
1878
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.9 SEPTEMBER 2019

LETTER

Gradual Switch Clustering Based Virtual Middlebox Placement for
Improving Service Chain Performance

Duc-Tiep VU†a), Nonmember and Kyungbaek KIM†b), Member

SUMMARY Recently, Network Function Virtualization (NFV) has
drawn attentions of many network researchers with great deal of flexibili-
ties, and various network service chains can be used in an SDN/NFV en-
vironment. With the flexibility of virtual middlebox placement, how to
place virtual middleboxes in order to optimize the performance of service
chains becomes essential. Some past studies focused on placement prob-
lem of consolidated middleboxes which combine multiple functions into a
virtual middlebox. However, when a virtual middlebox providing only a
single function is considered, the placement problem becomes much more
complex. In this paper, we propose a new heuristic method, the gradual
switch clustering based virtual middlebox placement method, in order to
improve the performance of service chains, with the constraints of end-to-
end delay, bandwidth, and operation cost of deploying a virtual middle-
box on a switch. The proposed method gradually finds candidate places
for each type of virtual middlebox along with the sequential order of ser-
vice chains, by clustering candidate switches which satisfy the constraints.
Finally, among candidate places for each type of virtual middlebox, the
best places are selected in order to minimize the end-to-end delays of ser-
vice chains. The evaluation results, which are obtained through Mininet
based extensive emulations, show that the proposed method outperforms
than other methods, and specifically it achieves around 25% less end-to-
end delay than other methods.
key words: middlebox, placement problem, gradual switch clustering, ser-
vice chain, NFV, SDN

1. Introduction

In these days, various network services have been devel-
oped and some network applications require a set of net-
work services, which is called as a service chain for a net-
work application. A network service is supported by de-
ploying a middlebox which is a separate network appliance
that performs a specialized function such as filtering, load
balancing, and packet inspection. Earlier middleboxes are
deployed with dedicated hardware in networks and the traf-
fic of a service chain should go through middleboxes in a
given specific order which requires a complicated routing
scheme. As the scale of network and the variety of service
chains grow quickly, more efficient way to support service
chains is required.

With the popularity of SDN (Software Defined Net-
working) technique, some past works have focused on sup-
porting efficient service chains with middleboxes by config-

Manuscript received November 17, 2018.
Manuscript revised March 31, 2019.
Manuscript publicized June 5, 2019.
†The authors are with the Department of Electronics and

Computer Engineering, Chonnam National University, Gwangju,
Korea.

a) E-mail: ductiep91@gmail.com
b) E-mail: kyungbaekkim@jnu.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2018EDL8240

uring routing paths of each service chain dynamically [1].
Moreover, some works assume that the considered mid-
dlebox is a consolidated middlebox which provides mul-
tiple service functions within one middlebox in order to
improve the scalability of the dynamic routing configura-
tion [2]. However, these works basically assume that a mid-
dlebox has the fixed location, and there are limitations of
enhancing the performance of service chains.

Recently, the rapid development of NFV (Network
Function Virtualization) allows deploying a middlebox
function as an application which can be installed at a VM
(Virtual Machine) running on a common hardware. A vir-
tual middlebox may support a single service function and
multiple service functions (a consolidated middlebox) [3].
A virtual middlebox can be easily moved to a different lo-
cation on a network by migrating its virtual machine from
its original host machine to another host machine. With the
flexibility of locating virtual middleboxes, the position of
virtual middleboxes can be optimized to improve the perfor-
mance of service chains, and it is considered as positioning
problem of virtual middleboxes.

Some recent works have been studied on how to place
middleboxes, especially consolidated middleboxes, for im-
proving the performance of service chains [4]–[6]. How-
ever, the consolidated middlebox is a special case of a virtual
middlebox, and when we consider the case where a virtual
middlebox provides a single function, the placement prob-
lem becomes much more complex. Moreover, some of these
works did not consider important parameters such as switch
memory, virtual machine capacity, and end-to-end delay.

In this paper, we propose a new heuristic method, the
gradual switch clustering based virtual middlebox place-
ment method, in order to minimize end-to-end delay of
network flows corresponding to service chains while sat-
isfying the constraints of service chains (the correspond-
ing flow must visit a specific type of virtual middlebox in
pre-defined order) as well as the constraints of network re-
sources (bandwidth, switch memory and virtual machine ca-
pacity). Because the complexity of the placement problem
of virtual middlebox with multiple constraints is very high,
the proposed heuristic method gradually solves the place-
ment problem step by step. The proposed method finds can-
didate locations for each type of virtual middleboxes along
with the sequential order of service chains by clustering
switches which satisfy the constraints on each step. After
gathering candidate locations, the best location is selected
for each type of virtual middlebox among the corresponding

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

LETTER
1879

candidates in order to minimize the end-to-end delay of ser-
vice chains. Through Mininet based emulation, it is shown
that the proposed method outperforms than other methods.

2. Related Works

In [4], the placement of consolidated middleboxes was ad-
dressed with delay and bandwidth constraints. This work
proposed a greedy solution, which assigning locations of
middleboxes based on the degree of usage of switches. Each
switch counts how many times it is used for the shortest
paths between ingress and egress switches for service chain
flows. Then, consolidated middleboxes are assigned to
switches in the order of usage of middleboxes and switches.
However, this work did not consider some important re-
source constraints such as switch memory and virtual ma-
chine capacity.

In [5], a consolidated middlebox positioning prob-
lem was addressed with consideration of end-to-end delay,
switch memory and virtual machine capacity. This work
proposed a flow clustering method for placing a consoli-
dated middlebox. However, this method is not applicable
to the placement problem of virtual middleboxes providing
a single function which should consider the order of mid-
dleboxes of a service chain. Also, this method lacks the
consideration of bandwidth constraints of service chains.

In [7], a virtual machine placement scheme based on
mutual bandwidth usage between virtual machines was pro-
posed in order to minimize the product of traffic rate and
the number of switches on each flow path. However, this
method did not consider end-to-end delay and other re-
sources such as switch memory and server capacity.

3. Gradual Switch Clustering Based Virtual Middle-
box Placement

We consider a graph G = (V0, E0), where V0 is the set of
nodes and E0 is the set of edges. A node v ∈ V0 corresponds
to a switch, and an edge e ∈ E0 corresponds to a link con-
necting two switches. We assume that the bandwidth of a
link (be) is given and the delay of a link (de) is also given. A
node v can hold routing rules, and the number of rules of a
node v is denoted as rv and the maximum number of rules of
a node v is Rv. Also, we assume that every switch supports
NFV which deploys any virtual middleboxes.

A network service chain is defined as a flow f and
the set of flows is denoted as F = { f1, f2, . . . , fm}. A flow
f is described as f = {vsrc f , vdest f ,m

t1
1 f
,mt2

2 f
, . . . ,mtl

l f
, BWf },

where vsrc f is the source switch and vdest f is the destination
switch. mti

i f
means the ith virtual middlebox, and deployed

switches of virtual middleboxes will be decided by the pro-
posed placement algorithm described later. l is the number
of virtual middleboxes required by this service chain and ti
is the type of the ith virtual middlebox. We assume that there
are n different types of virtual middleboxes, and the number
of available virtual middleboxes for type t can be limited as

qt. BWf is the required bandwidth of the flow f , and it rep-
resents how much bandwidth the flow is expected to occupy
per unit of time (Mbps).

The end-to-end delay of a flow f (d f) is determined
by the sum of the delay between the source switch and the
first virtual middlebox, the delay between the last virtual
middlebox and the destination switch, and the delays of
sequential pairs of virtual middleboxes in the correspond-
ing network service chain. Accordingly, it is denoted as
d f = d(vsrc f ,m

t1
1 f

) + d(mtl
l f
, vdest f) +

∑l−1
i=1 d(mti

i f
,mti+1

(i+1) f
).

The bandwidth usage of a link e is calculated as the
summation of the bandwidth allocated to all of the flows
which travel through the link e. Accordingly, it is denoted
as
∑

f∈Fe
BWf , where Fe is the subset of F whose member

flows travel over a given link e.
Each virtual middlebox may have different processing

power which is how much network bandwidth it can deal
with per unit of time, and the processing power of a type t
virtual middlebox is denoted as Omt

j
, where 1 ≤ j ≤ qt.

With the given G, F and constraints of virtual mid-
dleboxes (n, qt), our placement problem is finding suitable
switches for the required virtual middleboxes of flows, so
that the end-to-end delay of each flow is minimized and re-
source constraints (bandwidth of a link, processing power
of a virtual middlebox and number of rules of a switch) are
satisfied. The problem formalization is as follows:

minimize
∀ f∈F

d f

subject to
(1)

∑

f∈Fe

BW f ≤ be,∀e ∈ E0 (2)

∑

f∈Ft

BW f ≤
qt∑

j=1

Omt
j
, 1 ≤ t ≤ n (3)

rv ≤ Rv,∀v ∈ V0 (4)

The objective (1) represents our primary goal to min-
imize the end-to-end delay of flows. The constraint (2) is
the bandwidth constraint of a link, and the total bandwidth
consumption of flows which travel through a link should be
lower than the given bandwidth capacity of the link. The
constraint (3) is the processing power constraint of a virtual
middlebox, and the total processing demand of flows corre-
sponding to type t virtual middleboxes (Ft) should be lower
than the maximum processing capacity of the type t virtual
middleboxes. The constraint (4) is the switch memory con-
straint, and a switch should have available memory to store
all of the required flow table entries. Accordingly, the for-
malized problem is a kind of a knapsack problem with mul-
tiple constraints, and it is NP-complete [8]. In a brute force
manner, the complexity of evaluating constraints of every
switch selection takes around O(|V0 |C∑n

t=1 qt × |F|).
To solve the problem, we propose a heuristic method

which selects proper switches for virtual middleboxes in a
gradual manner by using a switch clustering algorithm. De-
tails of the proposed method is shown in Algorithm 1 and

1880
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.9 SEPTEMBER 2019

Algorithm 1 Virtual Middlebox (VMB) Placement with
Gradual Switch Clustering
Input: G = {V0, E0}, F, l, n, qt where 1 ≤ t ≤ n
Output: P = {P1, P2, . . . , Pn} where Pt = {p1, p2, . . . , pqt }, pi ∈ V0

for t ← 1 to n do � Pt : final mapping of switches to type t VMB
Pt ← ∅, Tt ← ∅ � Tt : candidates of switch selection for Pt

for i← 1 to l do � Selecting candidate switches gradually
for t ← 1 to n do � Handling each type of VMB

Ft ← ∅, St ← ∅
for each f ∈ F do � Sorting out flows for type t VMB (Ft)

if typeof(mti
i f

) == t then

add f to Ft

for each f ∈ Ft do � Preparing source switches (St)
if i == 1 then � Adding previous switch for the first VMB

add vsrc f to St

else � Adding candidate previous switches for other VMB
x← typeof(m

t(p−1)
(p−1) f

) � Checking type of previous VMB

add Tx to St � Adding corresponding candidate switches

Ct = SwitchClustering(St ,G, qt) � Partitioning qt switch clusters
for each Ct j ∈ Ct do � Ct = {Ct1 ,Ct2 , . . . ,Ct j }, 1 ≤ j ≤ qt

At j ← ∅, Ft j ← ∅
for each v ∈ Ct j do � Preparing adjacent switches of clusters (At j)

Vad jv=GetAdjacentSwitches(v, Ft , G)
add Vad jv to At j � Vad jv : Adjacent switches of v
Fv=GetCorrespondingFlows(v, Ft , T) � T = {T1,T2, . . . ,Tn}
add Fv to Ft j � Fv : Flows corresponding to v

for each v ∈ At j do � Calculating flow delays for candidates
dtot
v ← 0

for each f ∈ Ft j do
dtot
v ← dtot

v + d(vsrc f , v) + d(v, vdest f)

Sort At j in increasing order with dtot
v � Objective 1

for each v ∈ At j do � Choosing candidate switches (Tt)
if rv ≥ Rv � Constraint 4

or
∑

f∈Ft j
BW f ≥ Omt � Constraint 3

or ∃e ∈ E such that
∑

f e∈Ft j
BW f ≥ be then � Constraint 2

continue
else

add v to Tt � adding v as candidate switches (Tt)

for t ← 1 to n do � Final selection of qt switches for type t middlebox
Ct = SwitchClustering(Tt ,G, qt) � Clustering candidate switches
for each Ct j ∈ Ct do
v← GetCentroid(Ct j) � Finding the centroid of each cluster
add v to Pt � Centroid of each cluster as final selection

Fig. 1 Overall procedure of the proposed algorithm.

the overall procedure of the algorithm is depicted in Fig. 1.
The proposed algorithm selects candidate switches of virtual
middleboxes (Tt) along with the sequence of network ser-
vice chains, and the selected candidates are used for the next
stage of placement. That is, at first, the proposed method
selects candidate switches for the first required virtual mid-
dleboxes of flows (mt1

1 f
), then this procedure continues until

finding candidate switches for the last required virtual mid-

Algorithm 2 SwitchClustering(S, G, k)
Input: S,G = {V0, E0}, k � S = {s1, s2, . . . , sn}, si ∈ V0

Output: C = {C1,C2, . . . ,Ck} � Ci = {c1, c2, . . . , cm},m ≤ n, ci ∈ S
Preparing the initial centroids Z = {z1, z2, . . . , zk}with k random switches
Initializing C = {C1,C2, . . . ,Ck} � zi is the centroid of Ci

repeat
for each si ∈ S do � Pre-Clustering

dmin ← ∞, q← 0
for each z j ∈ Z do

Calculating d(si, z j) � Delay between a switch and the centroid
if d(si, z j) < dmin then � Finding a cluster with minimum delay

dmin ← d(si, z j), q← j

Add si to Cq � Assigning a switch to the nearest cluster

for each Ci ∈ C do � Updating centroids with pairwise delay
dmin ← ∞, q← 0
for each c j ∈ Ci do � Calculating pairwise delay

Calculating dtot
c j

∑
d(c j, cx), ∀cx ∈ Ci, cx � c j

if dtot
c j
< dmin then � Finding a switch with minimum delay

dmin ← dtot
c j

, q← j

zi ← cq � cq ∈ Ci

until No changes in Z

deboxes of flows (mtl
l f

).
The procedure of selecting candidates is composed of

gathering source switches for the current target middle-
boxes (St), clustering source switches (Ct), finding adjacent
switches of each switch cluster (At) and selecting candidate
switches with the given constraints (Tt). When gathering the
source switches for the second or other virtual middleboxes,
the previously selected candidate switches (Tt) are used as
source switches for the further procedure. The objectives
of switch clustering (Algorithm 2) are 1) selecting the given
number of switches for the specific type of virtual middle-
boxes (qt) and 2) minimizing the total end-to-end delay of
flows corresponding to candidate switches for the given vir-
tual middleboxes.

After finding all the candidate switches for every re-
quired virtual middleboxes of flows, the final selection of
switches for each t type of virtual middleboxes (Pt) are ob-
tained by using switch clustering algorithm. Consequently,
with this gradual heuristic method, the evaluation of candi-
date switches is conducted along with the sequence of ser-
vice chain (l) and different types of virtual middlebox (n,
qt), and the complexity of finding proper switches can be
relaxed down to O(l × n × qt × |F|).

4. Evaluation

In order to evaluate the proposed method, an SDN/NFV
testbed with Opendaylight SDN controller and Mininet is
implemented. On this testbed, the locations of virtual mid-
dlebox on a given network topology are deployed by us-
ing various placement methods (the random placement, the
most used switch placement [4] and our proposed method).
Then, the network traffic of service chains are emulated with
Iperf and the performance parameters such as end-to-end
delay per flow, bandwidth consumption and the number of
rules per a switch are measured.

LETTER
1881

Table 1 Parameters setting in the performance evaluation.

Parameter Value/Range

FatTree-4 Link delay (ms) From 1 to 30

The number of type of virtual middlebox 5

The number of middleboxes in a service chain 3

The number of flows 20, 30, 40, 50

The bandwidth demand of each flow (Mbps) From 0.1 to 5

The processing capacity of each middlebox (Mbps) 100

Maximum bandwidth of each port in a switch (Mbps) 100

Maximum number of rules in each switch 30

Fig. 2 Average end-to-end delay per service chain flow.

Fig. 3 Average jitter per service chain flow.

For a network topology, the well-known FatTree net-
work topology is used [4]. Particularly, the FatTree-4 with
20 switches and 32 links is used. Through the evaluation,
we assume that there are various kinds of service chains and
various number of flows corresponding to a service chain.
Details of parameter settings are summarized in Table 1.

The evaluation results are illustrated in Figs. 2, 3, 4,
and 5. In the results, the proposed method achieves the
best performance. Especially, though the average number
of rules per switch of the most used switch method is sim-
ilar to our proposed method (Fig. 5), our proposed method
achieves around 25% lower end-to-end delay (Fig. 2) and
around 20% lower bandwidth consumption (Fig. 4) than the
most used switch method.

5. Conclusion

In this paper, a new heuristic method with gradual switch
clustering is proposed for solving placement problem of vir-
tual middleboxes in order to improve service chain perfor-
mance. Through extensive evaluation, it is demonstrated
that the proposed method outperforms the random method

Fig. 4 Total bandwidth consumption.

Fig. 5 Average number of rules per switch.

and the most used switch method. The proposed heuris-
tic method can be used for real-time provisioning service
chains.

Acknowledgments

This research was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT & Future
Planning (NRF-2017R1A2B4012559).

References

[1] Z. Cao, M. Kodialam, and T.V. Lakshman, “Traffic steering in soft-
ware defined networks: Planning and online routing,” Proc. ACM
DCC, pp.65–70, 2014.

[2] A. Gushchin, A. Walid, and A. Tang, “Scalable routing in SDN-
enabled networks with consolidated middleboxes,” Proc. ACM SIG-
COMM HotMiddlebox, pp.55–60, 2015.

[3] V. Sekar, N. Egi, S. Ratnasamy, M. Reiter, and G. Shi, “Design
and implementation of a consolidated middlebox architecture,” Proc.
NSDI, 2012.

[4] J. Liu, Y. Li, Y. Zhang, L. Su, and D. Jin, “Improve service chaining
performance with optimized middlebox placement,” IEEE Trans. Ser-
vices Comput., vol.10, no.4, pp.560–573, 2017, doi: 10.1109/TSC.
2015.2502252.

[5] D.T. Vu and K. Kim, “Flow clustering based efficient consolidated
middlebox positioning approach for SDN/NFV-enabled network,”
IEICE Trans. Inf. & Syst., vol.E99-D, no.8, pp.2177–2181, 2016.

[6] M. Huang, W. Liang, Z. Xu, and S. Guo, “Efficient algorithms for
throughput maximization in software-defined networks with consoli-
dated middleboxes,” IEEE Trans. Network and Service Management,
vol.14, no.3, pp.631–645, Sept. 2017.

[7] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” Proc.
IEEE INFOCOM, pp.1–9, 2010.

[8] H. Kellerer, U. Pferschy, and D. Pisinger, “Introduction to NP-
completeness of knapsack problems,” Knapsack Problems, pp.483–
493. Springer, Berlin, Heidelberg, 2004.

http://dx.doi.org/10.1145/2627566.2627574
http://dx.doi.org/10.1145/2785989.2785999
http://dx.doi.org/10.1109/tsc.2015.2502252
http://dx.doi.org/10.1587/transinf.2016edl8064
http://dx.doi.org/10.1109/tnsm.2017.2725240
http://dx.doi.org/10.1109/infcom.2010.5461930
http://dx.doi.org/10.1007/978-3-540-24777-7_16

