2720

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.11 NOVEMBER 2018

[PAPER

How are IF-Conditional Statements Fixed Through Peer

CodeReview?

Yuki UEDA'®, Nonmember, Akinori IHARA, Takashi ISHIO', Members, Toshiki HIRAO, Nonmember,

SUMMARY Peer code review is key to ensuring the absence of soft-
ware defects. To reduce review costs, software developers adopt code con-
vention checking tools that automatically identify maintainability issues in
source code. However, these tools do not always address the maintainabil-
ity issue for a particular project. The goal of this study is to understand how
code review fixes conditional statement issues, which are the most frequent
changes in software development. We conduct an empirical study to under-
stand if-statement changes through code review. Using review requests in
the Qt and OpenStack projects, we analyze changes of the if-conditional
statements that are (1) requested to be reviewed, and are (2) revised through
code review. We find the most frequently changed symbols are “()", “.”
and “!”. We also find project-specific fixing patterns for improving code
readability by association rule mining. For example “!” operator is fre-
quently replaced with a function call. These rules are useful for improving
a coding convention checker tailored for the projects.

key words: codeReview, if statement, code readability

1. Introduction

Peer code review, a manual inspection of code changes by
developers who do not create them, is a well-established
practice to ensure the absence of software defects. Many
open source software (OSS) and commercial projects have
adopted the peer code review.

Code review requires much time [1]. Code review re-
quires about 50% of the overall software development re-
sources [2]. For example, patch authors tend to spend a long
time revising their own patches due to technical issues [1].
Indeed, 75% of discussions in code review are about main-
tainability issues [3], [4].

To reduce the review cost, software developers adopt
code convention checking tools that automatically identify
general maintainability issues in source code. However,
these tools just cover the general issues[5], in particular,
programming languages. To completely detect maintain-
ability issues, completely, reviewers may need to conduct
code reviews manually with their own eyes.

The goal of our study is to understand how patch au-
thors fix maintainability issues based on reviewers’ feed-
back. To understand maintainability issues, we focus on
if-statement changes. Previous studies reported that since

Manuscript received January 4, 2018.
Manuscript revised June 5, 2018.
Manuscript publicized August 8, 2018.

"The authors are with Graduate School of Information Sci-
ence, Nara Institute of Science and Technology (NAIST), Ikoma-
shi, 630-0192 Japan.

a) E-mail: ueda.yuki.un7 @is.naist.jp
DOI: 10.1587/transinf.2018EDP7004

and Kenichi MATSUMOTO, Fellow

a change in if-statements frequently occur [6], [7], improv-
ing if-statement readability is important [8]. Tan et al. [9]
also reported that binary operators in the conditional ex-
pression are more frequent changes in a programming con-
test. While if-statements are considered important, little is
known about how if-statements are fixed in practical soft-
ware development.

First, as a preliminary study, we identify frequently
changed symbols of the if-conditional statements in sub-
mitted patches (Sect.4). Secondly, we discover tacit fixing
patterns between submitted patches and merged patches by
using association rule mining (Sect.5). As a case study, we
target 69,325 patches in the Qt and 60,197 patches in the
OpenStack project.

This paper is an extension of our previous study [10]
in two ways. First, we analyze all symbols in programming
languages (e.g., Arithmetic, Logical or Relational operators
and String or Number literal). Second, the previous study
obtained only Qt* project written in C++ language. This
paper includes OpenStack™ project written in Python to ob-
tain language-independent results.

This paper is structured as follows. Section 2 describes
the background to our study. Section 3 introduces our target
if-statement changes. Section 4 details an empirical study
to analyze the changes in code review requests, and Sect. 5
presents our analysis of the changes through code review-
ing. Section 6 considers the validity of our empirical study.
Section 7 introduces related works. Section 8 concludes our
study and discusses future works.

2. Background

Various dedicated tools exist for managing the peer code re-
view process. Gerrit Code Review*™ and ReviewBoard****
are commonly used by OSS practitioners to receive the
lightweight reviews. Technically, these code review tools
are used for patch submission triggers, automatic tests and
manual reviewing to decide whether or not a patch should
be integrated into a version control system.

Figure 1 shows an overview of the code review process
in Gerrit Code Review which our target Qt and OpenStack
projects that large OSS projects use as a code review man-

“https://www.Qt.io/developers/
“*https://www.OpenStack.org/
“*Gerrit Code Review: https://code.google.com/p/gerrit/
“***ReviewBoard: https://www.reviewboard.org/

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers

UEDA et al.: HOW ARE IF-CONDITIONAL STATEMENTS FIXED THROUGH PEER CODEREVIEW?

1. Submit

B

Patch,

2. Verify

L L

Feedback
. 3. Revise and Submit

0
— 22 s
Patch Reviewers
Author P

atch,
[
L 4
L

B

Patch,,

Repository

4. Integrate

Fig.1 Overview of the code review processes in Gerrit Code Review

agement tool.

1. A patch author submits a patch to Gerrit Code Review.
We define the submitted patch as Patch; .

2. The reviewers verify Patch;. They send feedback and
ask to revise the patch if it has any issues.

3. The patch author revises Patch; and submits the re-
vised patch as Patch,. The revision process may be
repeated n times. We define the last patch as Patch,,.

4. Once the patch author completely addresses the con-
cerns of the reviewers, the patch will be integrated into
the project repository.

The validity of code review has been demonstrated by
many prior studies [11]-[15]. Raymond et al. [16] discussed
how code review is able to detect crucial issues in large-
scale code before release. These prior studies show the re-
lationship of software defects after release, anti-patterns in
software design and security vulnerability issues.

While code review is effective in improving the quality
of software artifacts, it requires a large amount of time and
many human resources [2]. Rigby et al. [17] found that six
large-scale OSS projects needed approximately one month
to integrate a patch. Reviewers may disagree with one an-
other and take even longer for discussion[18]. The pro-
cess also requires identifying appropriate reviewers for each
patch. Various methods are proposed to select appropriate
reviewers based on the reviewer’s experience [19]-[23] and
complexity of code changes [1].

Most published code review studies focused on review
processes or the reviewers’ communications. They do not
focus on source code changes through the review. We focus
on source code changes especially if changes to clarify how

2721

Listing 1 Example of the deleted “&&” to splitting condi-
tion

Source 1
if (n >= 1 && path.at(0) == QLatinlChar(’/’))
return true;

Source n
if (n == 0)
return false;
const QChar at0 = path.at(0);
if (at0 == QLatinlChar(’/’))
return true;

Listing 2 Example of the replaced “&&” with “| |’ to sim-
plifing condition

Source 1
if (!(nonEmpty && value.isEmpty()))

Source n
if (!nonEmpty || !value.isEmpty())

Listing3 Example of the replaced “=="with “isEmpty()”
to reducing the constructor call

Source 1
if (target.icon() == QPlacelcon () && src.icon ()
= QPlacelcon())

Source n
if (target.icon().isEmpty() && !src.icon().
isEmpty ())

a submitted patches were revised, because i f-statements are
the most frequently changed [6], [7], [9].

3. Motivating Example: Conditional Statements Fixed
through Peer Code Review

This section introduces if-statements fixed through code
review. We investigate the changes between Patch; and
Patch, in Fig. 1.

This research targets the Qt and OpenStack projects. Qt
is a cross-platform application framework, and OpenStack is
a software platform for cloud computing, respectively. Ta-
ble 1 shows the numbers of reviews, the numbers of if-
statements changed in submitted patches (Patch;), and the
numbers of if-statements fixed through code review. We
sample 380 patches from the original Qt review dataset and
then manually read them to identify typical fixing patterns.
The sample size was used to obtain a proportion of patterns
within the 5% bounds of the proportion with a 95% confi-
dential level.

Listings 1 through 3 show concrete examples of if fix-
ing patterns between Patch; and Patch, obtained from the
Qt project. In Listing 1, a logical AND operator (“&&”) is
deleted by splitting the condition into two if-statements’.

Thttps://codereview.Qt-project.org/#/c/16570/1..2/src/lib/tools/
fileinfo.cpp

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.11 NOVEMBER 2018

2722
Table 1 Project summary
project name | language | Time period | # Reviews | # Submitted “If” (statement / reviews) | # Fixed “If” (statements / reviews)
Qt C++ 2011-2013 69,325 5,778 / 2,120 3,343 /1,203
OpenStack Python 20112014 60,197 7,725/ 3,495 3,544 /2,000
In Listing 2, a pair of a logical NOT operator (“!”) and a Patch,
logical AND operator is replaced with a logical OR opera- - if (x)

tor (“| |”) and an additional NOT operator’. In Listing 3,
equality operators (“!=" and “==") are replaced with func-
tion calls'".

This manual reading shows that code review of-
ten changes operators in conditional expressions of if-
statements. Based on this observation, we characterize fix-
ing patterns of if-statements using the numbers of symbols
changed through code review. Section 4 details a prelim-
inary study to analyze the changes in Patch;, and Sect.5
finds fixing patterns between Patch; and Patch,,.

4. Preliminary Study: Source Code Changes in the Re-
view Request

This section counts symbols changed in Patch; to under-
stand symbols frequently used in if-statements.

4.1 Approach

This study collects changes of if-statements in Patch; ob-
tained from the review management system. Each patch is
represented by a unified diff format. Although all versions
of source code are available in the source code repositories
of the projects, we do not use the original source code in or-
der to shorten the time to collect analysis data. We analyze
if-statements whose conditional expression is written in a
changed line. We excluded conditional expressions across
multiple lines from analysis; this filtering is not a strong lim-
itation since multi-line if-statements are included in only
425 (0.6%) patches of the Qt project and 553 patches (0.9%)
of the OpenStack project. Our dataset includes 5,778 (Qt)
and 7,725 (OpenStack) if-statements changed in the sub-
mitted patches. Also, each reviews have 4 (Median) changes
in Qt project and 4 (Median) changes in OpenStack Project
between Patch; and Patch,,.

We count the number of each symbol in the condi-
tion of each if-statement changed in Parch;. We em-
ploy ANTLR [24] with its official grammars for C++ and
Python'™ to recognize reserved words and symbols used
in conditional expressions. Note that the analyzed if-
statements include else-if-statements(C++) and elif-
statements(Python) in addition to regular if-statements.
Figure 2 describes the process of data extraction.

We collect 176 reserved words and symbols in Qt and

Thttps://codereview.Qt-project.org/#/c/53881/1..3/src/libs/
utils/consoleprocess.cpp
Thttps://codereview.Qt-project.org/#/c/6041/1..6/src/plugins/
geoservices/nokia/places/qplacesupplier\srepository.cpp
T https://github.com/antlr/grammars-v4

+ if (!x && 'y)
print(“Hello"”)

1: Extract added line
with include ""if”

\ 4
+ if (Ix && ly)

2: Count symbols and
reserved words

Result v
Symbol Count
&& 1
! 2

Fig.2 Approach to extract changed symbols in if-statement from
Patch

124 reserved words and symbols in OpenStack. Table 2
shows the frequent program elements in patches. The col-
umn “Name” indicates the name of each element used in the
rest of this paper. In this analysis, we excluded identifiers
to simplify the result; various identifiers are used in condi-
tional expressions.

To analyze the frequency in the co-occurrence of sym-
bols, we apply closed frequent itemset mining. The mining
provides a Support metric for a set of items. The metric
represents the relative frequency with respect to the total
number of transactions, i.e. if-statements changed in the
patches.

We employ the arules package [25] as an implemen-
tation of the mining algorithm. We extract item sets whose
size is at most five elements and whose Support score is
equal to or greater than 0.01, since the mining results in
a huge number of item sets. If an item set is a superset
of another item set and has the same Support score, then
the algorithm uses only the larger one. For example, a
set {“LeftParen”, “RightParen”} is extracted and its
subset { “LeftParen”} is filtered out, if the parentheses al-
ways appear as pairs.

4.2 Result

Figure 3 and Fig. 4 show the rate of symbols that appeared
in more than 5% of all if-statements of Patch;. We ex-
tract 477 (Qt) and 162 (OpenStack) item sets obtained by
frequent itemset mining whose Support score is greater
than 0.01. Due to the limited space, Table 3 and Table 4

UEDA et al.: HOW ARE IF-CONDITIONAL STATEMENTS FIXED THROUGH PEER CODEREVIEW?

g Table3 Qt: Frequency of changed symbol sets with if changes.
% 3 Id | Symbols Support * 100
B 1 | LeftParen, RightParen 54.9
g o 2 | Dot 343
5 © 3 | Not 304
E 4 | LeftParen, RightParen, Dot 30.1
> e 5 | Arrow 23.1
E o 6 | Equal 20.8
e c c = ® 5 = = 5 = ® c = = o 7 | LeftParen, RightParen, Not 18.6
& % % 2 § % % § & © g é 2 a é E 8 | LeftParen, RightParen, Arrow 18.1
% & s "5 8 < % R 9 | Number 14.8
-2 z 3 10 | Doublecolon 13.6
o 11 Not, Dot 11.8
Fig.3 Symbol change frequency with if-statement changes (Qt: C++).
Table4 OpenStack:Frequency of changed symbol sets with if changes.
o
'g Id | Symbols Support * 100
& B 1 | Dot 472
-§) 2 | LeftParen 322
§ 3 3 | LeftParen, RightParen 322
S 4 | Not 30.2
g ° 5 | Dot, LeftParen 23.1
e - 6 | Dot, LeftParen, RightParen 23.1
7| B
) £ T B © 0o B £ c© ® B B T © n .
o g 2 58 2 2 E 3 3 33 9 | Not, Dot 14.4
€28 a g 5 10 | LeftBracket, RightBracket 13.7
4 2 T 5 11| Is 12.9
o« 12 | None 12.8
Fig.4 Symbol change frequency with if-statement changes (Open- 13 | Is, None 11.8
Stack: Python). 14 | Comma 11.2
15 | Not,LeftParen, RightParen 10.8

2723
Table 2 Frequency appeared symbols list.
Name Symbolx Description Example
Qt (C++) | OpenStack (Python)
Equal == == compare same or not if(a ==b)
NotEqual 1= 1= compare not same or same if(a !=b)
Not ! not inverse logical result if('a)
And && and and condition if(a && b)
Or | or or condition if(a || b)
LeftParen ((surround condition or call function if(Ca || b) & c())
RightParen)) surround condition or call function if(Ca || b) &c())
FunctionBracesx | func() func() call function if(func(a, b))
Bracketsx 1 1 reference list items and dicitionaries (Python) | if(a[0])
Dot reference individual members of classes if(a.b())
Comma s N separate expressions if(func(a, b))
Less < < compare(greater than) if(a<b)
Greater > > compare(less than) if(a>b)
Arrow -> (N/A) call member from pointer if(a->b())
Doublecolon : (N/A) reference individual members of classes if(a::b())
In (N/A) in identified one variable has another variable ifain b:
Is (N/A) is compare objects are same or not if ais b:
None (N/A) None represent the absence of a value if a is None:
Number 1,2,3... 1,2,3... literal for number ifa>0:
String “String” “String” literal for string ifa=="a"

%(N/A) means the symbol is unavailable in the programming language of the project.
#x the symbol will be used in Sect. 5

show frequent item sets whose Support score is greater than

0.10. For example, Id 1 in Table 3 shows “LeftParen”,
“RightParen” which means “(” and “)” are included at
the same time in the if-statement.

Parentheses are the most frequent symbols in the
changed if-statements.

Qt: Figure 3 shows that parentheses (“LeftParen” and
“RightParen”) are likely included in an if-statement. It
should be noted that those numbers do not include the be-
ginning and end parentheses for if-statements. While the
parentheses often control the order of evaluation in a condi-

2724

Listing 4 Example of the added “(” and “)” to the func-
tion call

Source 1

if (!QFileInfo(systemRoot() + "/epoc32/release/
udeb/epoc.exe").exists ())
return false;

Listing 5 Example of the added “!” to detecting the fail
of function execution

Source 1

if (!isComponentComplete() || !d->model || !d—>
model—>isValid ())
return;

tion, the parentheses also call functions representing some
conditions. An example of such function call is shown in
Listing 4.

OpenStack: Figure 4 shows that parentheses also fre-
quently appear in OpenStack. However, the frequency of
parentheses is lower than Qt project, because some func-
tions in C++ are defined as reserved words in Python stan-
dard library. For example, “std::find” function in C++
are semantically similar to “in” reserved words in Python.
Also, a patch author might define functions instead of “is”
to compare objects.

“Dot” and ‘Not” are frequently used in the if-

statements.
“Dot” is used for accessing a member of an object, and it
is frequently used in both projects. “Not” is used to inverse
logical result. In Table 3 and Table 4, approximately 30%
if-statements used “Not” in two projects. The “Not” re-
served word or symbol is often used to detect the fail of a
function execution as in Listing 4 or to use the output of a
function as in Listing 577

Qt: In Table 3, the Support score of “Dot” with
“Parentheses” are 30.1% (Id 4) of all’s “Dot” 34.3 (Id 2).
Qt project could have used “Dot” to call other object’s func-
tion.

OpenStack: ~ While “Dot” is the most frequently
changed symbol with if-statement changes, nearly half of
if-statements used “Dot” symbols (Id 1 in Table 4).

5. Analysis: Source Code Fixes after Review

This section extracts symbol changes as a fixing pattern be-
tween Patch; and Patch, by using association rule mining.

5.1 Approach

This analysis describes how a patch author fixed if-
statements through the review. In this section, we identify

Thttps://codereview.Qt-project.org/#/c/1368/1/src/plugins/
Qtdprojectmanager/Qt-s60/symbianQtversion.cpp

Thttps://codereview.Qt-project.org/#/c/2481/1/src/declarative/
items/qsggridview.cpp

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.11 NOVEMBER 2018

Patch, Patch,
- if(x) - if (Ix && ly)
+ if (Ix && ly) +if (x| y))
print(“Hello”) print(“Hello”)

Step 1. Get the added single line
that includes the if-statement

[+ ifoxasyy) | [+ iftx Il y) |

Step 2. Count the symbols that are
fixed between Patch, to Patch,

Symbol | Name Count Symbol | Name Count
&& And 1 && And 0
Il Or 0 Il Or 1
! Not 2 ! Not 1
(LeftParen 0 (LeftParen 1
) RightParen | 0) RightParen | 1

Step 3. Compare
both frequencies

And_deleted LeftParen _added Not_deleted

Or_added RightParen_added

Fig.5 Approach to extract fixed symbols after reviewing.

changed i f-statements using diffs’ changed chunks between
source code that has been fixed by Patch; and Patch,,. Fig-
ure 5 shows an approach to extract fixed symbols.

1. Get the added single line with includes the if-
statement

2. Count the number of symbols in 3,343 if-statements
for Qt and 3544 if for OpenStack statements that the
patch author fixed from Patch; to Patch,. For exam-
ple, Fig.5 shows one “&&%” and two “!” changes in
Patch,. After reviewing Patch; to Patch,, the patch
author added “| |, “(” and “)” in Patch,,, and deleted
“&&” and “!”.

3. Compare the difference in the number of symbols
between Patch, and Patch, such as “And_deleted”
(And symbol(s) is deleted between Patch; and
Patchy), “Or_added” (Or symbol(s) is added be-
tween Patchy and Patch,), “LeftParen_added”,
“RightParen_added” and “Not_deleted” to understand
changed contents.

Using this dataset, we conducted an empirical study to
understand the fixed symbols through code review using an
association rule mining technique that is a popular method
for the generation of usage rules [26], [27].

Association rule mining is a method to extract a rela-
tionship between two or more items as an association rule
from a combination of a large number of items. The pre-
condition and post-condition are called LHS (Left-Hand-
Side) and RHS (Right-Hand-Side).

We discover two kinds of rules with both changed sym-
bols (e.g., step 2 in Fig. 5) and fixed symbols (e.g., step 3 in

UEDA et al.: HOW ARE IF-CONDITIONAL STATEMENTS FIXED THROUGH PEER CODEREVIEW?

Fig. 5) by the association rule mining.

1. Replaced symbols pairs

(e.g. “And_deleted” = “Or_added")
2. Added symbols pairs

(e.g. “And” = “Or_added’))

We measure three evaluation scores from the associa-
tion rule mining. They are Support, Confidence and Lift.
Support of a rule is its relative frequency with respect to the
total number of transactions in the history. Confidence is its
relative frequency of the rule with respect to the number of
historical transactions containing the antecedent LHS.

Confidence{LHS } = {RHS})
_ Support({LHS} = {RHS}) (D
B Support(LHS)

Lift measures the magnification of the data where pre-
condition LHS and post-condition RHS exist in rules with
post-condition RHS.

Lift{LHS} = {RHS})

_ Confidence({LHS} = {RHS}))
a Support(RHS)

For association rule mining, we use the arules pack-
age again. Since the association rule mining outputs many
rules, we extract item sets with less than 6 items as well as
the extracted item sets whose support score is greater than
0.01, confidence score is greater than 0.1, and Lift score is
greater than 1.0.

In our preliminary study, we found that more than
99% of “LeftParen” and “RightParen” pairs repre-
sent function calls. Similarly, “LeftBracket” and
“RightBracket” pairs usually represent array access.
Hence, we regard those pairs as “FunctionBrace” and
“Bracket” in this analysis.

5.2 Result

Figures 6 and 7 show the rate of fixed symbols that appeared
is more than 5% of all if-statement fixes. Table 5 and Ta-
ble 6 show the extracted 7 rules and 31 rules for the fixing
patterns from Qt and OpenStack by association rule mining.

Observation 1: if-statement fixes frequently add or
delete FunctionBrace through code review.

0t: 35% of if-statement are added (23%) or deleted
(12%) FunctionBrace in Fig.6. In our manual reading,
we found that there are examples for excepting redundant
function calls (Listings 67) or including necessary function
calls (Listings 7'T).

OpenStack: From Fig.7, “FunctionBrace” fre-
quently deleted or added too. 40% of if-statements are

Thttps://codereview.Qt-project.org/#/c/1779/1..2/src/plugins/
gmlprojectmanager/qmlprojectruncontrol.cpp

Thttps://codereview.qt-project.org/#/c/1843/1..2/src/plugins/
gt4projectmanager/qt-desktop/simulatorqt\version.cpp

2725

25

15

l
|

percentage of fixed symbol

J
1
|

Arrow_added —{

Dot_added —

Not_added —

Dot_deleted —

Not_deleted —

Functionbrace_added —
Functionbrace_deleted —

Fig.6 The added or deleted rate of symbols with if-statement fixes
(Qt:C++).

Listing 6 Example of the deleted “FunctionBrace” to ex-
cepting redundant function call

Source 1

if (config—>QtVersion() && QtSupport::
QmlObserverTool :: canBuild (config —>QtVersion ()
)

Source n
if (QtSupport:: QmlObserverTool:: canBuild (config—>
QtVersion()))

Listing 7 Example of the added “FunctionBrace” to in-
cluding function call

Source 1
if (gmlviewerCommand () .isEmpty ())

Source n
if (QtVersion() >= QtSupport:: QtVersionNumber
(4,7,0) && gmlviewerCommand () .isEmpty ())

25

ed |
ed 4:|
ed 4]
ed 1|
ed 4:|
ed 4:|
ed 4:|
ed 4:|

e
e
e
e
e
el
e
e
e
e
e

percentage of fixed symbol
0 5 15
String_added 4:|
agded ||
added |
eased 1]
agded]
-added]
eaged ||

In_added —

And_added —
Not_added —

Is_added —|
Dot_added

None_added —

FunctionBrace_added —|
String_del
Number_del
In_del
And_del
Not_del
Is_del
None_del
Dot _del
Bracket_del
Equal_del

FunctionBrace_del

Fig.7 The added or deleted rate of symbols with if-statement fixes
(OpenStack:Python).

added (20%) and deleted (20%) in FunctionBrace in
Fig.7. As we showed in our preliminary study, these find-
ings are according to the python language in OpenStack
such as the reserved words (“in” and “is”) instead of the
functions (“contain” and “equal”).

Observation 2: Patch authors are likely to replace
“Not” with “FunctionBrace” through code review in
Qt project. Figure 6 shows the rate of “Not” is likely to
be deleted (13% for “Not_deleted”) more than added (6%
for “Not_added”) through code review. From Id 4 in Ta-
ble 5, we found that “Not” is likely to be deleted to use

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.11 NOVEMBER 2018

2726
Table 5 Frequency of changed symbol sets with 3,343 if fixes (sort by Lift) (Qt: C++)
Id LHS RHS Support * 100 | Confidence * 100 | Lift
1 FunctionBrace, Doublecolon_deleted Arrow_added 1.0 304 | 4.03
2 Number_deleted Not_added 1.1 24.8 | 3.89
3 Doublecolon_deleted Arrow_added 1.0 24.8 | 3.29
4 Not_deleted FunctionBrace_added 10.0 72.8 | 3.20
5 Doublecolon, FunctionBrace Arrow_added 1.2 139 | 1.84
6 FunctionBrace_deleted Not_added 1.2 11.7 | 1.84
7 Not FunctionBrace_added 11.6 36.2 | 1.59

Table 6 Frequency of changed symbol sets with 3,544 if fixes (sort by Lift) (OpenStack: Python).
1d LHS RHS Support * 100 | Confidence * 100 Lift
1 Is_added, Number_deleted None_added 1.0 94.9 15.42
2 None_added, Number_deleted Is_added 1.0 100.0 | 15.15
3 Is_added, FunctionBrace_deleted None_added 1.1 90.5 | 14.71
4 FunctionBrace, FunctionBrace_added, Bracket_deleted | Dot_added 1.2 97.8 5.54
5 FunctionBrace_added, Bracket_deleted Dot_added 1.3 95.9 5.43
6 FunctionBrace_added, String_deleted Dot_added 1.9 89.5 5.07
7 Dot_added, In_deleted FunctionBrace_added 1.7 92.2 4.52
8 String, FunctionBrace_added, In_deleted Dot_added 1.3 79.3 4.49
9 String, Equal_deleted In_added 1.2 20.4 3.21
10 String, FunctionBrace, Bracket_deleted Dot_added 2.1 40.3 2.28
11 String, Bracket_deleted Dot_added 22 39.8 2.25
12 String, FunctionBrace_deleted In_added 1.2 139 2.19
13 Equal_deleted, FunctionBrace_deleted Not_added 1.4 33.8 2.15
14 None, Is_deleted Not_added 1.8 33.0 2.09
15 Is_deleted, None_deleted Not_added 1.7 32.8 2.08
16 Is, None_deleted Not_added 1.7 32.6 2.07
17 String_deleted, Bracket_deleted Dot_added 1.6 36.4 2.06
18 Is_deleted Not_added 2.0 32.0 2.03
19 None_deleted Not_added 1.9 31.8 2.02
20 Number_deleted Not_added 2.1 31.5 2.00
21 FunctionBrace, Bracket_deleted Dot_added 2.3 35.0 1.98
22 String, In_deleted Dot_added 1.4 34.5 1.95
23 Bracket, String_deleted Dot_added 1.7 343 1.94
24 Bracket_deleted Dot_added 2.4 343 1.94
25 String, In_deleted FunctionBrace_added 1.6 39.2 1.92
26 FunctionBrace, Equal_deleted Not_added 2.1 29.0 1.84
27 In_deleted FunctionBrace_added 2.2 37.4 1.83
28 Equal_deleted Not_added 2.6 28.4 1.81
29 In_deleted Dot_added 1.8 31.1 1.76
30 None Not_added 2.8 24.7 1.57
31 String, Bracket Dot_added 32 26.3 1.49

Listing 8 Example of the deleted “!” to make clear the
object’s type

Source 1
if (!hoverltems)

Source n
if (hoverltems.isEmpty())

“FunctionBrace” as in Listing 87. In this example, using
the function instead of “Not” made it easier for the devel-
oper to understand object’s type such as the array. Also,
from Id 6 in Table 5, “FunctionBrace” is less likely to be
deleted to use “Not”. Hence, we found that the Qt project
often used “FunctionBrace” instead of “Not” as one of the
project specific rules.

Thttps://codereview.Qt-project.org/#/c/2422/1..8/src/
declarative/items/qsgcanvas.cpp

Observation 3: Patch authors are likely to delete
“String” through code review in the OpenStack project.
When using python, some patch authors often use “String”
and “Bracket” to identify the object’s dictionary status.
However, we found in Id 5, 6 in Table 6, “String” or
“Bracket” should be replaced with “Dot” to call the func-
tion in OpenStack as in Listing 9" or Listing 107", In
Listing 9, the patch author improved readability by us-
ing “bytes_.startswith()” and “.endswith()”, espe-
cially expecting “String”. In Listing 10, the patch author
deleted “String” to reduce access to “values”. Replacing
“Dot” with “Bracket” not only improves maintainability
but avoids the error. Hence, our approach can extract rules
for not only maintenance but can contribute to improving

TThttps://review.openstack.org/#/c/60425/1..3/cafe/engine/http/
behaviors.py

sqlalchemy/api.py

UEDA et al.: HOW ARE IF-CONDITIONAL STATEMENTS FIXED THROUGH PEER CODEREVIEW?

Listing 9 Example of the replacing “Bracket” with
“FunctionBrace” to avoiding index error

Source 1
if bytes_[0] != ’-’ and bytes_[-1] != ’-":

Source n
if bytes_.startswith(’=") or bytes_.endswith(’=")

Listing 10 Example of the deleting “String” to reduce
the value access

Source 1
if ’size’ in values and values|[’size’]:

Source n
if values.get(’size’) is not None:

performance.
5.3 Summary

In summary, we found valuable code fixing patterns that can
be an additional coding rule to reduce the costs of a reviewer.
Also, we compared our fixing rules to each projects’ cod-
ing rules (Qt" and OpenStack'). Our fixing rules are not
included in these rules. Hence, the fixing rules that we iden-
tified are valuable for patch authors to reduce redundant fix.
We can recommend to reviewers the symbols that are likely
to be fixed in the submitted patch (Patch,).

o The Qt (C++) project is likely to replace “Not” with

function calling through code review.
“Not” is one of the most frequently used symbols in
if-statement change submits; however, for readability,
the Qt project uses a function call instead of “Not”.
Our study found such project-specific rules extracted
from review data are unlike previous studies from inte-
grated data [28]. Furthermore, our approach found the
fixing patterns that do not have an effect on source code
behavior.

o The OpenStack (Python) project replaces reserved
words with “Number” and “String” through code re-
view
Python has reserved words such as “in” and “not”.
These reserved words instead of used “0” and the dic-
tionary to improve readability and to avoid the index
errors.

The concept of these project-specific rules are simi-
lar for improving readability and maintainability. However,
the concrete rules are difference between programming lan-
guages or projects. Our approach extracted the project-
specific concrete rules that are not supported by current cod-
ing check tools like pylint™7,

Thttps://wiki.qt.io/Coding_Conventions
TThttps://docs.openstack.org/hacking/latest/user/hacking.html
T https://www.pylint.org/

2727

6. Threats to Validity
6.1 Internal Validity

A factor that potentially affects the internal validity of our
study is that we extracted symbol changes in if-statement
by syntactic analysis to extract fixed code patterns through
code review. The changes are analyzed based on the patch
files and the original source code to identify spots with if-
statements. However, to collect the original source code, we
focused on patch files and we collected if-statements on
each single line change. This methodology has no signifi-
cant impact on our results since the number of if-statement
changes across multiple lines is merely 425 patches of our
target 69,325 patches (0.6%) and 553 patches out of Open-
Stack project’s 60,197 patches (0.9%).

We collected not only if-condition statements, but also
switch, and for and while condition statements. Switch,
for and while condition statements do not appear more fre-
quently than the if-statements in the code review as with
integrated code changes [6].

Also, we compared Patch; and Patch, to detect source
code changes in code review. Although the number of
changed times (size of n) may be related to change contents,
the analysis is out of scope of this paper.

6.2 External Validity

The project-specific nature of our dataset has many limits.
This research conducted an empirical study using only the
Qt and OpenStack project code review dataset. When we
target the other projects, some findings of our study may be
different. For example, other projects may use “<” or “>="
in Table 3 instead of “>” or “<=". Despite such variabil-
ity, we contend that our approach should provide a frame-
work for understanding individual rules or trend fixes in

each project.
7. Related Work
7.1 Code Review

Many researchers have conducted empirical studies to un-
derstand code review [3], [4], [11]-[15], [29], [30]. Un-
like our focus most published code review studies focus on
the review process or reviewers’ communication. For ex-
ample, Tsay et al. found those patch authors and reviewers
often discuss and propose solutions with each other to fix
patches [29]. In particular, Czerwonka et al. [30] found that
15% of the discussions for patch fixes are about functional
issues while Mantyla et al. [3] and Beller et al. [4] found that
75% of discussions for patch fixes are about software main-
tenance and 15% are about functional issues. These studies
help us understand which issues should be solved in the code
review process and our work focuses on how those issues
are fixed. Towards this goal, we focused on source code

2728

changes through code review, specifically those involving
if changes.

7.2 Coding Conventions

Code convention issues also relate to our study because
some code reviews are refactoring based on coding conven-
tion [5], [31], [32]. Smit et al. [32] found that CheckStyle
is useful for detecting whether or not source codes follow its
coding rules. Also, some convention tools such as Pylint re-
leased by Thenault check the format of coding conventions.
In addition, Allamanis et al. [33] have developed a tool to fix
code conventions. However, to the best of our knowledge,
little is known about how a patch author fixes conditional
statement issues based on reviewers feedback.

8. Conclusion

This research conducted an empirical study on how 1if-
statements are fixed based on reviewers feedback.

The results of our case study on the Qt and OpenStack
project showed that in each specific fixing pattern that ap-
proximately 35% of the code is likely to be added or deleted
parentheses through code review. The contribution of this
study is the discovery of frequent patterns for fixing if-
statements through code review. We think this, in turn,
may help to design an issue detection approach. Also, we
created a coding convention checker that detects project-
specific rules. If a patch author detects the possibility of
changing these symbols before the code review request, the
reviewers might be able to spend more time on other addi-
tional review requests and thus same time and costs.

In the future, we intend to propose a method to review
and automatically fix a symbol in if-statements, such as a
change impact analysis that can be conducted based on code
review data with a history of integrated code changes.

Acknowledgments

We would like to thank the Support Center for Advanced
Telecommunications (SCAT) Technology Research Foun-
dation. This work was supported by JSPS KAKENHI Grant
Number JP17J09333 and 17H00731. For proofreading our
paper, thanks to Prof. Hiromi Teramoto.

References

[1] P.C. Rigby and M.-A. Storey, “Understanding broadcast based
peer review on open source software projects,” Proceedings of the
33rd International Conference on Software Engineering (ICSE’11),
pp.541-550, 2011.

[2] D.S. Alberts, “The economics of software quality assurance,” Pro-
ceedings of the National Computer Conference and Exposition,
pp.433-442, 1976.

[3] M.V. Mantyla and C. Lassenius, “What types of defects are really
discovered in code reviews?,” Proceedings of the IEEE Trans. Softw.
Eng. (TSE’09), vol.35, no.3, pp.430-448, 2009.

[4] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: Which problems do they fix?,”

(5]

(6]

(71

[8]
(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.11 NOVEMBER 2018

Proceedings of the 11th Working Conference on Mining Software
Repositories (MSR’14), pp.202-211, 2014.

Y. Tao, D. Han, and S. Kim, “Writing acceptable patches: An em-
pirical study of open source project patches,” Proceedings of the
International Conference on Software Maintenance and Evolution
(ICSME’ 14), pp.271-280, 2014.

K. Pan, S. Kim, and E.J. Whitehead, “Toward an understanding of
bug fix patterns,” Empirical Software Engineering (ESE’09), vol.14,
no.3, pp.286-315, 2009.

M. Martinez, L. Duchien, and M. Monperrus, “Automatically ex-
tracting instances of code change patterns with AST analysis,” Pro-
ceedings of the IEEE International Conference on Software Mainte-
nance (ICSM’13), pp.388-391, 2013.

D. Spinellis, Code quality: the open source perspective, 2006.

S.H. Tan, J. Yi, Yulis, S. Mechtaev, A. Roychoudhury, “Codeflaws: a
programming competition benchmark for evaluating automated pro-
gram repair tools,” Proceedings of the 39th International Conference
on Software Engineering Companion (ICSE’17), pp.180-182, 2017.
Y. Ueda, A. Ihara, T. Hirao, T. Ishio, and K. Matsumoto, “How is IF
statement fixed through code review? - a case study of qt project -,”
Proceedings of the 8th IEEE International Workshop on Program
Debugging (IWPD’17), pp.207-213, 2017.

S. MclIntosh, Y. Kamei, B. Adams, and A.E. Hassan, “The impact
of code review coverage and code review participation on software
quality: A case study of the qt, vtk, and itk projects,” Proceedings
of the 11th Working Conference on Mining Software Repositories
(MSR’14), pp.192-201, 2014.

A. Meneely, A.C.R. Tejeda, B. Spates, S. Trudeau, D. Neuberger,
K. Whitlock, C. Ketant, and K. Davis, “An empirical investigation
of socio-technical code review metrics and security vulnerabilities,”
Proceedings of the 6th International Workshop on Social Software
Engineering (IWSSE’14), pp.37-44, 2014.

P. Thongtanunam, S. MclIntosh, A.E. Hassan, and H. Iida, “Investi-
gating code review practices in defective files: An empirical study
of the qt system,” Proceedings of the 12th Working Conference on
Mining Software Repositories (MSR’15), pp.168—179, 2015.

R. Morales, S. Mclntosh, and F. Khomh, “Do code review prac-
tices impact design quality? a case study of the qt, vtk, and
itk projects,” Proceedings of the 22nd International Conference
on Software Analysis, Evolution, and Reengineering (SANER’15),
pp-171-180, 2015.

S. MclIntosh, Y. Kamei, B. Adams, and A.E. Hassan, “An em-
pirical study of the impact of modern code review practices on
software quality,” Empirical Software Engineering, vol.21, no.5,
pp.2146-2189, 2016.

E. Raymond, “The cathedral and the bazaar,” Knowledge, Technol-
ogy & Policy, vol.12, no.3, pp.23-49, 1999.

P.C. Rigby and C. Bird, “Convergent contemporary software peer
review practices,” Proceedings of the 9th Joint Meeting on Founda-
tions of Software Engineering (FSE’13), pp.202-212, 2013.

T. Hirao, A. Ihara, Y. Ueda, P. Phannachitta, and K. Matsumoto,
“The impact of a low level of agreement among reviewers in a code
review process,” Proceedings of the 12th International Conference
on Open Source Systems (OSS’16), pp.97-110, 2016.

P. Thongtanunam, C. Tantithamthavorn, R.G. Kula, N. Yoshida, H.
Tida, and K. Matsumoto, “Who should review my code? a file
location-based code-reviewer recommendation approach for mod-
ern code review,” Proceedings of the 22nd International Conference
on Software Analysis, Evolution, and Reengineering (SANER’15),
pp.141-150, 2015.

V. Balachandran, “Reducing human effort and improving quality in
peer code reviews using automatic static analysis and reviewer rec-
ommendation,” Proceedings of the 35th International Conference on
Software Engineering (ICSE’13), pp.931-940, 2013.

M.B. Zanjani, H. Kagdi, and C. Bird, “Automatically recommending
peer reviewers in modern code review,” Transactions on Software
Engineering (TSE’15), vol.42, no.6, pp.530-543, 2015.

http://dx.doi.org/10.1145/1985793.1985867
http://dx.doi.org/10.1145/1499799.1499863
http://dx.doi.org/10.1109/tse.2008.71
http://dx.doi.org/10.1145/2597073.2597082
http://dx.doi.org/10.1145/2597073.2597082
http://dx.doi.org/10.1109/icsme.2014.49
http://dx.doi.org/10.1007/s10664-008-9077-5
http://dx.doi.org/10.1109/icsm.2013.54
http://dx.doi.org/10.1109/icse-c.2017.76
http://dx.doi.org/10.1145/2597073.2597076
http://dx.doi.org/10.1145/2661685.2661687
http://dx.doi.org/10.1109/msr.2015.23
http://dx.doi.org/10.1109/saner.2015.7081827
http://dx.doi.org/10.1007/s10664-015-9381-9
http://dx.doi.org/10.1007/s12130-999-1026-0
http://dx.doi.org/10.1145/2491411.2491444
http://dx.doi.org/10.1007/978-3-319-39225-7_8
http://dx.doi.org/10.1109/saner.2015.7081824
http://dx.doi.org/10.1109/icse.2013.6606642
http://dx.doi.org/10.1109/tse.2015.2500238

UEDA et al.: HOW ARE IF-CONDITIONAL STATEMENTS FIXED THROUGH PEER CODEREVIEW?

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

M.M. Rahman, C.K. Roy, and J.A. Collins, “Correct: Code reviewer
recommendation in github based on cross-project and technology
experience,” Proceedings of the 38th International Conference on
Software Engineering (ICSE’16), pp.222-231, 2016.

X. Xia, D. Lo, X. Wang, and X. Yang, “Who should review this
change? putting text and file location analyses together for more
accurate recommendations,” Proceedings of the 31st International
Conference on Software Maintenance and Evolution (ICSME’15),
pp-261-270, 2015.

T. Parr, The definitive ANTLR 4 reference, Pragmatic Bookshelf,
2013.

M. Hahsler, S. Chelluboina, K. Hornik, and C. Buchta, “The arules r-
package ecosystem: analyzing interesting patterns from large trans-
action data sets,” Journal of Machine Learning Research (JMLR),
vol.12, no.Jun, pp.2021-2025, 2011.

C. Zhang and S. Zhang, Association rule mining: models and algo-
rithms, Springer-Verlag, 2002.

J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without can-
didate generation,” Proceedings of the International Conference on
Management of Data (SIGMOD’00), pp.1-12, 2000.

T. Rolfsnes, L. Moonen, and D. Binkley, “Predicting relevance of
change recommendations,” Proceedings of the International Confer-
ence on Automated Software Engineering (ASE’17), 2017.

J. Tsay, L. Dabbish, and J. Herbsleb, “Let’s talk about it: Evaluating
contributions through discussion in github,” Proceedings of the 22nd
International Sym posium on Foundations of Software Engineering
(SANER’15), pp.144-154, 2014.

J. Czerwonka, M. Greiler, and J. Tilford, “Code reviews do not find
bugs: How the current code review best practice slows us down,”
Proceedings of the 37th International Conference on Software Engi-
neering (ICSE’15), pp.27-28, 2015.

C. Boogerd and L. Moonen, “Assessing the value of coding stan-
dards: An empirical study,” IEEE International Conference on Soft-
ware Maintenance (ICSM’08), pp.277-286, 2008.

M. Smit, B. Gergel, H.J. Hoover, and E. Stroulia, “Code conven-
tion adherence in evolving software,” Proceedings of the 27th IEEE
International Conference on Software Maintenance (ICSM’11),
pp.504-507, 2011.

M. Allamanis, E.T. Barr, C. Bird, and C. Sutton, “Learning natu-
ral coding conventions,” Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(FSE’14), pp.281-293, 2014.

Yuki Ueda received the B.E. degree in
Department of Mathematics and Computer Sci-
ence, Interdisciplinary Faculty of Science and
Engineering, Shimane University, Japan. He
is currently working toward the M.E. degree
in Nara Institute of Science and Technology in
Japan. His research interests include program
analysis and code review.

2729

Akinori Thara received the B.E. degree in
Science and Technology from Ryukoku Univer-
sity,Javan in 2007, and the ME degree (2009)
and DE degree (2012) in information science
from Nara Institute of Science and Technology,
Japan. He is currently Assistant Professor at
Nara Institute of Science and Technology. His
research interests include the quantitative evalu-
ation of open source software development pro-
cess. He is a member of the IEEE and IPSJ.

Takashi Ishio received the Ph.D. degree in
information science and technology from Osaka
University in 2006. He was a JSPS Research
Fellow from 2006-2007. He was an assistant
professor at Osaka University from 2007-2017.
He is now an associate professor of Nara Insti-
tute of Science and Technology. His research in-
terests include program analysis, program com-
prehension, and software reuse. He is a member
of the IEEE, ACM, IPSJ and JSSST.

Toshiki Hirao is currently working in the
Ph.D. Program in Information Science at Nara
Institute of Science and Technology in Japan.
He has been a fellowship researcher of the JSPS
(DC1) since April 2017. His research inter-
ests include empirical software engineering and
mining software repository. He received the
B.E. degree (2015) in department of education
from Osaka Kyoiku University, and the M.E. de-
gree (2017) in Information Science from Nara
Institute of Science and Technology.

Kenichi Matsumoto received the B.E.,
M.E., and Ph.D. degrees in Engineering from
Osaka University, Japan, in 1985, 1987, 1990,
respectively. Dr. Matsumoto is currently a pro-
fessor in the Graduate School of Information
Science at Nara Institute Science and Technol-
ogy, Japan. His research interests include soft-
ware measurement and software process. He is
a senior member of the IEEE and a member of
the IPSJ and SPM.

http://dx.doi.org/10.1145/2889160.2889244
http://dx.doi.org/10.1109/icsm.2015.7332472
http://dx.doi.org/10.1007/3-540-46027-6
http://dx.doi.org/10.1145/342009.335372
http://dx.doi.org/10.1109/ase.2017.8115680
http://dx.doi.org/10.1145/2635868.2635882
http://dx.doi.org/10.1109/icse.2015.131
http://dx.doi.org/10.1109/icsm.2008.4658076
http://dx.doi.org/10.1109/icsm.2011.6080819
http://dx.doi.org/10.1145/2635868.2635883

