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PAPER

File Systems are Hard to Test — Learning from Xfstests

Naohiro AOTA†a), Nonmember and Kenji KONO†, Member

SUMMARY Modern file systems, such as ext4, btrfs, and XFS, are
evolving and enable the introduction of new features to meet ever-changing
demands and improve reliability. File system developers are struggling to
eliminate all software bugs, but the operating system community points out
that file systems are a hotbed of critical software bugs. This paper analyzes
the code coverage of xfstests, a widely used suite of file system tests, on
three major file systems (ext4, btrfs, and XFS). The coverage is 72.34%,
and the uncovered code runs into 23,232 lines of code. To understand why
the code coverage is low, the uncovered code is manually examined line by
line. We identified three major causes, peculiar to file systems, that hinder
higher coverage. First, covering all the features is difficult because each file
system provides a wide variety of file-system specific features, and some
features can be tested only on special storage devices. Second, covering
all the execution paths is difficult because they depend on file system con-
figurations and internal on-disk states. Finally, the code for maintaining
backward-compatibility is executed only when a file system encounters old
formats. Our findings will help file system developers improve the cov-
erage of test suites and provide insights into fostering the development of
new methodologies for testing file systems.
key words: file system, code coverage, software test

1. Introduction

File systems play a crucial role in achieving high reliability
of computer systems. File systems store a boot loader, oper-
ating system binary, application binaries, and sensitive data
that must not be lost or broken after power failures or unex-
pected system shutdown. If file systems are not reliable, the
computer system cannot boot again, and the critical infor-
mation stored there becomes permanently unavailable. To
improve the reliability of file systems, modern file systems,
such as ext4 [1], btrfs [2], and XFS [3], are evolving and en-
able the introduction of new features. In 2014, ext4, btrfs,
and XFS developers made 775, 299, and 381 commits and
modified 26,308, 9,038, and 109,993 lines of code in total,
respectively.

Novel features added to modern file systems provide
richer functionalities and potentially improve the reliability
of file systems but complicate the design and implementa-
tion, sometimes resulting in buggy, unstable, unreliable file
systems. File system developers are struggling to elimi-
nate all software bugs, but the operating system community
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points out that file systems are a hotbed of critical software
bugs [4]–[6]; almost 40% of Linux patches for file systems
are for bug fixes [5]. In addition, file system bugs are very
difficult to find; more than a half of bugs in file systems
are not fixed for over a year [4]. For example, a data-loss
fault in ext4, which is usually considered a mature and well-
maintained file system, has not been fixed for at least two
years [7].

To disclose bugs before release, file systems are tested
using a suite of test cases as in other software systems.
Residual bugs are considered to slip through test cases; thus,
are not disclosed at test time. In this paper, we investigate
the code coverage of xfstests [8], a popular suite of test cases
for Linux file systems, and manually examine the uncovered
code line by line. Xfstests was originally developed for XFS
but is widely used and maintained in the Linux community.
Our insight behind the code coverage analysis is that bugs
undiscovered at test time are lurking in the code not covered
in test cases. If the code coverage is improved, it is expected
that more bugs can be disclosed at test time since higher
code coverage generally induces higher fault coverage [9].
Thus, we expect, also in file-systems, that achieving higher
code coverage of test cases results in higher fault coverage.

The code coverage of xfstests is measured on three file
systems in this paper: ext4, btrfs, and XFS. We choose these
file-systems because they are widely used, been actively de-
veloped in recent years, and used in many research activ-
ities. Ext4 is the de-facto standard in Linux and enabled
by default on most Linux distributions. XFS is expected to
be a next standard file system as it is the default file sys-
tem on Red Hat Enterprise Linux 7. Btrfs is emerging as a
next-generation file system. These three file systems have
the top three commit numbers in local file systems. They
all have more than 1,000 commits during Linux v3.x se-
ries. Lu et al. studied the evolution of these three file sys-
tems [5]. ReiserFS, JFS, and ext3 have also been studied,
but ReiserFS and JFS have not been actively developed re-
cently. Ext3 has already been merged into ext4. Code cover-
age of xfstests is 67.98%, 67.8%, and 81.86% in ext4, btrfs,
and XFS, respectively. The total lines of code not covered
in xfstests are 23,232 lines. The following conclusions are
derived from the investigation:

File System Specific Tests: All the investigated file
systems provide a wide variety of features specific to each
file system. Covering all the features and all possible
combinations of the features (or options) is challenging.
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Uncovered code due to not supporting file-system-specific
features or options is 17%, 17% and 9% of uncoverage code
in btrfs, ext4, and XFS, respectively.

Environmental Dependency: File systems are de-
signed to run on various storage devices; thus, some features
can be tested only on a special storage device. Therefore, it
is necessary to prepare various storage devices and run test
cases on each device to improve test coverage. This envi-
ronmental dependency is dominant on btrfs (38% of the un-
coverage) and accounts for 0.7% of the uncoverage in ext4
and 21% of that in XFS.

File System Configurations: File systems have a
number of configurations, and some configurations change
the execution paths of the same test case. For example,
ext4 has about 60 options for mkfs and about 50 options
for mount. Some of these options have inter-dependency;
thus, it is not easy to enumerate all possible combinations.
As a result, even if there is a test case for a certain feature,
unexecuted code remains. We find 6%, 42% and 10% of the
uncovered code is due to file system configurations for btrfs,
ext4, and XFS, respectively.

On-Disk Structures: File systems build various data
structures on storage devices to manage their files. Even if
the same operation is conducted, the actual execution paths
may differ depending on the state of on-disk structures. We
find 15%, 10%, and 20% of the uncoverage in btrfs, ext4,
and XFS are caused by the differences in on-disk structures.

File System Evolution: File systems sometimes up-
date the formats of their on-disk structures when a new ver-
sion is introduced. For example, ext4 updated the format
of file-to-block mapping from ext2/3. File systems sup-
port reading/writing from/to such old formats. The code
to read/write old formats is never executed unless we cre-
ate and mount old-format file systems. This comprises 2%,
0.1%, and 1% of the uncoverage for btrfs, ext4, and XFS,
respectively.

The rest of the paper is organized as follows. Section 2
describes xfstests and shows that the code coverage of the
test is not high. Section 3 explores the causes of the code
not being covered in test cases. Section 5 discusses related
work, and Sect. 6 concludes the paper.

2. Low Coverage of Test Cases

A practical solution to reduce software bugs in file systems
is to enhance the quality of test cases. If test cases catch
most of the bugs at the test phase, the overall quality of file
systems is expected to improve. In this section, we investi-
gate the code coverage of xfstests, a test suite for Linux file
systems.

2.1 Overview of Xfstests

Xfstests consists of three types of test cases: 1) generic, 2)
shared, and 3) specific. Generic tests examine the funda-
mental features common to all file systems. Shared tests ex-
amine the advanced features supported by many, but not all,

file systems. For example, the access control list (ACL) is
not always supported by all file systems. Specific tests exam-
ine the features supported only by a specific file system. For
example, btrfs supports the snapshot at the file-system level,
which is usually supported outside the file system. Specific
tests for btrfs contain test cases for the snapshot. The xfs-
tests has 185 generic tests, 6 shared tests, and 304 specific
tests (495 in total).

Each test case follows four steps: 1) check environ-
mental requirements, 2) set up a file system if necessary,
3) run some commands, and 4) check the results. To en-
able the testing of creating and mounting file systems, two
partitions must be prepared in xfstests before running test
cases. One partition is called SCRATCH. A file system on
the SCRATCH partition is created by a test case; thus, we
can test the system calls for creating and mounting a file sys-
tem. The other partition is called TEST. A file system on the
TEST partition is created and mounted by testers, which al-
lows the testers to tweak the options for creating and mount-
ing a file system and initial content of the file system.

Generic tests are expected to run on any POSIX file
system. Only the system calls common to all file systems,
such as open, write, fsync, and fallocate, are used in generic
tests. Each test case examines the behaviors of several sys-
tem calls with various arguments. For example, test case
‘generic/001’ examines 5 system calls (open, write, unlink,
rename, and stat) with various arguments by creating, copy-
ing, and renaming a tree of files (from 1 B to 1000 KB).
Although, generic tests use only the generic VFS system
calls, many test cases cannot be run: btrfs, ext4, and XFS
cannot execute 45, 22, and 9 out of 185 generic tests, respec-
tively. This result is obtained from our experiment discussed
in Sect. 2.2.

Shared tests examine the features supported by many,
but not all, file systems. For example, ext3 and ext4 pro-
vide three options for journaling so that users can trade off
reliability against performance. On the other hand, jour-
naling in XFS does not provide such options. As a result,
‘shared/272’, which tests the per-file data journaling, is ap-
plied only to ext3 and ext4.

Specific tests examine the features specific to btrfs,
CIFS, ext4, UDF, and XFS. Xfstests provides 93, 1, 13, 3,
and 194 test cases for btrfs, CIFS, ext4, UDF, and XFS, re-
spectively. The test cases in this category highly depend on
file system specific tools, kernel interfaces such as /proc,
/sys, and ioctls, and the internal structure (e.g. special file
flags) of each file system. An example of a specific test is
that for a snapshot in btrfs. Test case ‘btrfs/001’ examines
this feature by creating a snapshot, modifying the original
file content, and confirming the snapshot is kept intact.

2.2 Code Coverage

To measure the code coverage of xfstests, we execute it on
btrfs, ext4, and XFS with HDD drives. A virtual machine
is used to measure the coverage to mitigate the problems
caused by kernel panic or disk corruption. The virtual ma-
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Table 1 Experimental setup.

Virtual Machine QEMU/KVM 2.6.0
Kernel Linux 4.0
Xfstests master as of May 26, 2015

(commit 78bbab9)
#CPU 2
Memory 1 GiB
Size of TEST partition 10 GiB
Size of SCRATCH partition 10 GiB
mkfs options Default
mount options Default

chine for the test has two disks†: one for the TEST parti-
tion and the other for the SCRATCH partition. For the test
cases on the TEST partition, the mkfs and mount options are
the default (e.g. inode size = 256 and journal ioprio = 3 in
ext4. See the list of default values in [10]–[16].) For the
SCRATCH partition, the test cases create and mount a file
system themselves with the appropriate specified options.
Table 1 summarizes the experimental setup.

Code coverage of file systems must be measured care-
fully to not include the code not executed by file system test
cases. The setup procedures, such as booting an operating
system and setting up the test cases, must be excluded from
the measurements. For this purpose, we reset the coverage
counter just before running a test case. A suite for the test
cases (test cases, tools, and log files) is placed outside a file
system for which the coverage is measured. If the test suite
is placed on the tested file system, the code executed to ac-
cess the test suite is measured as covered. To avoid this
problem, the test suite was placed on NFS in our experi-
ment.

Code coverage is measured in terms of line coverage.
Line coverage records which statement is executed during
the test. Line coverage has several limitations. For ex-
ample, it cannot distinguish the sub-expressions composed
of logical operators from the rest of the statement. If the
statement is executed, the entire expression is considered
executed even though some of the sub-expressions are not
evaluated. Despite these limitations, line coverage is widely
used in coverage measurements because of its acceptable
overheads.

Figure 1 shows the overall coverage of xfstests on btrfs,
ext4, and XFS. While XFS records 81.86% coverage, btrfs
and ext4 record 67.98%, and 67.80% coverage, respectively,
which are lower than XFS. In total 72.34% of the code of the
three file systems is covered, as shown in Fig. 1.

Figure 1 also shows the breakdown of the code cover-
age of each file system component. We borrow the clas-
sification of the components used by Lu et al. [5]. Ta-
ble 2 shows the classification. We add component util to
Lu et al.’s classification and have ten components in total.
Balloc and extent are the components for allocation of phys-
ical and logical blocks. Dir, file, and inode are responsible

†A small volume (10 GiB) is used in our experiment. No test
case caused any problems due to this setting because file systems
split their disk space into several small regions to reduce the cost
of managing metadata.

Fig. 1 Coverage overview.

Table 2 File system components.

balloc Data block allocation and deallocation
extent Contiguous mapping of physical blocks
dir Directory management
file File read and write operations
inode Inode-related metadata management
trans Journaling or other transactional support
super Superblock-related metadata management
tree Generic tree structures
util Utility functions (hash, etc.)
other Other file system features

(e.g., xattr, ioctl, resize)

for basic file/directory operations. Trans manages file sys-
tem transaction and its recovery. Super is for the super block
management. Tree manages on-disk tree structures such as
B-trees. Util contains utilities such as hash functions, and
Other is the code to implement other features such as xattr
or ioctl.

To understand which component contributes less or
more to code coverage, we introduce the contribution of
component k to the coverage. If all the components con-
tribute to the coverage equally, the covered lines in k should
be proportional to the total lines of that component. In other
words, if a k occupies a percent of the entire code p, the
covered code from k should occupy p percent of the en-
tire covered code. If the percent of k in the covered code
is higher than p, k contributes to the coverage more than the
average. Otherwise, k contributes less than the average. The
contribution of k, Contrib(k), is defined as follows:

Contrib(k) =
Ck
∑

Ci
− Lk
∑

Li

where Ck is the number of covered lines in k and Lk is the to-
tal number of lines in k. Summation moves all over the com-
ponents. Suppose the code in k occupies 20% of all the code
(Lk/
∑

Li = 0.2). If k occupies 80% of the covered code
(Ck/
∑

Ci = 0.8), then Contrib(k) = Ck/
∑

Ci − Lk/
∑

Li =

0.8 − 0.2 = 0.6. If k occupies 10% of the covered code
(Ck/
∑

Ci = 0.1), then Contrib(k) = Ck/
∑

Ci − Lk/
∑

Li =

0.1 − 0.2 = −0.1. If k gives higher coverage than the ratio
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of lines, Contrib(k) becomes positive. If not, Contrib(k) is
negative.

Figure 2 shows the contribution of each component
among the three file systems. All file systems commonly
have negative contributions in other and super. Since other
contains the code to implement features specific to a file sys-
tem, low coverage is expected. Super contains the code to
mount a file system. Since the test cases do not test the
mount options extensively, the coverage of super is low. The
details are discussed in Sect. 3.3.

Each file system shows different contributions in the
other components. Btrfs achieves higher contribution in
tree, inode, and extent . Ext4 achieves higher contribution in
extent , balloc, inode, and trans. These components in btrfs
and ext4 are core components for creating, opening, read-
ing, and writing files. Thus, most of the test cases naturally
execute these components.

XFS achieves high contribution in inode, dir, and ex-
tent , while achieving low contribution in balloc, super, and
other. All the components achieving higher contributions
are core components; however, balloc, which is considered a
core component, is exceptional; its contribution is negative.
This is due to the lack of coverage on the real-time device
feature specific to XFS. This feature uses a special algorithm
for block allocation; thus, the contribution of balloc is nega-
tive. It is notable that the variance of contributions is signif-
icantly lower in XFS (9.21 × 10−5) than btrfs (7.40 × 10−4)

Fig. 2 Contribution of each component in btrfs, ext4, and XFS.

Table 3 Classification of uncoverage causes.

Category Sub-category Description
MissingFeature Test cases for some features are missing

common Missing feature is common to file systems
specific Missing feature is specific to a file system

EnvDependency Test case requires special support of hardware or special setting of operating system
storage Depends on configuration of storage devices
os Depends on configuration of operating system

Configuration Depends on configuration of file systems (mkfs/mount)
Evolution Data formats on disk have been updated
OnDiskState Depends on specific states of on-disk structures

allocation Block allocation changes its execution paths depending on on-disk states
recovery Data recovery changes its execution paths depending on corrupted disk states

ErrorHandling Error handling
OutOfScope Excluded from coverage measurement

dead Dead code
init Initializing and cleaning up of file-system subsystem
debug Code used only for debugging

and ext4 (4.91 × 10−4). This implies every component is
tested in XFS better than in the other file systems because
xfstests was originally developed for XFS.

3. Analysis of Uncovered Code

This section investigates the code not covered by xfstests
and unveils the reasons the code coverage is low. In xfs-
tests, 12,400, 5,883, and 4,949 lines of code are not tested
on btrfs, ext4, and XFS, respectively; 23,232 lines of code
are not tested in total. To understand and classify the causes
of low coverage, we manually investigate each line of the
code not covered. Section 3.1 shows the classification of the
causes, and Sects. 3.2 and 3.3 show the detailed analysis of
the uncovered code.

3.1 Classification of Uncoverage Causes

After investigating each line of the code not covered by xfs-
tests, we classified the causes of the uncoverage into seven
categories: MissingFeature, EnvDependency, Configura-
tion, Evolution, OnDiskState, ErrorHandling, OutOfScope,
and Unknown. Table 3 shows the classification.

MissingFeature is the case in which test cases for some
features are missing in the test suite. The code lines are not
covered because xfstests does not have any tests to check
certain features of file systems. MissingFeature can be fur-
ther classified into two categories: MissingFeature (com-
mon) and MissingFeature (specific). The test suite lacks
test cases for common features in the former. Test cases for
file-system-specific features are missing in the latter.

EnvDependency is the case in which a test case re-
quires special support of hardware devices or special set-
ting of the operating system. For example, some test cases
require the TRIM command to be executed, which is sup-
ported only in SSDs; thus, cannot be executed on HDDs.
Likewise, some test cases require special configurations of
the operating system. For example, a test case for XFS
checks the feature available only when SELinux is turned
on. EnvDependency is classified into two categories: Env-
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Dependency (storage) and EnvDependency (os). The for-
mer depends on the environment of physical storage de-
vices. The latter depends on the configuration of the op-
erating system.

A file system changes its behavior according to file sys-
tem configurations. Configuration is the category for the
code not covered due to the configuration — such as mkfs
options and mount options — at the file system level. For
example, if a “dirsync” option is turned on for the mount,
all the updates on directories are performed synchronously.
The execution paths change if “dirsync” is turned on; the
sync function is called, which is not called if the option is
off.

File systems evolve over time. The code not covered
because of file system evolution is called evolution. A new
version of a file system introduces, for instance, a new for-
mat of on-disk structures. To maintain backward compati-
bility, the new file system maintains the code for interpreting
older versions of the on-disk format. If a disk is formatted
with the new version, the code for interpreting the older ver-
sions is not executed during the test. In fact, btrfs has intro-
duced a new format for metadata since version 3.10; thus,
the code for the older version is not executed in xfstests.

OnDiskState is the code not covered because it is exe-
cuted only under particular states of the on-disk data struc-
tures. A file system changes its execution paths based on the
status of on-disk structures as well as in-memory status. For
example, many file systems use on-disk B-trees to maintain
metadata. A B-tree node is split when it becomes full. The
code for splitting a node is not tested in most file operations
because the node is seldom full.

ErrorHandling is the code for handling error cases. File
systems handle I/O errors and memory allocation failures.
The error handling code is not executed unless an error oc-
curs. It is widely known that it is difficult to cover error han-
dling code in test cases [17], [18]. While xfstests attempts
to cover the error handling code by injecting faults, it is still
far from covering the entire code.

OutOfScope is the code region for which it is impossi-
ble or meaningless to prepare test cases. For example, dead
code remains in some file systems, which cannot be covered
in test cases. Another example is the code for initializing
the modules for file systems because they must be initial-
ized before the tests are started. The code for debugging or
tracing is also classified into OutOfScope in this paper.

Table 4 Percentage of uncoverage causes.

btrfs ext4 XFS
EnvDependency 37.71% Configuration 41.88% ErrorHandling 30.43%
ErrorHandling 18.92% ErrorHandling 23.32% EnvDependency 21.14%
MissingFeature 16.90% MissingFeature 17.10% OnDiskState 19.76%
OnDiskState 15.19% OnDiskState 10.35% Configuration 10.04%
Configuration 6.17% OutOfScope 6.00% MissingFeature 8.99%
OutOfScope 2.81% EnvDependency 0.70% OutOfScope 7.84%
Evolution 1.82% Unknown 0.54% Evolution 1.01%
Unknown 0.49% Evolution 0.10% Unknown 0.79%

3.2 Overall Comparison of Uncoverage Causes

Figure 3 plots the percentage of the uncoverage causes in
each file system, and Table 4 shows the actual percentage of
uncoverage causes. Interestingly, the dominant causes differ
depending on the file system. For example, EnvDependency
is the most major cause in btrfs, but it is minor in ext4. Env-
Dependency is major in btrfs because btrfs supports vari-
ous disk layouts, such as file-system-level RAID to make
use of multiple disks. The major cause in ext4 is Config-
uration. Ext4 provides many mkfs options such as MMP
(Multi-Mount Protection) feature, metadata checksum, and
inode inline data. In the test cases, all these options are not
tested. The major cause in XFS is ErrorHandling. This sug-
gests that XFS is tested better than other file systems be-
cause the error handling code is essentially difficult to pre-
pare test cases.

Aside from the differences in the major causes, all
file systems show similar tendency in Evolution and Error-
Handling. In all the tested file systems, Evolution is the least
cause of the uncoverage. This is because it is uncommon to
introduce new file formats. ErrorHandling is in the first or
second position among all the file systems. This conforms
to the fact that it is quite difficult to prepare the test cases for
error handling [17], [18].

Fig. 3 Overall uncoverage measurement.
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Fig. 4 Source of uncoverage.

3.3 Analysis of Uncovered Code

Finally, we investigate the details of the uncoverage causes.
Figure 4 shows the distribution of uncovered lines among
file system components for each uncoverage cause. For ex-
ample, we can see from the figure that Evolution of ext4 is
dominated by the uncovered lines of super.

3.3.1 MissingFeature

Some file system features are not tested in xfstests. To im-
prove the coverage, it is necessary to add test cases to test the
missing features. Note that there are some cases in which a
certain feature is tested but all the options are not tested.

On btrfs, MissingFeature is mainly from other
(54.94%) and balloc (29.12%). The code not covered in
other is related to two features: 1) the seeding device, which
generates a new btrfs file system from existing devices, and
2) the operations under ‘/sys/fs/btrfs’. This directory stores
the configurations of btrfs; thus, writing files under the di-
recting affects the behavior of btrfs. The test cases for those
operations must be prepared.

The code in balloc is not covered because some options
are not tested. For example, btrfs provides a command to
balance block allocation among block groups. The test cases
include those to test this command, but all the options are
not tested. For example, the option to limit the number of
block groups to be investigated is not tested.

On ext4, nearly half of MissingFeature is from
other (43.44%) and super (14.51%). The code not covered
in other implements the features used seldomly, and the test

cases for them are missing. For example, ext4 allows a file to
be hidden from the file system hierarchy. This feature is use-
ful to hide and protect a boot loader from malicious users.
This feature is not tested in xfstests. The code not covered
in super is related to the operations to access the configu-
rations under ‘/proc/fs/{ext4, jbd2}’. This is similar to the
btrfs cases. In XFS, the code in other (57.08%) and extent
(29.66%) contributes to lower coverage in MissingFeature.
XFS allows users to attach extended attributes (name:value
pairs) to files. The code not covered in other and extent are
related to the extended attributes in XFS. On XFS, users can
batch multiple requests to get/set/read the attributes. While
the code to read the attributes is covered, the code to get or
remove them is not covered. The code not covered in extent
is also related to the file attributes. XFS takes an execution
path different from the normal one if an attribute is attached
to a large file. This code path is not covered although the
path to attach an attribute to a small file is covered.

3.3.2 EnvDependency

EnvDependency is the category in which the code is not
executed because special storage devices or operating sys-
tem settings are necessary. Among all the investigated file
systems, other and balloc are dominant in EnvDependency,
though other on XFS is smaller than the other two file sys-
tems. Other takes 54.47%, 39.02%, and 14.24% of Env-
Dependency, respectively in btrfs, ext4, and XFS. Balloc
takes 36.57%, 53.66%, and 66.06%, respectively.

Btrfs supports multi-device features such as RAID,
Scrub, and device replacing. These features allow us to cre-
ate a single file system over multiple devices without relying
on other tools. These features are not tested in btrfs because
we does not use multiple devices in the experiments. In ext4,
the code for SSD setup is not executed in balloc. To execute
the code, we have to prepare SSDs. The code not executed
in other is for SELinux. To test the code, we have to turn
on SELinux. XFS supports ‘real-time’ files. To use those
files, a disk dedicated for real-time files must be prepared;
thus, the code for real-time files are not executed in the ex-
periment. Another cause is the DMAPI support for Hierar-
chical Storage Management. To enable it, we have to install
the DMAPI kernel module in Linux. This is rarely used in
Linux, and the kernel module is almost obsolete.

3.3.3 Configuration

File systems have quite a large configuration space; when
a file system is created, there are many options to enable/
disable various features. When a file system is mounted,
many options should be specified. Depending on the config-
urations, file systems change their behaviors, and the code
covered by the test cases varies. Our results indicate that
a non-negligible part of the file system is not covered due
to such mkfs or mount options. Xfstests encourages the
testers to test mkfs/mount options on the TEST partition, but
it is not easy to test all combinations of mkfs/mount options.
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In particular, it is daunting to test all mkfs options because
many file systems must be created with various options.

Among all the investigated file systems, super takes a
large part in configuration. It takes 20.92%, 16.15%, and
27.97%, respectively in btrfs, ext4, and XFS. Super contains
code to parse mount and mkfs options to verify the setup
(e.g. to check if specified size of block is power of two) and
enable/disable file system features. These lines of code in
super count up in Configuration.

Aside from super, each file system has its own com-
ponent to blame. In btrfs, balloc (17.39%) follows super
(20.92%). Btrfs has an option to specify the beginning ad-
dress of file-system blocks to protect an MBR region. When
the option is specified, the calculation method of unallocated
space is changed. In ext4, file (33.60%) is dominant because
it contains experimental code to pack small file data into in-
ode regions. A development version of a userland tool is
required to enable the mkfs option. In XFS, other (40.24%)
is dominant because the code for XFS-specific ioctls is not
executed. XFS supports 32-bit and 64-bit versions of ioctls.
Since our system runs a 64-bit environment, the code for the
32-bit version is not executed.

3.3.4 Evolution

All file systems we investigate support multiple metadata
formats and the conversion between those formats. Btrfs has
introduced a new type of metadata since Linux 3.10 [19]. It
reduces the metadata size by 30–35% and is enabled by de-
fault. It implements the conversion code from old formats
to the new one. This code is never executed unless the target
file system is explicitly created with the old format. Nearly
half of evolution comes from extent (49.12%), which han-
dles the old metadata.

Ext4 supports the old scheme of the block mapping
used in ext2 and ext3 for backward compatibility. It imple-
ments the conversion from the old scheme to the new one.
Since the block mapping is converted at mount time, all the
code for the conversion resides in super.

In XFS, evolution is spread into trans (38%), inode
(22%), and other (22%). This comes from the fact that XFS
has changed the format of the inode log in the journal. The
code for journaling in XFS checks and converts the format
of inode logs if necessary. Since trans is a module for jour-
naling, the code not covered due to evolution resides in trans
and inode.

3.3.5 OnDiskState

Even if the same test case is executed, a file system changes
its execution paths depending on the on-disk structures. As
shown in Fig. 4, all the file systems have major sources of
OnDiskState in balloc, dir, and extent . These components
are related to the allocation of disk space and called ‘alloca-
tion code’ altogether. Another source of OnDiskState is in
trans, which is related to recovery.

Allocation Code. File systems use various data struc-

tures on disk, i.e., extents, trees, and bitmaps. These struc-
tures are allocated/freed on demand. In btrfs, OnDiskState
related to the allocation spreads into balloc (23.63%) and
extent (20.87%). Btrfs extensively uses B-trees to keep
key/value pairs on disk. An execution path changes, for ex-
ample, when a B-tree node becomes full. If a B-tree node
is full when a new item is added, it is split into two nodes.
This code for splitting a node is executed only when a B-tree
node becomes full.

Ext4 has major sources of OnDiskState related to the
allocation in extent (39.41%), dir (15.44%), and balloc
(13.63%). An example of the execution path rarely taken
is related to renaming a file. Ext4 manages directory entries
with a B-tree whose key is a hash of a file name. When a
file is renamed, the old entry is removed and the new one is
added to the directory. If the B-tree node is full, it is split
into two nodes and ext4 starts searching for an empty entry
from the root of the B-tree. This code for searching from
the root is not covered in our experiment because the B-tree
node was not full.

XFS has major sources of OnDiskState related to
the allocation in dir (27.51%), balloc (12.99%), and ex-
tent (12.07%). XFS uses five different directory formats
to trade off performance and disk utilization. It converts
the format of a directory from one to another depending on
the number of files in the directory. Unlink() system call
involves the code to pack directory entries when the con-
version of the directory formats occurs. In our experiment,
unlink() system call is tested but the code for packing the di-
rectory entries is not executed because the code is executed
only when the emptiness of the directory entries meets a
specific condition.

Recovery Code. Recovery code in trans handles ex-
ceptional cases and is not tested well with test cases. Trans
takes part of OnDiskState in 10.30%, 9.36%, and 20.25% in
btrfs, ext4 and XFS, respectively.

A critical issue in testing the recovery code is that the
recovery procedure diversifies because on-disk structures
can be corrupted arbitrarily; thus, preparing test cases that
can cover all possible processes of recovery is not easy. For
example, btrfs manages each file with three different sets of
metadata, and each set has different keys to be stored in a
single B-tree. As a result, all sets of metadata belonging to
the same file are placed either on a single disk block, on two
blocks, or on three blocks. The recovery process of btrfs
handles all cases of the metadata placements, but the test
cases fail to attempt all possible cases. XFS has twice as
many OnDiskState from trans as other file systems. This is
because XFS uses logical journaling, which records the op-
erations applied to file systems instead of the binary images
of the updated disk blocks. While logical journaling reduces
the amount of journaling regions, it complicates the recov-
ery procedures. This leads to missing test cases in XFS.

3.3.6 ErrorHandling

ErrorHandling is the first or second major cause of uncover-
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Fig. 5 Coverage of btrfs B-tree searching ioctl. Blue lines are covered and red lines are not covered.
Leftmost numbers are line numbers, and next column indicates its execution count.

age among all three file systems. It takes 18.92%, 23.32%,
and 30.43% of uncoverage respectively in btrfs, ext4, and
XFS. The code not covered due to ErrorHandling spreads
over all the components. It is widely recognized that the er-
ror handling code is not easy to cover in test cases. The test
suite for file systems is not exceptional; the error handling
code is not covered well.

3.3.7 OutOfScope

There are interesting points in the code that are out of the
scope of our investigation. All the file systems have dead
code. Btrfs has dead code in util , inode, and extent . The
dead code in util is that for debugging and the dead code
in inode and extent is that for handling an option passed to
functions. Since btrfs has no code that specifies certain op-
tions, the code handling those options is dead code. Ext4 has
dead code in trans. It uses JBD2 for journaling, but JBD2 is
designed to work for file systems other than ext4. The code
not executed by ext4 becomes dead code in JBD2. XFS
has the largest percentage of dead code (2.53%). It shares
the code with userland tools. There are many functions not
called from the kernel but called from userland tools. As a
result, these functions become a large source of dead code.

3.3.8 Finding Bug

Our analysis of the uncovered code reveals a bug in btrfs.
The bug is in the code that checks if a given key is in a
specified range. In btrfs, the key is represented as a 136-bit
integer that consists of a 64-bit object-id (more significant
bits), 8-bit type, and 64-bit offsets (less significant bits). In
the code shown in Fig. 5, there are three conditions at lines
2,011, 2,013 and 2,016. The intention with this code is to
check if each part of the key (object-id, type, and offset) falls
in a specified range; the first condition checks the offset (less
significant bits) and the third condition checks the object-
id (more significant bits). However, Fig. 5 indicates only
the first condition is taken since covered are the blue lines
and uncovered are red lines. This is strange because more
significant bits (object-id) must be checked to decide if a
given key is in a specified range, but the coverage report
shows that only the less significant bits (offset) are checked.

This code is used for searching a B-tree for a key in a
specified range. Btrfs continues the search even after the key
goes beyond the specified range and results in a performance
bug, which is generally difficult to find [20].

4. Discussion

Our analysis reveals five obstacles to improve the quality of
test cases for file systems: 1) file-system specific features,
2) environmental dependency, 3) file-system configurations,
4) on-disk structures, and 5) file-system evolution. In this
section, we discuss strategies for improving the quality of
test cases. We believe our analysis results can be applied
to file systems other than ext4, btrfs, and xfs because the
obstacles we have identified are not peculiar to ext4, btrfs,
and xfs.

First, our analysis reveals that the features specific to
each file system are not tested well because of the lack of
test cases. Adding more test cases for those features will
be effective in improving test quality. The second obstacle
is environmental dependency, in which a special storage de-
vice is needed to run some lines of code. To overcome this
obstacle, using virtual machines that emulate a wide vari-
ety of storage devices is promising. The third obstacle is
file-system configurations where some lines of code are not
covered due to configurations. Since there is a huge number
of valid combinations of configurations, it is not practical to
run test cases on all possible combinations. A possible so-
lution is to develop a code analyzer that discovers missing
combinations from uncovered code. We speculate that the
code analysis technique, which detects erroneous configura-
tions [21], can be extended for this purpose. The fourth ob-
stacle is that a code execution path depends on on-disk struc-
tures. To test file systems, we believe “test disks” should be
prepared in addition to test cases; each test disk embodies
a subtle corner case of on-disk structures. If a single test
case is executed repeatedly for each test disk, it would cover
the code that is executed only in a corner case. Virtual ma-
chines would be helpful in generating test disks. Finally,
the on-disk format is sometimes changed for new features
or better performance or reliability. We believe “test disks”
are also useful to mitigate this obstacle; some test disks are
formatted with an older disk format, which allows us to test
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the code for the older version.
File systems could be designed to help the development

of test cases. For example, the error-handling code can be
covered if the file system is equipped with fault injection.
Fault injection is a technique to introduce synthetic faults.
In file systems, disk I/O errors can be introduced by return-
ing an error code intentionally from a device driver. A sim-
ilar technique can be used to generate a subtle state of on-
disk structures; the shortage of inode entries or disk spaces
could be produced by rewriting the content of a disk block
returned from a device driver.

5. Related Work

The key insight behind our paper is that understanding the
causes of uncoverage helps to develop a better suite of test
cases that can catch more bugs at the test phase. This sec-
tion introduces other approaches to improve the quality of
file systems. These approaches are complementary to our
analysis of the uncovered code, and it is clarified how our
results can be used to improve them or facilitate their use.

Modern file systems are too large and complex to be
bug-free. Palix et al. [4] studied bug reports of the Linux
2.6 series and pointed out that file systems are one of the
hotbeds of the kernel bugs. They identified that in the late
versions of Linux 2.6 series, file systems have higher fault
rate than drivers, which have the highest fault rate in the
previous Linux kernels.

Lu et al. [5] investigated 5079 patches for Linux file
systems (Ext3, Ext4, XFS, Btrfs, ReiserFS and JFS) of
Linux 2.6 series. This investigation supports the fact that
file systems are a hotbed of bugs by revealing nearly 40% of
the patches are for bug fixes.

To improve the code quality of file systems, many re-
searchers in the operating system community have devel-
oped many techniques to identify semantic bugs, which vi-
olate high-level rules or invariants peculiar to file systems.
Some research projects targeted semantic bugs commonly
observed in file systems. Chopper [22] focused on costly
performance problems caused by poor layouts on disks.
Recon [23] prevented buggy operations at runtime involved
in journaling, and minimizes the corruption of journals. Our
analysis of the uncoverage gives a clue to new domains of
semantic bugs that should be addressed in the future.

SWIFT [24] is a testing tool for file system check-
ers, such as fsck, and automatically generates test cases to
achieve higher coverage. To apply this technique to file sys-
tems, it must be extensively extended because file system
checkers are concerned only with the recovery of corrupted
file systems not the whole functionality of file systems.

Model checking is a promising approach to find corner-
case bugs because it can verify that every possible path
meets the invariants. Yang et al. [25], [26] applied model
checking to existing file systems to find semantic bugs.
SybylFS [27] detects buggy behaviors not allowed when a
sequence of system calls is executed. To identify buggy be-
haviors, SybylFS defines a mathematical model of file sys-

tem behavior and validates the trace of the execution of the
sequence of system calls. SybylFS does not model special
files, asynchronous I/O, or the corner cases such as resource
exhaustion.

A well-known drawback of model-based approaches is
that developers should manually provide the correct seman-
tics of code for checking. Unfortunately, creating such se-
mantics is not easy and is time-consuming and error-prone.
Our analysis of uncovered code suggests code locations for
which it is difficult to prepare test cases. It may be interest-
ing to concentrate our efforts on building a model only for
those code locations; the code that can be tested easily by
test cases can be excluded from model checking.

JUXTA [28] is a tool that automatically infers high-
level semantics from source code. The key insight behind
JUXTA is that different implementations of the same func-
tionality should obey the same system rules or semantics.
By comparing existing implementations of Linux file sys-
tems, JUXTA derives their latent semantics and detects 118
bugs. This approach is useful to check common features of
file systems but not helpful in finding bugs in file system
specific features. Our analysis of the uncovered code shows
file system specific features are not tested well, implying the
need of finding bugs in such features.

To get rid of difficulties in verifying existing code base
of file systems, novel file systems have been proposed whose
design goes well with verification. BilbyFs [29] uses a
highly modular design of a file system so that each module
can be verified against high-level specification. FSCQ [6] is
a file system with machine-checkable proof. COGENT [30]
is a restricted language to write formally verifiable file-
system code. Yggdrasil [31] is a toolkit to help program-
mers write verifiable code for file systems. Most of these
file systems are implemented at user-level using FUSE [32].
This design simplifies the overall design of file systems
compared with existing ones implemented at kernel level.

We believe new file systems or novel features will con-
tinue to be developed to meet the ever-changing demands
on file systems. Modern desktop applications show char-
acteristics different from traditional workloads on file sys-
tems [33]. Atlidakis et al. [34] pointed out modern operat-
ing systems are migrating to higher-level abstraction like
SQLite [35]. Understanding the difficulties in testing file
systems will help future programmers debug new features
or novel file systems.

6. Conclusion

We measure the coverage of xfstests, a test suite for Linux
file systems, on three file systems (btrfs, ext4, and XFS) and
reveal that 23,232 lines of code are not covered. To under-
stand why the coverage cannot be high, the uncovered lines
of code are manually investigated. Our findings are three-
fold:

• It is an overwhelming task to prepare test cases to cover
all the features provided by file systems because each
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file system provides many file system specific features
and some features can be tested on only special storage
devices such as SSDs.
• Execution paths of file systems are highly dependent

on mkfs and mount options. It is daunting to test all
the options and their possible combinations because a
new file system must be created and mounted for each
combination. In addition, the execution paths depend
on internal on-disk states, which cannot be controlled
directly from the test cases.
• File systems sometimes update on-disk formats. To

maintain backward-compatibility, file systems provide
the code to access old formats. This code can be exe-
cuted only when a file system encounters the old for-
mats.

Our findings are useful to improve the coverage of test
suites for file systems. Some issues can be addressed sim-
ply, for example, by adding new test cases but others cannot
be addressed easily. We hope our result fosters the devel-
opment of new methodologies for testing file systems. For
example, we can develop a tool for model checking that fo-
cuses only on execution paths for which we cannot prepare
test cases.
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