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SUMMARY  Speech captured by an in-ear microphone placed inside
an occluded ear has a high signal-to-noise ratio; however, it has different
sound characteristics compared to normal speech captured through air con-
duction. In this study, a method for blind speech quality enhancement is
proposed that can convert speech captured by an in-ear microphone to one
that resembles normal speech. The proposed method estimates an input-
dependent enhancement function by using a neural network in the feature
domain and enhances the captured speech via time-domain filtering. Sub-
jective and objective evaluations confirm that the speech enhanced using
our proposed method sounds more similar to normal speech than that en-
hanced using conventional equalizer-based methods.
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1. Introduction

Many studies on capturing noise-free speech in noisy en-
vironments have been carried out. A noise cancellation
approach captures both speech and noise signals and then
cancels noise based on the difference between the two sig-
nals [1]. However, this technique has limitations because
speech and noise signals inevitably share many common
components. A noise blocking approach, which is used to
prevent noise from entering the microphone by capturing
speech through bone and tissue conduction, is a more ef-
fective method for capturing noise-free speech [2]-[6]. The
most convenient way of blocking noise is to capture speech
from inside an occluded ear by using an in-ear microphone
(IEM) [2]-{4].

Because of the different sound-transmitting pathways,
speech captured from inside an occluded ear has differ-
ent sound characteristics from normal speech captured in
front of the mouth through air conduction. Accordingly, the
speech captured using an IEM is considered degraded and
sounds different from normal speech. Hence, to use an IEM
successfully, a speech enhancement module as a post pro-
cessor is required for the captured speech.

The goal of speech enhancement is to recover the signal
modification caused by an IEM. A typical form of this mod-
ification is the spectral envelope change in all bands, with
obvious reduction in high-band level; the harmonic structure
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is not changed [2]-[4]. Accordingly, a bandwidth extension
(BWE) was proposed as an enhancement solution that fo-
cuses on recovering the high band [4]. However, the BWE
may not be an appropriate enhancement strategy for IEMs,
because it recovers the high band without using the cor-
rect high-band harmonic structure that remains unchanged
in the captured speech. Moreover, the BWE cannot enhance
the degraded low-band spectral envelope, which is often the
main reason for the low quality of the captured speech.

An equalizer (EQ) can enhance speech quality by ad-
justing the spectral envelope of the degraded speech close
to that of the target speech [2], [3]. It was confirmed from
our investigation that the nature of speech modification by
the IEM depends on the speech phoneme. However, the
conventional EQs proposed in [2], [3] cannot perform the
spectral adjustment in a phoneme-dependent manner and
therefore cannot enhance the degraded speech to the desired
level. Hence, an input-dependent method based on learning
or modeling is required, such as a neural network [5] or a
Gaussian mixture model [6].

Many methods of speech enhancement based on a neu-
ral network have been developed [7]-[12]. They generally
have a long processing delay, especially when using a cost
function that directly measures speech quality, such as short-
time objective intelligibility (STOI) [9]-[12]. In addition,
most methods aim to enhance noisy speech by implement-
ing complex functions with a large network. In contrast,
speech enhancement for the IEM, which works while cap-
turing speech on a tiny in-ear device, requires a short-delay
and low-complexity method that is specialized for the [EM-
induced distortion. Therefore, the conventional enhance-
ment methods may not be directly applicable to speech en-
hancement for the IEM.

In this study, a new speech enhancement method for
an IEM is proposed. The IEM has only one microphone
inside the ear canal, and a blind method that utilizes only
a single-channel input is designed. The proposed method
determines an input-dependent enhancement function on a
short frame basis by using a neural network in the form of
feature mapping. Subsequently, the enhancement is imple-
mented by applying the estimated target features to the in-
put through time-domain filtering. Moreover, a preliminary
high-band booster is included to recover roughly the high-
band reduction due to the IEM, thus relieving the burden
on the neural network. Subjective and objective evaluations
confirm the effectiveness of the input-dependent operation
of the proposed method in enhancing the speech quality, in
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comparison to conventional EQs [2], [3].
2. Proposed Speech Quality Enhancement Method
2.1 Methodology of Speech Quality Enhancement

To analyze the characteristics of the signal modified in the
IEM, speech signals were captured simultaneously using
the IEM [13] and a normal microphone held in front of the
mouth; the signals are denoted by x(#) and y(#), respectively.
x(t) corresponds to the raw captured speech to be used as
an input for enhancement, and y(#) corresponds to normal
speech to be used as a target for enhancement.

Figure 1 shows the spectra of x(¢) and y(7) and the dif-
ference in the spectral envelope between x(¢) and y(¢) for
different phonemes corresponding to two different speakers.
The correct harmonic structure of speech is maintained in
x(t). In contrast, a change in the spectral envelope occurs in
all bands of x(¢), with obvious high-band reduction, because
of the occluded ear effect. Moreover, the shape of the spec-
tral envelope mismatch varies with respect to x(r) with dif-
ferent phonemes, because different phonemes resulting from
the unique shapes of the mouth and jaw lead to different
shapes of the transmitting pathways. Hence, for enhancing
the speech quality, a spectral envelope correction function
that depends on the input x(¢) should be obtained, which is
denoted by S (f; x) in the form of frequency response.

In the proposed method, S(f;x) is estimated using a
neural network. Because the neural network aims to cor-
rect the spectral envelope mismatch, the loss in the neural
network should be the spectral envelope error between the
neural network output and its target. In this case, the contri-
bution of each band to the loss depends on the band energy,
if loss weighting is not used. Therefore, the straightforward
learning of the neural network tends to be biased in the di-
rection in which it focuses on reducing the errors in the high-
energy bands, making it difficult to recover the significant
level reduction in the high bands with low energy.

To solve this problem in training the neural network,
in the proposed method, a strategy of pre-boosting the high
band is employed, instead of using loss weighting. In other
words, by using prior information that the energy in the high
bands of x(¢) has been reduced significantly, x(¢) is first in-
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Fig.1  Spectra of speech captured by a normal microphone (lower solid)
and the IEM (lower dotted), and the spectral envelope difference between
the two (upper). Each plot shows the case of /er/ (upper left), /u/ (upper
right), /g/ (lower left), and /o/ (lower right).
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putted to a high-band booster and its output is then applied
to the neural network. A fixed high-band booster is designed
empirically after analyzing the average high-band envelope
difference between x(f) and y(¢) by using the given train-
ing dataset. It is implemented via a second-order infinite
impulse response (IIR) shelving filter; the IIR filter is se-
lected because low complexity and short processing delay
are required. Accordingly, in this two-stage procedure, the
high-band boosting plays the role of preliminary rough level
matching of the high bands, and the neural network focuses
on fine spectral shaping in all the bands.

The neural network for estimating S (f; x) operates in
the feature domain. The spectral coefficients or signal sam-
ples are not qualified as features, because they show too
many details of the signal, while overlooking the overall
relationship between x(¢) and y(#), leading to a poor learn-
ing performance of the neural network. Instead, a low-
dimensional feature that effectively expresses the spectral
envelope is preferred, such as the linear predictive coeffi-
cient, Mel-frequency cepstral coefficient (MFCC), or band
energy. No significant differences were found between these
candidates in terms of the performance, after conducting
many experiments on them, and a method with lower com-
plexity, i.e., the band energy, was finally selected for the
proposed method.

The speech enhancement is conducted on a short frame
basis to ensure short processing delay, in which the sampling
rate of the signal is 8 kHz and the frame size is set to 20 ms.
To obtain the band energy, a 20 ms-frame-based spectrum
is computed using a 256-point discrete Fourier transform
(DFT) with overlap. The spectrum is then divided into 18
Bark-scale bands, and the band energy in the log scale is
computed, resulting in an 18-dimensional feature vector.

Based on the above investigation, the overall structure
of the proposed enhancement method is designed, as shown
in Fig.2. For each frame, the raw captured speech x(¢) is
converted into the enhanced speech y,(f) as follows. The
high-band booster output xy(#) is computed, and the fea-
ture vector X of xy(#), consisting of its band energy, is
computed and inputted to the trained neural network. The
neural network then outputs the estimate of the target fea-
ture vector Y,, corresponding to the band energy of y, (7).
The band energy conversion from X to Y, is conducted by
time-domain filtering, rather than by spectral-domain filter-
ing that requires inverse DFT and an overlap-and-add opera-
tion to compute y,(#), in order to achieve low complexity and
short processing delay, which is a strict design constraint in
this study. In particular, a set of IIR biquad peaking filters
for each band b, denoted by a transfer function H;(z), is de-
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Fig.2  Overall structure of the proposed speech enhancement method.
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signed [14], where the gain of the peaking filters is set as
the difference between X and Y, and the gain interpolation
from the previous frame is applied to ensure a smooth spec-
tral change. The Q value that controls the bandwidth is set
to 4.0 in all bands [14]. Then, the resulting peaking filters
H,(z) are applied to xy(f) with the band energy X to obtain
the final output y,(¢) with the band energy Y,,.

In summary, the proposed method enables the design
of the time-varying IIR filters using neural network such
that they can correct the spectral envelope modification in
a phoneme-dependent way. Then, it applies the filters to the
input to implement the speech enhancement.

2.2 Neural Network

The neural network was designed to be as simple as possible
while providing acceptable performance, in order to reduce
the computational complexity. Accordingly, a basic multi-
layer neural network with two hidden layers, each with 180
and 60 neurons, was selected. A sigmoid activation function
is used in all the layers. Then, the developed enhancement
module can run successfully on our target in-ear device.

For training the neural network, the feature vectors X
and Y are computed from the training dataset, after applying
the high-band booster to x(f). The neural network is trained
such that it searches for the best mapping function from X
to Y by using the stochastic gradient descent (SGD) method
with a cross-entropy cost function. The training is run by
500 epochs with a mini-batch size of one and learning rate
of 0.005.

3. Performance Evaluation

As different IEMs have different characteristics depending
on their physical structure and shape, the speech database
(DB) for training the neural network as well as the perfor-
mance evaluation should be generated using the target [IEM.
Therefore, the speech DB was generated locally in our labo-
ratory by recording a set of speech signals by using both the
target IEM [13] and a normal microphone. The DB contains
speech signals obtained from 10 speakers, and its size is ap-
proximately 12min. The training dataset contains speech
signals obtained from eight speakers, and the testing dataset
contains speech signals obtained from two speakers, one
male and one female, who are not included in the training
dataset. Thus, the training is done in a speaker-independent
manner.

Figure 3 shows the spectra of the enhanced speech y,(f)
obtained using the proposed method and its target y(¢), along
with the spectral envelope difference between the two for
the same signals shown in Fig. 1. The mismatch in the spec-
tral envelope is significantly reduced, though not completely
eliminated. The spectrograms shown in Fig. 4 also confirm
that the enhanced speech y,(f) gets closer to its target y(f)
than the raw captured speech x(7).

To confirm the superiority of the proposed method, its
performance was compared to that of EQ, because the pro-
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Fig.3  Spectra of enhanced speech y,(7) (lower dotted) and its target y(r)
(lower solid), and the spectral envelope difference between the two (upper)
for the signals in Fig. 1.
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Fig.4  Spectrograms of two utterances; each spectrogram has a time
length of 1.3 s and a bandwidth of 4 kHz.
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Fig.5 Results of subjective evaluation in terms of the comparison cate-
gory rating.

posed method is similar to EQ in terms of operation. As in
[2], [3], the reference EQ for performance comparison was
designed after computing the average spectral envelope dif-
ference between x(f) and y(7) by using the training dataset.

Subjective evaluation is conducted based on the com-
parison category rating (CCR), where the quality difference
between the two speech signals is measured [15]. Seven
subjects participated in the evaluation. Figure 5 shows the
CCR results with a 95% confidence interval. For “A vs. tar-
get,” where A is one to be evaluated, the scores —1, —2, and
—3 indicate that the target is slightly better, better, and much
better than A, respectively [15]. The scores of “raw vs. tar-
get” and “EQ vs. target” show that the perceptual speech
quality cannot be enhanced by simply adjusting the spectral
envelope via a fixed EQ, despite the less muffled sound ow-
ing to the high-band boosting by the EQ. In contrast, from
the “proposed vs. target” score, the speech processed using
the proposed method is found to be significantly closer to
normal speech in terms of perceptual speech quality than the
raw captured speech, even though a slight sound difference
is still perceived.

The objective performance of the enhancement meth-
ods is measured via the average log-spectral distortion
(ALSD) that analyzes the degree of spectral matching be-
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Table 1  Results of objective evaluation in terms of the average log-
spectral distortion (ALSD) and the PESQ.
ALSD (dB) PESQ
0~2kHz 2~4kHz 0~4kHz score
raw vs. target 8.09 6.43 7.37 2.67
EQ vs. target 8.20 6.02 7.37 2.52
proposed vs. target | 7.18 5.68 6.55 2.71

tween the two signals [16]. In the low bands below 2 kHz,
the spectral envelope difference between x(f) and y(¢) has
positive and negative values arbitrarily depending on the
phoneme, which makes the average spectral envelope differ-
ence converge to zero. Therefore, the reference EQ, deter-
mined from the average spectral envelope difference, has an
approximately zero gain in the low bands and cannot reduce
the ALSD in these bands, as shown in Table 1. The poor
performance in the low bands is the main reason why the
reference EQ cannot improve the perceptual speech quality.
The proposed method reduces the ALSD in both the low
and high bands by virtue of its time-varying operation de-
pending on the input x(#). As another objective evaluation,
the perceptual evaluation of speech quality (PESQ) score is
measured [17]. Table 1 shows that the proposed method pro-
vides a higher PESQ score than the reference EQ.

4. Conclusion

An IEM placed inside an occluded ear can be used to capture
noise-free speech via a noise blocking approach. However,
the sound characteristics of the captured speech are different
from those of normal speech. Therefore, an enhancement
method for the IEM is required. To consider the phoneme-
dependent nature of speech degradation, a learning method
based on a neural network is proposed. This method corrects
the mismatch in the spectral envelope by time-domain fil-
tering whose function is estimated in a phoneme-dependent
way using the neural network. From subjective and objec-
tive evaluations, it is confirmed that the speech enhanced
using the proposed method sounds more like normal speech
than that enhanced using conventional EQs.

Acknowledgments

The work reported in this paper was conducted during the
sabbatical year of Kwangwoon University in 2018.

References

[1] Y. Ephraim and D. Malah, “Speech enhancement using a mini-
mum-mean square error short-time spectral amplitude estimator,”
IEEE Trans. Acoustics, Speech, and Signal Processing, vol.32, no.6,
pp-1109-1121, Dec. 1984.

(2]

[3]

[4]

(3]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

1597

K. Kondo, T. Fujita, and K. Nakagawa, “On equalization of
bone conducted speech for improved speech quality,” IEEE Int.
Symposium on Signal Processing and Information Technology,
pp.426-431, 2006.

A. Bernier and J. Voix, “Signal characterization of occluded in-ear
versus free-air voice pickup on human subjects,” Canadian Acous-
tics, vol.38, no.3, pp.78-79, 2010.

R.E. Bouserhal, T.H. Falk, and J. Voix, “In-ear microphone speech
quality enhancement via adaptive filtering and artificial bandwidth
extension,” The Journal of the Acoustical Society of America,
vol.141, no.3, pp.1321-1331, March 2017.

A. Shahina and B. Yegnanarayana, “Mapping speech spectra from
throat microphone to close-speaking microphone: A neural network
approach,” EURASIP Journal on Advances in Signal Processing,
vol.2007.1:87219, 2007.

M.A.T. Turan and E. Erzin, “Enhancement of throat microphone
recordings by learning phone-dependent mappings of speech spec-
tra,” Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Process-
ing, pp.7049-7053, 2013.

Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “An experimental study on
speech enhancement based on deep neural networks,” IEEE Signal
Process. Lett., vol.21, no.1, pp.65-68, 2014.

K. Han, Y. Wang, D. Wang, W.S. Woods, 1. Merks, and T. Zhang,
“Learning spectral mapping for speech dereverberation and denois-
ing,” IEEE/ACM Trans. Audio, Speech, and Language Processing,
vol.23, no.6, pp.982-992, 2015.

S.-Z. Fu, T.-W. Wang, Y. Tsao, X. Lu, and H. Kawai, “End-to-end
waveform utterance enhancement for direct evaluation metrics op-
timization by fully convolutional neural networks,” IEEE/ACM
Trans. Audio, Speech and Language Processing, vol.26, no.9,
pp.1570-1584, Sept. 2018.

Y. Koizumi, K. Niwa, Y. Hioka, K. Kobayashi, and Y. Haneda,
“DNN-based source enhancement to increase objective sound qual-
ity assessment score,” IEEE/ACM Trans. Audio, Speech, Language
Process., vol.26, no.10, pp.1780-1892, Oct. 2018.

Y. Zhao, B. Xu, R. Giri, and T. Zhang, “Perceptually guided speech
enhancement using deep neural networks,” Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Processing, pp.5074-5078, 2018.

M. Kolbzk, Z.-H. Tan, and J. Jensen, “Monaural speech enhance-
ment using deep neural networks by maximizing a short-time ob-
jective intelligibility measure,” Proc. IEEE Int. Conf. Acoustics,
Speech and Signal Processing, pp.5059-5063, 2018.

[online] https://www.kickstarter.com/projects/ripplebuds/
ripplebuds-noise-blocking-earbuds-with-an-in-ear-m

R. Bristow-Johnson, “The equivalence of various methods of com-
puting biquad coefficients for audio parametric equalizers,” Audio
Engineering Society Convention 97, 1994.

ITU-T Rec. P.800, “Methods for subjective determination of trans-
mission quality,” Aug. 1996.

K.K. Paliwal and B.S. Atal, “Efficient vector quantization of LPC
parameters at 24 bits/frame,” IEEE Trans. Speech and Audio Pro-
cessing, vol.1, no.1, pp.3—14, Jan. 1993.

A.W. Rix, J.G. Beerends, M.P. Hollier, and A.P. Hekstra, “Percep-
tual evaluation of speech quality (PESQ) - a new method for speech
quality assessment of telephone networks and codecs,” Proc. IEEE
Int. Conf. Acoustics, Speech, and Signal Processing, pp.749-752,
2001.



http://dx.doi.org/10.1109/tassp.1984.1164453
http://dx.doi.org/10.1109/isspit.2006.270839
http://dx.doi.org/10.1121/1.4976051
http://dx.doi.org/10.1155/2007/87219
http://dx.doi.org/10.1109/icassp.2013.6639029
http://dx.doi.org/10.1109/lsp.2013.2291240
http://dx.doi.org/10.1109/taslp.2015.2416653
http://dx.doi.org/10.1109/taslp.2018.2821903
http://dx.doi.org/10.1109/taslp.2018.2842156
http://dx.doi.org/10.1109/icassp.2018.8462593
http://dx.doi.org/10.1109/icassp.2018.8462040
http://dx.doi.org/10.1109/89.221363
http://dx.doi.org/10.1109/icassp.2001.941023

