in which case the fitting should still be labeled
unsatisfactory. Perhaps getting rid of only one could work,
and figuring that out requires further computations regard-
ing the inputs 01 and 10, in classical computing.

In quantum computing, let us apply Deutsch-Jozsa al-
gorithm upon the problem. Suppose that its output tells us
that the unknown relationship between the feature inclusion
and the fitting status - namely, the function - is constant. Re-
member that the input 11 always goes to the output 1, which
means in the constant case every input goes to the output
1. With that logic kept, we can make our conclusion right
away: no matter how we alter the binary indication of the
features we have chosen, the corresponding fitting change
will always stay unsatisfactory. We acquire this result with
single computation query.

Overall, the whole procedure can be generalized into
the following steps:

1. In case an overfit logistic regression hypothesis has
been constructed, select n input features that are sus-
pected to be contributing to the hypothesis fitting prob-
lem the most.

2. Assign binary indication variables to the selected fea-
tures in forms of x1, x2, . . . xn. For each, set 0 if we ex-
clude the corresponding feature from our feature list;
set 1 if we have decided to keep it.

3. Let f : {0, 1}n → {0, 1} be a function that computes
whether the fitting improves by adjusting the features.
f (x = x1x2 . . . xn) = 0 means that it has improved, and
f (x) = 1 means that it stays unsatisfactory.

4. Now that the input and output are set up, apply
Deutsch-Jozsa Algorithm on computing f with given
inputs. Recall that the circuit needs binary input. Be-
cause we set the function input as binary, no alteration
from the original configuration is needed.

5. Measure the result. The best possible outcome is ex-
pected to take place when the algorithm tells that the
function is constant; it shows that any combination of
the features we have chosen would not help alleviate
the fitting pressure.

6. If the result is balanced or not constant, it does not al-
low a user to make any meaningful conclusion. One
can either try a new feature combination or use other
feature reduction methods.
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4. Discussion

In Deutsch-Jozsa Algorithm, if a function is balanced, its
inputs are divided into exact halves, meaning that the num-
ber of the inputs must be even. Odd numbers of the inputs
would never produce a balanced function and cause the al-
gorithm produce a “vague” outcome, out of which one can’t
make any meaningful conclusion. In order to avoid the dis-
crepancy, we designed the input as a binary combination of
“acceptance (0) or rejection (1)” of each feature. We then
can guarantee that with n features the number of the inputs
always stays even (2n) no matter what n is, so the method is
generalized to diverse data sets.

Recall that increase in computational cost with respect
to the size of input shouldn’t be a primary concern, thanks
to the quantum oddities. Placing our method in the middle
of the computing process should not significantly increase
the time or computation cost, even for operations with enor-
mous feature scale. Consequently, we can play a series of
giveaways to see if we’re lucky with our guess and know
which features wouldn’t lift the fitting pressure, or there
is no luck but the computational efficiency is not seriously
harmed and thus can still afford trying other methods.

As far as the circuit configuration is concerned, we
would only need to switch the Hadamard operators for dif-
ferent inputs. Specifically, as a function does not neces-
sarily change accordingly with different inputs in classi-
cal systems, a quantum black-box oracle wouldn’t require
any modification as long as the regression setting, including
training, testing, and validating sets, remains the same. This
is worth mentioning because it implies that the input to our
suggested application can be changed without altering the
whole problem. One might want to choose and try different
combinations of features prior to actually performing their
removal.

With the outcome from the previous section in our
hand, one question arises: what if the algorithm tells you
that the function is balanced, not constant? Again, we know
that the input 11 goes to the output 1 regardless, but what
would happen to the inputs 00, 01, and 10 remains enig-
matic. We can only know that one goes to the output 1,
and the other two go to the output 0. One major obstacle
in seeking usefulness of Deutsch-Jozsa Algorithm is that it
can’t specify a particular element from the set of output; ev-
ery state of an input has its evaluation via superposition, but
it is “quarantined” from any external observance. Because
Hadamard matrices are reversible, passing through them
twice puts the top qubit back to its original canonical state,
in which the superposition is no longer in effect. Measur-
ing qubits before the second Hadamard operation wouldn’t

help either; any attempts to measure them in superposition
are expected to cause wave function collapse, resulting all
but one state losing their probabilities of existence. Fur-
thermore, the fact that the function is promised to be either
constant or balanced [3] causes another problem when the
function is neither constant nor balanced. It is highly un-
likely that we would find any effective outcome from the
algorithm. After all, even though Deutsch-Jozsa Algorithm
is a powerful engine, it is not surprising to realize that its
actual exploitation is considerably limited.

5. Conclusion

Deutsch-Jozsa Algorithm is known as the most basic form
of quantum algorithm, applicable presumably only to con-
trived problems. We showed, however, that we can use it to
aid the faster feature selection process in logistic regression
problems. More specifically, the algorithm helps quickly
identify if the chosen features are unacceptable for our list.
Although the definite outcome is expected by chance along
with several conditions in strict setting, we found a tech-
nique to put into a decent use. The next generation of quan-
tum algorithms, such as Grover’s and Shor’s Algorithms, are
believed to be much more suited and exploitable to quantum
machine learning problems [5], but it is without doubt that
Deutsch-Jozsa Algorithm has inspired many to proceed with
the potential of quantum computing, and its applications are
still noteworthy.
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