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PAPER

Deblocking Artifact of Satellite Image Based on Adaptive
Soft-Threshold Anisotropic Filter Using Wavelet

RISNANDAR†∗a), Nonmember and Masayoshi ARITSUGI††b), Senior Member

SUMMARY New deblocking artifact, or blocking artifact reduction,
algorithms based on nonlinear adaptive soft-threshold anisotropic filter in
wavelet are proposed. Our deblocking algorithm uses soft-threshold, adap-
tive wavelet direction, adaptive anisotropic filter, and estimation. The nov-
elties of this paper are an adaptive soft-threshold for deblocking artifact and
an optimal intersection of confidence intervals (OICI) method in deblock-
ing artifact estimation. The soft-threshold values are adaptable to different
thresholds of flat area, texture area, and blocking artifact. The OICI is a
reconstruction technique of estimated deblocking artifact which improves
acceptable quality level of estimated deblocking artifact and reduces execu-
tion time of deblocking artifact estimation compared to the other methods.
Our adaptive OICI method outperforms other adaptive deblocking artifact
methods. Our estimated deblocking artifact algorithms have up to 98% of
MSE improvement, up to 89% of RMSE improvement, and up to 99% of
MAE improvement. We also got up to 77.98% reduction of computational
time of deblocking artifact estimations, compared to other methods. We
have estimated shift and add algorithms by using Euler + +(E + +) and
Runge-Kutta of order 4++ (RK4 + +) algorithms which iterate one step
an ordinary differential equation integration method. Experimental results
showed that our E++ and RK4++ algorithms could reduce computational
time in terms of shift and add, and RK4 + + algorithm is superior to E + +
algorithm.
key words: deblocking artifact, soft-threshold, reconstruction, estimation

1. Introduction

The discrete cosine transform (DCT) is the most popu-
lar image compression technique because its performance
is known to be optimal in the mean squared error (MSE)
term [1]–[4]. Our previous study [5] and the block DCT
(B-DCT) which used in JPEG [6], [7], H.264 [8], and
MPEG [9], show that DCT leaves blocking artifacts prob-
lem with linear filtering [2]–[5]. This is caused by the higher
compression.

Various algorithms have been proposed for removing
the blocking artifacts. The methods of [10]–[12] used the
projection onto convex sets (POCS) techniques. POCS uses
a dynamic focus-plus context (DF+C) [13] and the improved
weighted projection onto convex sets (IWPOCS) [14]. The
techniques make good effects, but the main disadvantages
of DF+C and IWPOCS methods are non-unique solution,

Manuscript received January 11, 2018.
Manuscript publicized February 26, 2018.
†The author is with the Research Center for Informatics,

Indonesian Institute of Sciences, Bandung, Indonesia.
††The author is with the Faculty of Advanced Science and Tech-

nology, Kumamoto University, Kumamoto-shi, Japan.
∗Presently, with the Dept. of Computer Science and Electrical

Engineering, Kumamoto University.
a) E-mail: risnandar@lipi.go.id
b) E-mail: aritsugi@cs.kumamoto-u.ac.jp

DOI: 10.1587/transinf.2018EDP7013

always slow convergence, high computational time [15]
and also unstable of numerical computation [16] in recon-
struction of the detailed structures of the satellite image.
The other disadvantages of spatially adaptive techniques
in DF+C and IWPOCS methods are much greater pre-
computation and searching processes than wavelet trans-
form, and also the limited reference of the satellite image.

In this paper, an adaptive deblocking artifact method
based on the intersection of confidence intervals (ICI)
rule [17]–[19] is discussed. The ICI rule is an adaptive pro-
cedure for selecting the appropriate adaptive scale parame-
ter in each pixel of blocking artifact to get deblocking ar-
tifact. Nevertheless the methods in [17]–[19] tend to have
a result of low quality and high computational time of de-
blocking artifact. To overcome these drawbacks, we pro-
pose deblocking artifact based on nonlinear adaptive soft-
threshold anisotropic filter in wavelet.

Our adaptive soft-threshold removes blocking artifact
significantly from both distorted and undistorted satellite
images in different sub-bands of wavelet transform. It is
adaptable to high transitions signal criteria of blocking arti-
fact, flat area, and texture area. The other contribution of this
paper is a reconstruction technique of deblocking artifact by
using an optimal ICI (OICI) method. Our OICI improves
quality of estimated deblocking artifact which is determined
by soft-threhold in confidence intervals for every scale pa-
rameter. For large scale parameter, soft-threshold in confi-
dence intervals and deblocking artifact estimation are more
ideal. Our OICI also reduces execution time of deblocking
artifact estimation. In order to further improve estimated
deblocking artifact performance, OICI determines scale pa-
rameter from the left or right side kernel only, while origi-
nal ICIs [17]–[19] determine scale parameter from both the
left and right side kernels, which have higher computational
time.

In computational complexity, we propose E + + and
RK4++ algorithms for the computation of elementary func-
tions like exponential, logarithm, trigonometric functions,
hyperbolic functions, and their reciprocals in fixed preci-
sion, typically the computer single or double precision. Our
proposed method combines shift and add algorithms and
both classical methods, Euler and Runge-Kutta methods for
the numerical integration of ordinary differential equations
(ODEs).

The paper is organized as follows. Related work is
given in Sect. 2. Section 3 provides two steps of our pro-
posal. The first step is proposed for deblocking artifact of
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satellite image by using soft-threshold in wavelet, followed
by an adaptive anisotropic filter. The second step is recon-
struction and smoothing, followed by LPA estimation, OICI
algorithm, and fusion of deblocking artifact as final estima-
tion. Section 4 shows our experimental results and algo-
rithm performances. Conclusions are found in Sect. 5.

2. Related Work

2.1 Deblocking Artifact

In [20], [21] methods for deblocking artifact of image were
developed by using the wavelet for solving the drawbacks in
[10]–[14]. The method of [20] applies a variety of wavelet-
based multitemporal DInSAR algorithms to remove arti-
facts, such as spatially correlated and temporally uncorre-
lated components, the digital elevation model, and orbital
errors of an image. However, in various images which have
low bit rates, the method of [20] often removes some part
of undistorted satellite image, like texture area and flat area
that are assumed as distorted images. The method of [21]
also can remove blocking artifacts by using orthogonal pro-
jections of wavelets from an upside down pyramid-shaped
region in a multi-dimensional space. The method of [21]
also has drawbacks, such as lack of shift invariance, lack of
wavelet symmetry, and poor directionality, when projection-
based wavelet [21] uses dyadic wavelet transform [22]–[24],
logarithmic dyadic wavelet transform (LDWT) [25], and
dyadic bounded mean oscillating (BMO) [26]. Block-
ing artifact removal methods in [22]–[26] and overcom-
plete wavelet representation in [27], [28] are not suitable
for various undistorted satellite images which have tex-
ture area and flat area, either. Discrete and continuous-
time soft-threshold [29] and a linear expansion of thresholds
(LET) [30] can remove blocking artifact and treat the draw-
backs of [22]–[28].

Another deblocking artifact method [31] uses linear fil-
tering and its estimation. Unfortunately, it does not work
with adaptation. Sparse representation [31] removes block-
ing artifacts from a set of training images by using K-
singular value decomposition (K-SVD) and the orthogonal
matching pursuit (OMP) for the estimated error threshold.
However, since K-SVD is a linear representation of the data,
K-SVD has to face nonlinear distributions of the data. It of-
ten leads to poor performance, it lacks the capability to sepa-
rate different classes and also dictionary learning redundant.
OMP builds the solution by adding one vector of estimated
error threshold in every distorted image criterion and also
OMP results depend on the elementary signals, or atoms, in
dictionary learning [31]. However, it produces a big num-
ber of iterations, which is difficult to determine an appro-
priate threshold value of different distorted images. For a
large number of data and iterations, performing an atom
decomposition can take high computational time. In addi-
tion, they [22]–[31] did not consider soft-threshold criteria
for different images and their levels of distorted images.

Thus, removing blocking artifact has been left

problem for linear filtering [20]–[22], [24]–[31] in satellite
image processing analysis. The linear filter methods [20]–
[22], [24]–[31] give blurring effect in edges and other fine
satellite image details. It is difficult for image analysis
of linear filter to reconstruct an undistorted image from
a distorted image. This has been treated in [32]–[35].
They [20]–[22], [24]–[31] allow us to find an alternative
method by using nonlinear filtering. In particular, median
filtering tends to give good results. Median filter is quite
popular for nonlinear filtering in image processing appli-
cations [36] because it is simple and can preserve edges.
A variety of median filters, such as stack filters and adap-
tive stack filters [37]–[39], the mean absolute error (MAE)
of stack filter [40], multilevel median and FIR-median hy-
brid filter [41], adaptive switching median filter [42], opti-
mal weighted vector median [43], [44], generalized Gaus-
sian median filter [45], and relaxed median filter [46] have
been developed to treat these drawbacks of [20]–[22], [24]–
[31].

Although median filter and its various methods [37]–
[46] are useful as nonlinear filter for satellite image denois-
ing and enhancement, yet they also have some drawbacks.
The median filter removes both distorted and undistorted
satellite images when it cannot detect the differences be-
tween them. In case of satellite image of small size, it has
minimal effect on the value of the median. This effect prob-
lem is still filtered out. The crucial element of estimations
in nonlinear filter methods is adaptation.

2.2 Soft-Threshold

The soft-threshold is one of the most popular threshold
methods used for deblocking artifact [47]. The perfor-
mances of these methods [47], [48] are close to an ideal
coefficient selection method if the coefficients of the ob-
served blocking artifact signal are known in advance. The
soft-threshold is more efficient than hard-threshold in de-
blocking artifact. The authors of [47], [48] gave the mecha-
nism for finding a universal threshold value, which is called
VisuShrink. VisuShrink depends on the noise power and
the number of samples in the satellite image, or signal size.
VisuShrink is a single value of threshold which is applied
to all the wavelet coefficients. This is derived by proving
an approximation error in the limit of an arbitrary large sig-
nal size. This method consists of the magnitudes of sig-
nal which are less than the threshold and the magnitudes
of noise which are more than the given threshold. These
methods [47], [48] would cut off the parts of the true signal
and also leave some noise in distorted satellite image. In
this paper, we propose an adaptive soft-threshold based on
the level of distorted satellite image to overcome the draw-
backs in [47], [48]. Our soft-threshold values use a nonlin-
ear method which is adaptive to various satellite images and
their blocking artifacts.

The authors of [29], [30] proposed soft-threshold for
removing blocking artifacts. In [29], the iterative soft-
threshold algorithm (ISTA) was presented for performing a
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discrete gradient step followed by a soft-threshold operation
at each iteration. At the same time, this method [29] would
pay high computational cost resulting in the slow conver-
gence rate in fusion of deblocking artifact. The method of
[29] would be difficult to analyze the noise properties in dis-
torted satellite image. In [30], a linear expansion of thresh-
olds (LET) is an excellent estimate of the noiseless image
by decomposing the denoising process and optimizing the
coefficients of this representation using an estimate of the
Stein’s unbiased risk estimate (SURE). Unfortunately, they
showed unstable and slow convergence performance, in par-
ticular for various satellite images.

Thus, we propose the accelerated gradient of conver-
gence in fusion step for treating these drawbacks of [29]
and [30]. The accelerated gradient of convergence is a func-
tion value of a kernel which improves convergence perfor-
mance in estimation, particularly in the fusion of deblocking
artifact. The accelerated gradient of convergence which is
demonstrated in the kernel builds iteration steps. The step
taken at each iteration depends on the previous iterations,
where the accelerated gradient of convergence grows from
one iteration to the next iteration. When we take the current
iteration as the new starting point, this erases the previous
iterations and resets the accelerated gradient of convergence
back to zero.

Many adaptation techniques have been proposed. They
used wavelet shrinkage [48], wavelet shrinkage and adap-
tive elliptical kernel for image smoothing [49], and gener-
alized shrinkage-threshold for deblurring images [50]. The
Lepski’s methods like 1D estimator [51], minimax adaptive
estimation [52], spatial adaptation inhomogeneous smooth-
ness [53], and pointwise adaptive [54] are adopted in our
paper. Our adaptation is proposed based on a nonlinear
estimation of distorted satellite image with its edge recov-
ering. A nonlinear estimator is applied, which is derived
from a local polynomial approach of satellite image in a
wavelet window. Generalized linear model [55], estimating
regression [56], smoothing adaptation [57], sharp adaptive
estimation [58], signal dependent noise (SDN) model [59],
and an adaptive jump-preserving (AJP) estimation [60] dis-
cussed the kernel by using an adaptive estimation. Yet,
they did not apply Lepski’s methods as we did. The fur-
ther idea of [51] was proposed as SDN model [59] for sin-
gle image noisy estimation by using the noise level function
of signal-dependent noise which assumed the generalized
signal-dependent noise model and the Poisson-Gaussian
noise model. Moreover the adaptive methods [55]–[60] are
difficult to analyze mathematically because they apply a dif-
fusion process by using derivatives of the evolving image
for smoothing and enhancing the important feature of dis-
torted satellite image, such as edges and the details of fine
satellite images. To deal with these drawbacks of [55]–[60],
we propose an adaptive nonlinear diffusion filter by using
anisotropic diffusion filter. Our anisotropic adaptation filter
method finds a point of estimation. Our polynomial compo-
nent of signal fits well with the entire distorted satellite im-
age. Distorted satellite image estimations are calculated for

a grid of window size. Each grid is compared to the other
grids of window size in wavelet. The adaptation window
size is defined as the largest window size in the grid.

2.3 Intersection of Confidence Intervals (ICI)

The ICI rule [17]–[19] is an automatic adaptive procedure
for selecting the appropriate adaptive filter of scale param-
eter m for each pixel in each satellite image in order to ob-
tain a deblocking artifact with minimal estimation error and
scale parameter m is non-negative vector. Let us consider
distorted satellite image d(r,s) and undistorted satellite im-
age u(r,s), where r and s are the pixel indices. The absolute
estimation error e of them can be calculated as follows:

|e(r, s,m)| = |u(r, s) − d̂(r, s,m)| (1)

where |d̂(r, s,m)| is the estimated distorted satellite image,
obtained using the scale parameter m. As mentioned in [18],
the absolute estimation error is

|e(r, s,m)| � |Ê(r, s,m)| + |e0(r, s,m)| (2)

where |Ê(r, s,m)| is the maximum value of the estimation
bias and |e0(r, s,m)| is random error with probability density
N(0, σ2

d(r, s,m)).
It was shown in [18] the following inequality holds

|e0(r, s,m)| � G(
1− α2

)σd̂m
(r, s,m) (3)

where G(
1− α2

) is
(
1− α2

)
-th quantile of the standard Gaussian

distribution and σd̂m
(r, s,m) is the standard deviation of dis-

torted satellite image in orientation α. The following in-
equality can be derived.

|e(r, s,m)| � |Ê(r, s,m)| +G(
1− α2

)d̂
m

(r, s,m) (4)

We define an abbreviated Eq. (4) to Eq. (5) as follows:

|e(r, s,m)| � δτσd̂m
(r, s,m) (5)

for m � m
′
(r, s), where m

′
(r, s) is the estimated scale param-

eter m of the estimated distorted satellite image d̂(r, s,m)
and soft-threshold δτ is used in confidence interval.

The adaptive scale parameter m procedure based on the
ICI rule [61] introduces a finite set of parameter sizes and
calculates a sequence of confidence intervals limits of the
biased estimates for each satellite image pixel separately and
independently to its left or right hand side. The one side of
confidence interval limits of our proposed algorithm can be
defined as follows:

Ui(r, s,mi) = d̂m(r, s,mi) + σδτd̂m
(r, s,mi), (6)

Li(r, s,mi) = d̂m(r, s,mi) − σδτd̂m
(r, s,mi), (7)

where Ui(r, s,mi) and Li(r, s,mi) are the i-th upper and lower
confidence interval limits, respectively. d̂m(r, s,mi) is esti-
mated deblocking artifact of scale parameter m. We cal-
culate the intervals and their intersections which are being
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Table 1 Conventional vs non-conventional deblocking artifact methods

No. Method Advantages Disadvantages

1. Conventional - No estimation, no adaptation, and many iterations.
a. Improved weighted projection Most effective and good effects Non-unique solution, slow convergence, high

onto convex sets (IWPOCS) [14] for deblocking artifact. computational time and also unstable of numerical
computation in reconstruction of deblocking artifact.

b. Overcomplete wavelet [28] Good shift invariance, wavelet Difficult to analyze because all of the distorted and
symmetry, and directionality. undistorted satellite images are unseparated. It is not

suitable for various undistorted satellite images which
have texture area and flat area, either.

2. Non-conventional Adaptive filtering and estimation -
and also limited iterations.

a. LPA-ICI [18], [19] Cross-validation which was proven High consuming time for deblocking artifact, because
to be a good criterion for selection it has two iterations from both, right and left side.
of threshold resulting in estimation It also has low quality deblocking artifact.
accuracy improvement.

b. Linear expansion of thresholds An excellent estimate of deblocking Unstable and slow convergence performance,
(LET) [30] artifact. in particular for various satellite images.

c. Signal dependent noise (SDN) Can simultaneously estimate all Difficult to analyze because it uses a diffusion process
[59] parameters of deblocking artifact by by using derivatives of the evolving satellite image for

SDN and can evaluate distorted smoothing and enhancing deblocking artifact, such as
satellite images. edges and the details of fine satellite images.

d. Multivariate wavelet denoising To improve deblocking artifact over Deleting texture area causes loss of fine satellite images.
(MWD) [66] the conventional univariate wavelet and flat area. Insufficient of deblocking artifact in the

directly. low bit of distorted satellite image.

tracked with the following Eq. (8).

max
i=1,...,D−1

Li(r, s,mi) � min
i=1,...,D−1

Ui(r, s,mi) (8)

The largest i is the proper scale parameter m in the number
of deblocking artifact D. The left or right hand side of dis-
torted satellite image d(r,s) represents as blocking artifact
which is combined and also used in estimated deblocking
artifact d̂(r, s,m). Soft-threshold δτ has important role for
confidence intervals and estimated deblocking artifact effi-
ciency. For small values of soft-threshold δτ, variance in-
crease and bias estimation of scale parameter m decrease.

Deblocking artifact by using ICI based method [18],
[19] has high computational time. To deal with this draw-
back, we propose an optimal ICI (OICI) method. OICI
method improves a quality level of estimated deblocking
artifact and reduces estimated deblocking artifact computa-
tional time compared to the ICI method. Our OICI method
does not only calculate scale parameter for each estimated
deblocking artifact pixel like the ICI method, but detects the
appropriate time regions for each pixel in time as well. It
calculates the first pixel value in the exacted blocking arti-
fact time region of distorted satellite image. It uses a scale
parameter in the detected time region for all estimated undis-
torted satellite images pixel values. Thus, the optimal time
region is an important role in our estimated deblocking arti-
fact quality. Cross-validation method [18], [61] and local
adaptive transform [19] used the ICI method. They were
proven to be a good estimation improvement. However,
these previous studies [18], [19], [61] have higher compu-
tational time of deblocking artifact estimation compared to
our OICI method. We describe the pros and cons compari-
son between conventional and non-conventional deblocking
artifact methods in Table 1.

2.4 Ordinary Differential Equations (ODEs)

In this paper we propose fixed precision which is provided
by the float type on any computer. The previous study [62]
mentioned that some methods could be employed by using
Padé approximations. However, since a fixed number of
digits is required, pre-computed tables can be used. These
tables have a fixed number of entries that are used in the
same fixed storage. Thus, these methods [62] have been
developed for fixed precision computations of elementary
functions (exponential, logarithm, trigonometric functions,
hyperbolic functions, and their reciprocals). Shift and add
methods [62] belong computations of elementary functions.
The methods decompose their arguments into a number of
decomposition which is performed by means of additions
only. Furthermore, shift and add algorithms are computed
along with the decomposition and requires only additions
and multiplications or divisions by 2, which are realized on
a computer by shifts. Since additions and shifts are very ef-
ficiently performed, the estimated iteration is very efficient.
Moreover, the number of the estimated iterations is small.

3. Deblocking Artifact and Reconstruction Algorithms

Deblocking artifact of our proposed algorithms starts with
the detection of blocking artifact discussed in our previ-
ous study [5]. In this section, firstly, we propose new algo-
rithms of deblocking artifact by using soft-threshold, adap-
tive wavelet direction, and adaptive anisotropic filter. Sec-
ondly, we propose new algorithms of deblocking artifact re-
construction and estimations by using LPA estimation, OICI
estimation, and fusion estimate. Our proposed algorithms
are illustrated in Fig. 1.



RISNANDAR and ARITSUGI: DEBLOCKING ARTIFACT OF SATELLITE IMAGE BASED ON ADAPTIVE SOFT-THRESHOLD ANISOTROPIC FILTER
1609

Fig. 1 Proposed algorithms

3.1 Deblocking Artifact

3.1.1 Soft-Threshold

In our proposed algorithms, we have a wavelet transform
and adaptive filter for wavelet analysis. Our wavelet fil-
ter should keep a low computational time in soft-threshold.
Thus, we need a symmetrical wavelet filter to keep spa-
tial positions of blocking artifact in different scales. In
the decomposition process, we have three high-pass filters,
namely, horizontal high-pass or vertical low-pass (HL), hor-
izontal low-pass or vertical high-pass (LH), and horizontal
high-pass or vertical high-pass (HH). These are very impor-
tant for the exacted blocking artifact position as we men-
tioned in [5].

We denote high-low, low-high, and high-high subband
as {HLF(i), LHF(i), HHF(i)}, {HLε(i), LHε(i), HHε(i)}, and
{HLB(i), LHB(i), HHB(i)} for flat area, texture area, and
blocking artifact, respectively. Blocking artifacts appear at
the horizontal and vertical of edge directions. We have ver-
ified and compared a specific distorted satellite image with
other compressed satellite image in our previous study [5].

Distorted satellite image is indicated as blocking arti-
fact. Flat area, e.g., plain, plateau, steppe, tableland, tundra,
and texture area, e.g., forest, wave of the sea, and moun-
tain are indicated as an undistorted satellite image or nor-
mal compressed satellite image. However, some detections
of blocking artifact detect flat area and/or texture area as
blocking artifact.

To overcome this drawback, we find the thresholds of
flat area, texture area, and blocking artifact, respectively, as
described in our previous study [5]. We determine thresh-
old criteria which depend on the exacted blocking artifact
location in every decomposition level i-th, by comparing
wavelet coefficient values of flat area to the flat area thresh-
old (F � Ft), the entropy of texture area to the entropy
threshold (ε > εt), and blocking artifact to the blocking ar-
tifact threshold (B � Bt). The thresholds are determined
by Eqs. (12) and (13). We define the relations of them in
Eqs. (9)–(11), respectively.

F =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|CHLF (i)(r, s)| � |CHLFt (i)(r, s)|
|CLHF (i)(r, s)| � |CLHFt (i)(r, s)|
|CHHF (i)(r, s)| � |CHHFt (i)(r, s)|

(9)

T =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|CHLε (i)(r, s)| > |CHLεt (i)(r, s)|
|CLHε (i)(r, s)| > |CLHεt (i)(r, s)|
|CHHε (i)(r, s)| > |CHHεt (i)(r, s)|

(10)

B =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|CHLB(i)(r, s)| � |CHLBt (i)(r, s)|
|CLHB(i)(r, s)| � |CLHBt (i)(r, s)|
|CHHB(i)(r, s)| � |CHHBt (i)(r, s)|

(11)

where Csubband(r, s) indicates the wavelet coefficient in the
position of subband coordinate (r,s).

We can obtain the soft-threshold values of flat area δF,
texture area δT , and blocking artifact δB, as described in
Eqs. (14)–(16), respectively, from the wavelet decomposi-
tion process. After the wavelet decomposition, blocking ar-
tifact appears as horizontal line-shaped edge in the LH sub-
band and vertical line-shaped edge in the HL subband. For
the whole satellite images containing blocking artifacts, we
calculate the three level wavelet decompositions. According
to the wavelet decomposition, we block the high-low sub-
band of each satellite image block together from left to right
and then top to bottom. We also block the high-low, low-
high, and high-high subbands of i-th level decomposition of
the whole satellite images.

The high-low, low-high, and high-high subbands only
appear on the block boundary in i-th level wavelet decom-
position. The wavelet decomposition is a process down-
sampled by the length of the high-pass which equals to
3, and blocking artifacts appear on the block boundary.
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The soft-threshold criteria of flat area δF, texture area δT ,
and blocking artifact δB are determined by calculating dif-
ference of wavelet subbands coefficient between HLFt (i)
and HLF(i), LHFt (i) and LHF(i), HHFt (i) and HHF(i),
HLε(i) and HLεt (i), LHε(i) and LHεt (i), HHε(i) and HHεt (i),
HLBt (i) and HLB(i), LHBt (i) and LHB(i), and the last one
HHBt (i) and HHB(i). Then, difference of wavelet subbands
coefficient divided by {NHLF (i), NLHF (i), NHHF (i)}, {NHLT (i),
NLHT (i), NHHT (i)}, and {NHLB (i), NLHB (i), NHHB (i)}, which
stand for the numbers of the wavelet subbands coefficient of
flat area, texture area, and blocking artifact, respectively.

We calculate flat area threshold Ft in Eq. (14), entropy
threshold εt in Eq. (15), and blocking artifact threshold Bt in
Eq. (16) by using probability density function (PDF) [63] as
follows:

f (ρ) =
βγ

Γ(γ)
ργ−1e−βρ; ρ > 0, β > 0, γ > 0 (12)

where the observed satellite image ρ has a certain procedure
consisting of γ independent steps, and each step takes the
number of exponential Gamma distributions β per unit time.
A complete Gamma function Γ(γ) is defined as follows:

Γ(γ) =
∫ ∞

0
βγργ−1e−βρdρ (13)

Finally, to determine Ft, εt, and Bt in soft-threshold values
of flat area, texture area, and blocking artifact in Eqs. (14)–
(16), we use Eqs. (12) and (13). By using Eqs. (12) and (13),
we got the distribution signals of Ft = 0.25, εt = 0.26, and
Bt = 0.29. Then, we define range values 0.23 � Ft < εt <
Bt � 0.31 for the wavelet coefficient subband Csubband(r, s)
in the coordinate (r,s).

The soft-threshold δτ in every decomposition level i-th
of a satellite image can be defined as Eq. (17).

δF(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δHLF(i) = Ft −
((
||∑|CHLFt (i)(r,s)|�Ft

CHLFt (i)(r, s)| − |∑|CHLF ( i)(r,s)|�Ft
CHLF (i)(r, s)||

)
/NHLF (i)

)

δLHF(i) = Ft −
((
||∑|CLHFt (i)(r,s)|�Ft

CLHFt (i)(r, s)| − |∑CLHF ( i)(r,s)|�Ft
CLHF (i)(r, s)||

)
/NLH F (i)

)

δHHF(i) = Ft −
((
||∑|CHHFt (i)(r,s)|�Ft

CHHFt (i)(r, s)| − |∑|CHHF ( i)(r,s)|�Ft
CHHF (i)(r, s)||

)
/NHH F (i)

) (14)

δT (i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δHLT (i) = εt +

((
||∑|CHLε ( i)(r,s)|>εt

CHLε (i)(r, s)| − |∑|CHLεt (i)(r,s)|>εt
CHLεt (i)(r, s)||

)
/NHLT (i)

)

δLHT (i) = εt +

((
||∑|CLHε ( i)(r,s)|>εt

CLHε (i)(r, s)| − |∑|CLHεt (i)(r,s)|>εt
CLHεt (i)(r, s)||

)
/NLH T (i)

)

δHHT (i) = εt +

((
||∑|CHHε ( i)(r,s)|>εt

CHHε (i)(r, s)| − |∑|CHHεt (i)(r,s)|>εt
CHHεt (i)(r, s)||

)
/NHH T (i)

) (15)

δB(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δHLB(i) = Bt +

((
||∑|CHLBt (i)(r,s)|�Bt

CHLBt (i)(r, s)| − |∑|CHLB ( i)(r,s)|�Bt
CHLB (i)(r, s)||

)
/NHLB (i)

)

δLHB(i) = Bt +

((
||∑|CLHBt (i)(r,s)|�Bt

CLHBt (i)(r, s)| − |∑|CLHB ( i )(r,s)|�Bt
CLHB (i)(r, s)||

)
/NLH B (i)

)

δHHB(i) = Bt +

((
||∑|CHHBt (i)(r,s)|�Bt

CHHBt (i)(r, s)| − |∑|CHHB ( i)(r,s)|�Bt
CHHB (i)(r, s)||

)
/NHH B (i)

) (16)

δτ(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δF(i); ρ > 0, β > 0, γ > 0, 0.23 � Ft � 0.25
δT (i); ρ > 0, β > 0, γ > 0, 0.26 � εt � 0.28
δB(i); ρ > 0, β > 0, γ > 0, 0.29 � Bt � 0.31

(17)

3.1.2 Adaptive Wavelet Direction

Here, we propose 2D adaptive wavelet direction for the
kernel which consists of two stages. First stage, or a 1D
wavelet, is applied to blocking artifact followed by a ver-
tical direction to obtain the vertical high-pass or horizontal
low-pass subband (LH). The second stage, or the other 1D
wavelet, is applied to blocking artifact followed by a hori-
zontal direction to obtain the horizontal high-pass (HL) and
horizontal or the vertical high-pass (HH). Each high-pass
subband of the vertical or horizontal direction in wavelet
can select a wavelet direction that detects blocking arti-
fact. Blocking artifact can be represented in d(x0, xi) coordi-
nates of 2D distorted satellite image. We define an adaptive
wavelet direction Ψ as follows:

Ψm,α,δτ(i) =
1√
mi

[
(x0 cosα) + (xi sinα)

miδτ

]
(18)

where m is scale parameter or width of kernel in wavelet
and non-negative vector. Scale parameter mi is represented
as vectors m1 and m2. α is an orientation angle of kernel
displacement. x0 and xi are the first and i-th positions of
kernel in wavelet direction, respectively, as shown in Fig. 2.

Scale parameter m is determined by ridglet. Since the
ridglet is constant along the ridge line x0 cosα+ xi sinα = 0
and it is a wavelet along the orthogonal direction. Then, for
small scale parameter m which is identical with m2, ridglet
is quite clear and localized along the ridge line. For larger
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Fig. 2 Proposed the directional kernel of an adaptive wavelet

scale parameter m1, ridglet can be a smooth function with
smooth waves. Thus, different scale parameter m in ridglets
can be used for directional approximations in smooth and
straight-line edge area as we describe in Eqs. (19)–(22) as
follows:

m1 = x0 cosα + xi sinα (19)

m2 = −x0 sinα + xi cosα (20)

x0 = m1 cosα − m2 sinα (21)

xi = m1 sinα + m2 cosα (22)

Figure 2 shows an adaptive wavelet which consists of
two steps. The first step is a rotation of the window size
function wm(x). The second step is the local polynomial ap-
proximation (LPA) design of the kernel with scale parameter
m as coordinate systems as we describe in Eqs. (19)–(22).
Location of distorted pixels or blocking artifacts are inside
of the rotation angle α. The LPA in the variables m1 and
m2 is used in order to obtain the accurate polynomial kernel
for any discrete after rotation. The rotated kernels are repro-
duced with respect to the signals polynomial and also satisfy
to the corresponding vanishing moment conditions of scale
parameter m.

3.1.3 Adaptive Anisotropic Filter

We propose an adaptive anisotropic filter which uses an
anisotropic measure of distorted satellite image level to con-
trol the shape of the kernel. The kernel k is applied at each
pixel of distorted satellite image d with distorted level σ in
coordinate (x0,d , xi,d ) which is defined as follows:

k(x0,d, xi,d) = wm(x)α(xi,d − x0,d) ∗
(

exp

(
− δτ

(
((xi,d − x0,d)m1)2

σ2
1,d(x0,d)

+
((xi,d − x0,d)m2)2

σ2
2,d(x0,d)

)))
(23)

where the window size function wm(x) of neighborhood x in
Eq. (23) is identical to that in Eq. (24) as follows:

wm(x) =
x
m

m
=

x
m2

(24)

The symbol α(xi,d −x0,d ) in Eq. (21) represents a pos-
itive direction and the kernel rotation function where the
condition α(xi) = 1 if |xi| � m1, and m1 is the maximum
scale parameter m. Distorted satellite image parameters of
σ2

1,d(x0,d ) and σ2
2,d(x0,d ) are used to control the shape of

kernel k(x0,d, xi,d ).

3.2 Reconstruction

3.2.1 Local Polynomial Approximation (LPA) Estimation

Our idea of LPA estimation for deblocking artifact is to fit a
polynomial to distorted satellite image in the neighborhood
x and use it to estimate the value of the blocking artifact at
the considered point. The polynomial is developed locally,
as a linear combination of the considered point and fitted
using the weighted least squares (WLS) method. We define
that the quantization noise in blocking artifact is the sum
of undistorted satellite image and distorted satellite image
which corresponds to standard deviation σ. The observed
satellite image ρ is expressed as follows:

ρ(r, s) = u(r, s) + σd(r, s) (25)

where u is undistorted satellite image and d is distorted
satellite image or noise component of satellite image. Partic-
ularly, distorted satellite image is blocking artifact. (r, s)-th
is the pixel coordinate in the block of satellite images and
noise σ. Equation (25) and Taylor’s series in [59], [60] are
used for an approximation of deblocking artifact function in
distorted satellite image d and neighborhood x, as follows:

d(r, s) ≈ d(x) + d1(x)

(
(x − (r, s))

1!

)
+

d2(x)

(
(x − (r, s))2

2!

)
+ d3(x)

(
(x − (r, s))3

3!

)

+ . . . (26)

where d is the function of distorted satellite image and d1,
d2, and d3 are the first, second, and third derivative functions
of distorted satellite image, respectively. dd́ is the d́-th of
distorted satellite image d estimation which can be given in
the kernel k of nonlinear filter as follows:

d̂d́(x) =
∑

n

k(x)ρn; d́ = 1, 2, 3, . . . ,∞ (27)

Thus, the directional LPA kernel km,α(x) is defined as
d̂m,αi (x,m) = (km,αi ∗ ρ)(x,m). Kernel km,α(x) and the ob-
served satellite image ρ are convolved (*) at direction αi(x),
neighborhood x, and scale parameter m. The derivative di-
rectional LPA kernel km,α of estimated scale parameter md́

in d́-th estimation can be defined as follows:

d̂md́ ,αi (x,md́) = (kmd́ ,αi ∗ ρ)(x,md́);

d́ = 1, 2, 3, . . . ,∞ (28)
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We also obtain estimated variance in n number of deblock-
ing artifacts which is computed as follows:

σ2
d̂m

d́
,αi

(i,md́) = σ2
∑
i∈ρd

|kmd́
(n)|2;

d́ = 1, 2, 3, . . . ,∞
(29)

where ρd is a set of i-th observed satellite images ρ which
is ranked by distorted satellite image d. Thus, our derivative
estimated variances of Eq. (29) do not depend on neighbor-
hood x.

3.2.2 Optimal Intersection of Confidence Interval (OICI)

The adaptive scale parameter m of each distorted satellite
image can be seen in Eqs. (6)–(7). The intervals and their
intersections have calculated in Eq. (8).

Our OICI method finds scale parameter m by calculat-
ing the confidence intervals from the left or the right side
only. However, the original ICI based method calculates
them from both the left and the right sides. The same pro-
cedure is repeated for the left or the right side of our de-
blocking artifact in distorted satellite image pixel d(r,s,m).
The smaller values of the confidence interval soft-threshold
δτ can increase variance σ in scale parameter m. On the
other hand, the larger values of the confidence interval soft-
threshold δτ reduce variance in scale parameter m. Our OICI
method does not only calculate scale parameter for each de-
blocking artifact pixel like ICI method, but detects the ap-
propriate time regions for each pixel as well. Deblocking
artifact pixel in time t(r,s) of the confidence intervals is cal-
culated by using our OICI method as follows:

Ui(r, s,mi) = d̂m(r, s,mi) +
σd̂m

2δτi2
(r, s,mi), (30)

Li(r, s,mi) = d̂m(r, s,mi) −
σd̂m

2δτi2
(r, s,mi) (31)

Based on Eqs. (30) and (31), our adaptive scale param-
eter m is calculated from the first to all pixel values in the
detected time region of deblocking artifact from the left or
the right side. Our OICI size ratio is calculated as follows:

OICI =

(
minUi − maxLi

Ui(xi,mi) − Li(xi,mi)

)i

(32)

Our OICI based deblocking artifact algorithms which start
by considering distorted satellite image pixel value in time
which is denoted as d̂m = (r, s,mi), where i = 1, 2, . . . ,D,
and D is the number of deblocking artifacts. OICI calculates
upper and lower confidence intervals of each i by using the
procedure in Eq. (8). If m1 � D, the procedure in Eq. (8) is
repeated until mi = D as shown in Eq. (33).

t(r,s)∑
i=1

mi = D (33)

where t(r,s) is the number of detected time regions for the

deblocking artifact pixel. Our OICI algorithm is expressed
as follows.

Algorithm 1 OICI
1: Initialized
2: d̂m, σ, δτ, x,D, oici
3: Declare
4: i : integer
5: x : integer 
 discrete value of deblocking artifact
6: D : integer 
 number of deblocking artifacts
7: while x � D do
8: i← 1
9: maxLi← −∞

10: minU i← +∞
11: while maxLi � minU i do
12: Ui(x)→ d̂m(x) +

σd̂ m
2δτi2

(x)

13: Li(x)→ d̂m(x) − σd̂ m
2δτi2

(x)
14: maxLi→ max{Li(x),maxLi}
15: minU i→ min{Ui(x),minU i}
16: oici→

(
minU i−maxLi

Ui(x,mi)−Li(x,mi)

)i

17: i→ i + 1
18: end while
19: d̂(x)→ d̂m(x,m)
20: x→ x + 1
21: end while
22: return d̂(x)

Our OICI reduces computational time for 1 � t(r, s) �
D at t(r,s) time. Then, we have a directional estimated kernel
of our OICI by using Eq. (28). Estimated variance of OICI
is the adaptive scale which is calculated as follows:

σ2
d̂m

d́
,αi

(x,md́) = σ2
m∑

i=1

k2
md́ ,αi

(x,md́);

d́ = 1, 2, 3, . . . ,∞
(34)

The adaptive scale estimate in Eq. (34) is the combined
estimates which are exploited to obtain the final estimated
deblocking artifact in the fusion process.

3.2.3 Fusion of Deblocking Artifact

Estimated fusion is a final estimation of estimated deblock-
ing artifact which is computed as follows:

d̂md́ ,αi (x,md́) =
(
kmd́ ,αi ∗ λid̂

(m−1)
md́ ,αi

)
(x,md́);

d́ = 1, 2, 3, . . . ,∞
(35)

Finally, we calculate new estimated variance by using
soft-threshold δτ in fusion of deblocking artifact as follows:

σ2
d̂m

d́
,αi

(x,md́) = δτ
(
k2

md́ ,αi
∗ σ2

d̂(m−1)
m

d́
,αi

)
(x,md́);

d́ = 1, 2, 3, . . . ,∞
(36)

Equation (36) is estimated fusion variance of OICI.
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3.3 Integration of ODE

First, we use Euler and Runge-Kutta-4 (RK4) methods.
They are a family of implicit and explicit iterative methods
for the integration of an ODE. Second, we use shift and add
methods which cover algorithms for exponential and loga-
rithm as well as a CORDIC method for trigonometric func-
tions. We propose Euler + + (E + +) and Runge-Kutta of
order 4++ (RK4++) methods which are combined with shift
and add methods. In an ODE, y is a vector. y(x) = [y1(x),
y2(x), . . . , and ym(x)] is function. F is a vector valued func-
tion of y and its derivatives in n order of differential equation
described as follows:

y(n) = F
(
x, y, y

′
, y
′′
, . . . , y(n−1)) (37)

or Eq. (38) can be written as follows:

y
′
= F(t, y) (38)

where y
′

is the first derivative of y. y is a function of one
variable t (one-dimensional) to real IRp. F is a given func-
tion which is defined on a domain DF ⊂ IRxIRp to IRp. Usu-
ally, an initial condition is written as y(t0) = η ∈ IRp. The
corresponding Cauchy problem [64] or initial value problem
is as follows:

Cauchy

{
y
′
= F(t, y)

y(t0) = η
(39)

Let interval factor [ζ; θ] ⊂ IR with t0 ∈ [ζ; θ], a C1

function Y : t ∈ [ζ; θ] �−→ Y(t) ∈ IRp is a solution if
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(t,Y(t)) ∈ DF ∀t ∈ [ζ; θ]
Y(t0) = η
Y
′
(t) = F(t,Y(t)) ∀t ∈ [ζ; θ]

are fulfilled. (40)

To integrate an ODE, numerical methods obtain ap-
proximate values of the solution at a set of points t0 < t1 <
· · · < tn < · · · < tN . The approximate value yn of Y(tn)
is computed by using some of the values obtained from
Y(tn−1). Our explicit E + + and RK4 + + methods are con-
sidered in the initial value problem Y(t).

3.4 Explicit Euler and Runge-Kutta Methods

Explicit Euler method is a single step method of order 1
defined on [t0; ξ] by

{
yn+1 = yn + hF(tn, yn)
y(t0) = η

(41)

where h is the size of every step, t is a set of points in n
number of point, ξ is the last range a set of points, and N is
number of step. We define h = ξ−t0

N and tn = t0 + nh.
Runge-Kutta method aims to achieve a given order

evaluating any derivatives of F and involves the evaluation
of F at intermediary points. Among these methods, RK4 is
4 orders.

K1 = F(tn, yn)

K2 = F(tn + h
2 , yn +

h
2K1)

K3 = F(tn + h
2 , yn +

h
2K2)

K4 = F(tn + h, yn + hK3)
(42)

yn+1 = yn +
h
6 (K1 + 2K2 + 2K3 +K4)

y0 = η

We consider the computation of Y(t) for any t ∈ [t0; ξ].
E + + and RK4 + + methods compute Y(tK ) where tK is
an intermediary point used to reach t. We consider only the
error E = yn − Y(tn) in order to choose h. For E + +, h has

to satisfy h �
√

2E
||y′′ ||∞ . The maximum of || · ||∞ is [t0; ξ].

For RK4 + +, h has to satisfy a more complex inequality

h � 5

√
2880E

49|| ∂4 F(t,y(t))

∂t4
||∞

. The sums of h for a given precision E =
2−24 correspond to the single precision (32 bits) and for a
given precision E = 2−53 correspond to the double precision
(64 bits) of each elementary function in our explicit E + +
and RK4 + + methods.

4. Experimental Results

We used 200 reference distorted satellite images which
had blocking artifacts and each size was 32x32, 64x64,
128x128, 256x256, 512x512, and 1024x1024 pixels [65] in
our experiment.

We demonstrate deblocking artifact algorithms perfor-
mance five blocking artifact satellite images to represent
200 distorted satellite images [65]. The size of each satel-
lite image is 512x512 pixels. Deblocking artifacts show
that blocking artifacts were removed. The estimated de-
blocking artifacts show the resulting of deblocking arti-
facts which are estimated and reconstructed by our LPA and
OICI. We calculate our deblocking artifact and estimated
deblocking artifact performance by using root-mean-square
error (RMSE), signal-to-noise ratio (SNR), peak signal-to-
noise ratio (PSNR), improvement in signal-to-noise ratio
(ISNR), mean absolute error (MAE), and maximum MAE
(MaxMAE).

We compare our proposed algorithms to conventional
methods [14], [28] which are no estimation nor adapta-
tion, and also to non-conventional methods [18], [19], [30],
[59], [64] which use adapative filtering and estimation. We
use non-conventional methods of an adaptive soft-threshold
which deals for deblocking artifact. Our OICI is adapt-
able to a crucial element of nonlinear filtering in recon-
struction and estimation. The other non-conventional meth-
ods [18], [19], [30], [59], [64] have left larger distorted effect
and also have removed finer signals of estimated deblocking
artifact in reconstruction and estimation.

In Fig. 3, we show blocking artifacts which consist of
detected blocking artifacts (a.1-e.1) denoted by red regions,
deblocking artifacts (a.2-e.2) denoted by yellow regions,
and final estimated deblocking artifacts (a.3-e.3) denoted by
green regions. Based on Fig. 3 (a.2-e.2), we calculate SNR,
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Fig. 3 Proposed deblocking artifact and estimated deblocking artifact satellite image results

Table 2 SNR (dB) and PSNR (dB) values of deblocking artifact

Method
Fig. 3.a.2 Fig. 3.b.2 Fig. 3.c.2 Fig. 3.d.2 Fig. 3.e.2

SNR PSNR SNR PSNR SNR PSNR SNR PSNR SNR PSNR
Proposed Method 14.2999 28.9821 15.3515 26.5763 21.8369 22.2386 19.7635 26.9717 18.5423 27.2805
IWPOCS [14] 9.1519 18.5485 9.8250 17.0088 13.9756 14.2327 12.6486 17.2619 11.8671 17.4595
Overcomplete Wavelet [28] 10.4389 21.1569 11.2066 19.4007 15.9409 16.2342 14.4274 19.6893 13.5359 19.9148
LET [30] 9.7239 19.7078 10.4390 18.0719 14.8491 15.1222 13.4392 18.3408 12.6088 18.5507
LPA-ICI [18], [19] 11.4399 23.1857 12.2812 21.2610 20.3047 24.0417 15.8108 21.5774 14.8338 21.8244
SDN [59] 10.3288 20.9338 11.0884 19.1961 15.7728 16.0629 14.2752 19.4817 13.3931 19.7047
MWD [66] 10.8822 22.0554 11.6825 20.2246 16.6179 16.9236 15.0400 20.5255 14.1107 20.7605

Table 3 MSE and standard deviation (σ) values of deblocking artifact

Method
Fig. 3.a.2 Fig. 3.b.2 Fig. 3.c.2 Fig. 3.d.2 Fig. 3.e.2

MSE σ MSE σ MSE σ MSE σ MSE σ

Proposed Method 82.2005 798.0025 143.0382 539.0027 64.2490 231.4716 130.5891 358.8028 121.6279 409.0464
IWPOCS [14] 109.3267 1061.3433 190.2408 716.8736 85.4512 307.8573 173.6835 477.2077 161.7651 544.0318
Overcomplete Wavelet [28] 100.2846 973.5630 174.5066 657.5833 78.3838 282.3954 159.3187 437.7394 148.3860 499.0367
LET [30] 113.4367 1101.2434 197.3927 743.8237 88.6636 319.4309 180.2130 495.1479 167.8465 564.4841
LPA-ICI [18], [19] 131.5208 1276.8039 228.8611 862.4043 102.7984 370.3546 208.9426 574.0845 194.6046 654.4743
SDN [59] 95.3526 925.6828 165.9243 625.2431 74.5288 268.5071 151.4834 416.2113 141.0884 474.4939
MWD [66] 99.4626 965.5830 173.0762 652.1933 77.7413 280.0807 158.0128 434.1514 147.1698 494.9462

PSNR, MSE, and standard deviations σwhich start from de-
blocking artifact level as we show in Tables 2 and 3. Final
estimated deblocking artifact evaluation of Fig. 3 (a.3-e.3)
are shown in Tables 4–8. Tables 2 and 3 show that our pro-
posed deblocking artifact algorithms have higher SNR and
PSNR values and lower MSE and standard deviation values
than other methods.

Our proposed deblocking artifact algorithms have finer

signal of the deblocking artifacts. Table 4 shows SNR (dB)
and PSNR (dB) values which have a significant increasing
SNR and the PSNR values compared to our deblocking ar-
tifact in Table 2 and also other methods in Table 4. Table 5
shows MSE and standard deviation σ values of our final es-
timated deblocking artifact algorithms Fig. 3 (a.3-e.3) which
have decreased MSE values compared to our deblocking ar-
tifact in Table 3 and also other methods in Table 5. We
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Table 4 SNR (dB) and PSNR (dB) values of estimated deblocking artifact

Method
Fig. 3.a.3 Fig. 3.b.3 Fig. 3.c.3 Fig. 3.d.3 Fig. 3.e.3

SNR PSNR SNR PSNR SNR PSNR SNR PSNR SNR PSNR
Proposed Method 53.1913 54.1965 48.4288 49.4319 54.5921 55.5964 49.7015 50.7068 49.9274 50.9327
LET [30] 37.2339 37.9376 33.9001 34.6023 38.2145 38.9175 34.7911 35.4948 34.9492 35.6529
LPA-ICI [18], [19] 42.5530 43.3572 38.7430 39.5455 43.6737 44.4771 39.7612 40.5654 39.9419 40.7462
SDN [59] 21.6905 26.1660 23.2856 22.3174 33.1229 18.0760 29.9779 21.4239 28.1255 19.9181
MWD [66] 13.0176 23.1878 13.7260 20.5367 20.1431 20.9758 22.3635 23.9503 14.4650 21.8909

Table 5 MSE and standard deviation (σ) values of estimated deblocking artifact

Method
Fig. 3.a.3 Fig. 3.b.3 Fig. 3.c.3 Fig. 3.d.3 Fig. 3.e.3

MSE σ MSE σ MSE σ MSE σ MSE σ

Proposed Method 1.1131 9.0986 1.8255 5.9661 0.4428 1.8828 0.9526 3.0026 1.5519 4.5271
LET [30] 80.9257 785.6270 140.8200 530.6439 63.2526 227.8820 128.5639 353.2385 119.7417 402.7030
LPA-ICI [18], [19] 41.1003 638.4020 71.5191 431.2022 32.1245 185.1773 65.2946 287.0422 60.8140 327.2372
SDN [59] 40.5535 393.6929 70.5676 265.9159 31.6971 114.1961 64.4259 177.0146 60.0049 201.8022
MWD [66] 68.2413 662.4865 118.7476 447.4698 53.3383 192.1634 108.4126 297.8713 100.9732 339.5826

Table 6 RMSE values of estimated deblocking artifact

Method Fig. 3.a.3 Fig. 3.b.3 Fig. 3.c.3 Fig. 3.d.3 Fig. 3.e.3

Proposed Method 1.0550 1.3511 0.6654 0.9760 1.2457
LET [30] 8.9959 11.8668 7.9532 11.3386 10.9427
LPA-ICI [18], [19] 6.4109 8.4569 5.6678 8.0805 7.7983
SDN [59] 6.3682 8.4005 5.6300 8.0266 7.7463
MWD [66] 8.2608 10.8971 7.3033 10.4121 10.0485

Table 7 MAE and MaxMAE values of estimated deblocking artifact

Method
Fig. 3.a.3 Fig. 3.b.3 Fig. 3.c.3 Fig. 3.d.3 Fig. 3.e.3

MAE MaxMAE MAE MaxMAE MAE MaxMAE MAE MaxMAE MAE MaxMAE

Proposed Method 0.0735 2.1337 0.1075 2.1381 0.0506 1.6801 0.0691 1.2481 0.1033 2.1568
LET [30] 2.1317 61.8764 3.1180 62.0035 1.4683 48.7234 2.0037 36.1942 2.9960 62.5484
LPA-ICI [18], [19] 1.9847 57.6091 2.9029 57.7274 1.3670 45.3631 1.8655 33.6981 2.7893 58.2348
SDN [59] 21.6160 153.4572 34.0845 214.9195 21.5847 178.0194 28.0893 132.5318 34.1891 102.8781
MWD [66] 25.2187 168.0334 39.7653 239.7394 25.1822 181.0226 32.7708 142.9538 39.2581 124.4252

Table 8 Computational time (CT) in second and ISNR (dB) values of estimated deblocking artifact

Method
Fig. 3.a.3 Fig. 3.b.3 Fig. 3.c.3 Fig. 3.d.3 Fig. 3.e.3

CT ISNR CT ISNR CT ISNR CT ISNR CT ISNR

Proposed Method 0.5767 38.8914 0.5948 33.0773 0.5593 32.7552 0.5525 29.9380 0.5773 31.3851
LET [30] 42.8919 30.3699 44.2291 26.5314 41.6058 27.7328 41.1003 25.3046 42.9326 26.0489
LPA-ICI [18], [19] 42.6773 31.1131 44.0145 26.4618 41.3912 23.3690 40.8857 23.9504 42.7180 25.1081
SDN [59] 43.9897 11.3617 45.3269 12.1972 42.7036 17.3501 42.1981 15.7027 44.0304 14.7324
MWD [66] 48.1999 2.1354 49.5371 2.0435 46.9138 3.5252 46.4083 7.3235 48.2406 0.3543

achieved 98.65% (Fig. 3.a.3), 98.72% (Fig. 3.b.3), 99.31%
(Fig. 3.c.35), 99.27% (Fig. 3.d.3), and 98.72% (Fig. 3.e.3)
MSE improvement. Thus, Tables 4 and 5 show that our es-
timated deblocking artifact algorithms have lower error and
higher quality level than the other methods.

Table 6 shows RMSE values of our estimated de-
blocking artifact which compared to other methods. We
achieved 88.36% (Fig. 3.a.3), 88.70% (Fig. 3.b.3), 91.70%
(Fig. 3.c.3), 91.46% (Fig. 3.d.3), and 88.70% (Fig. 3.e.3)
RMSE improvement. Thus, our proposed algorithms have
lower RMSE values than the other methods. This means that
our proposed algorithms have lower error than other meth-
ods. Table 7 shows MAE and MaxMAE values which are

close or equal to 0 compared to the other methods. Our
proposed algorithms have lower error in mean values. We
achieved 99.27% (Fig. 3.a.3), 99.89% (Fig. 3.b.3), 99.95%
(Fig. 3.c.3), 99.93% (Fig. 3.d.3), and 99.90% (Fig. 3.e.3)
of MAE improvement. In other words, our proposed al-
gorithms achieved higher quality of estimated deblocking
artifact.

We achieve improvement over 90% of lower MSEs
and standard deviations σ of deblocking artifact as shown
in Table 3 compared with both conventional [14], [28]
and non-conventional methods [18], [19], [30], [59], [64].
Our deblocking artifact outperform other methods which
have many errors in classifying and removing of blocking
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Fig. 4 Iterations of estimated deblocking artifact and PSNR

Fig. 5 Visual comparison of deblocking artifact (a.2) and estimated deblocking artifact (a.3)

artifact. Our proposed method successfully outperforms
in terms of reducing MSEs, standard deviations, RMSE
values, MAE and MaxMAE values of estimated deblock-
ing artifact as shown in Table 5, Table 6, and Table 7,
respectively, compared to other non-conventional meth-
ods [18], [19], [30], [59], [64]. We use non-conventional

methods of an adaptive soft-threshold which deals for de-
blocking artifact in various satellite images, both undistorted
and distorted satellite images.

Furthermore, computational times of estimated de-
blocking artifacts are shown in Table 8. We used a personal
computer which had the specifications of Processor Intel
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Table 9 The values of I correspond to the single and double floating-point numbers for various ele-
mentary functions by using E + + and RK4 + +.

Fig. 3.a.3 Fig. 3.b.3 Fig. 3.c.3 Fig. 3.d.3 Fig. 3.e.3

Method Function
Euler++ RK4 + + Euler++ RK4 + + Euler++ RK4 + + Euler++ RK4 + + Euler++ RK4 + +

IE++ IE++ IRK4++ IRK4++ IE++ IE++ IRK4++ IRK4++ IE++ IE++ IRK4++ IRK4++ IE++ IE++ IRK4++ IRK4++ IE++ IE++ IRK4++ IRK4++

Single Double Single Double Single Double Single Double Single Double Single Double Single Double Single Double Single Double Single Double
exp 4 8 2 4 4 9 2 4 4 8 3 6 3 7 3 6 4 9 2 4
ln 5 9 3 5 4 7 2 4 3 5 2 4 4 8 2 4 3 6 2 3(
sin t
cos t

)
4 7 3 5 3 6 2 4 3 5 2 4 4 6 3 5 2 4 3 5

Proposed Method
arctan 5 9 3 5 3 6 2 4 4 8 3 5 3 6 4 7 3 5 2 3(
sinh t
cosh t

)
5 9 2 3 4 7 3 6 5 10 4 8 4 8 5 9 4 8 3 6

arg tanh 5 9 3 6 4 7 3 5 4 7 4 8 3 5 4 7 3 5 2 4
exp 18 36 8 16 16 34 8 18 16 32 10 18 18 34 10 18 14 30 6 14
ln 16 32 6 12 14 28 6 12 14 30 8 16 16 30 8 14 12 26 6 12(
sin t
cos t

)
16 32 6 12 12 24 6 12 12 24 8 16 14 28 8 16 10 20 6 12

LET [30]
arctan 16 28 6 10 12 22 6 12 10 18 10 18 12 24 10 9 10 20 8 14(
sinh t
cosh t

)
18 34 8 16 14 28 8 16 12 24 12 22 14 26 12 24 12 22 10 20

arg tanh 20 35 10 18 16 30 10 18 14 26 14 28 16 30 14 26 10 20 8 16
exp 16 32 8 14 14 30 7 14 13 28 9 18 16 32 10 17 10 20 6 12
ln 14 28 5 11 12 24 5 11 13 28 7 15 15 29 7 13 11 23 6 11(
sin t
cos t

)
15 31 6 11 11 23 5 9 11 22 7 15 13 26 7 15 9 19 6 11

LPA-ICI [18], [19]
arctan 15 30 5 11 11 21 5 9 9 17 10 19 11 23 9 19 9 18 7 13(
sinh t
cosh t

)
17 32 7 15 13 26 7 15 11 22 11 21 13 25 11 23 11 20 9 19

arg tanh 19 33 9 17 15 29 9 17 13 25 13 27 15 29 13 25 9 18 7 15
exp 20 40 10 20 20 39 15 30 18 36 13 26 21 40 12 24 16 30 9 18
ln 18 35 8 15 17 33 8 16 16 32 10 20 18 36 10 19 14 28 7 14(
sin t
cos t

)
18 34 8 16 15 30 8 15 13 25 10 18 17 32 9 17 12 23 7 14

SDN [59]
arctan 17 33 8 15 13 26 8 16 12 23 12 23 13 25 11 21 11 22 10 19(
sinh t
cosh t

)
19 38 10 19 15 29 9 18 14 28 13 26 15 30 14 28 14 26 12 23

arg tanh 21 41 13 25 17 34 13 26 15 30 15 30 17 34 16 31 11 21 9 18
exp 22 43 13 26 23 45 17 34 20 39 15 30 23 45 14 28 18 34 11 21
ln 20 40 10 19 19 37 10 19 18 36 12 23 20 39 12 23 15 29 8 15(
sin t
cos t

)
19 37 9 17 17 33 10 19 15 30 11 21 19 38 10 19 13 25 9 18

MWD [66]
arctan 19 37 9 16 14 27 10 19 14 27 13 25 15 29 13 25 14 26 11 21(
sinh t
cosh t

)
20 39 11 21 16 31 10 19 16 32 15 29 16 32 15 30 16 32 13 25

arg tanh 22 42 15 29 18 35 14 28 16 32 16 31 18 36 17 34 12 24 10 19

Table 10 Elementary functions times (μ second) of E + + and RK4 + + algorithms
Fig. 3.a.3 Fig. 3.b.3 Fig. 3.c.3 Fig. 3.d.3 Fig. 3.e.3

Method Function E++ RK4++ Shift∼Add E++ RK4++ Shift∼Add E++ RK4++ Shift∼Add E++ RK4++ Shift∼Add E++ RK4++ Shift∼Add
S D S D S D S D S D S D S D S D S D S D S D S D S D S D S D

exp on [0;1.5] 7 12 4 5 33 66 5 10 2 4 15 30 4 7 2 3 16 28 7 11 4 6 22 36 7 11 4 6 14 26
ln on [1;2] 8 14 5 7 24 42 6 9 3 5 17 31 6 11 3 5 18 35 8 14 4 7 25 47 9 15 4 7 17 33

Proposed
(

sin
cos t

)
on t=[0; π4 ] 10 14 5 9 32 47 7 12 4 8 26 49 7 12 4 7 28 48 8 12 5 6 26 50 8 14 5 8 26 51

arctan on [0;1] 10 17 6 10 35 63 6 10 3 5 28 52 9 17 5 8 32 58 9 17 4 7 27 49 8 15 4 7 32 58(
sinh t
cosh t

)
on t=[0; 1] 9 14 4 6 32 60 6 9 4 7 31 62 8 16 4 8 31 57 7 12 5 8 41 66 7 14 3 5 33 59

arg tanh on t=[0; 0.7] 7 12 3 6 42 63 7 14 4 8 36 67 7 11 3 6 30 54 7 14 4 7 38 53 6 12 4 7 36 61
exp on [0;1.5] 12 24 8 10 60 90 9 17 4 7 29 58 7 12 4 6 28 56 13 22 7 12 40 72 11 22 8 12 27 50
ln on [1;2] 15 28 8 13 42 76 9 18 6 10 30 60 11 20 6 10 30 59 13 25 7 12 47 63 17 31 9 13 28 55

LET [30]
(

sin
cos t

)
on t=[0; π4 ] 15 30 9 17 60 90 14 27 9 17 40 72 13 25 9 17 46 71 15 30 50 80 42 78 15 27 9 17 52 88

arctan on [0;1] 19 37 11 20 64 95 17 32 10 16 44 80 16 32 10 19 50 92 17 34 59 92 45 90 18 34 10 18 54 93(
sinh t
cosh t

)
on t=[0; 1] 20 40 13 26 60 91 18 36 11 22 46 92 18 36 12 24 54 101 19 38 60 108 47 94 19 37 12 23 57 95

arg tanh on t=[0; 0.7] 19 36 12 24 50 85 15 31 8 15 41 78 16 32 10 20 46 52 17 34 42 76 45 92 15 30 10 19 36 70
exp on [0;1.5] 10 20 7 14 56 87 7 14 3 6 25 50 6 12 5 10 24 48 11 22 6 12 37 74 9 18 7 13 24 46
ln on [1;2] 13 26 7 14 38 72 7 14 6 12 27 54 9 17 5 10 26 52 12 23 6 11 40 72 15 30 8 16 25 47

LPA-ICI [18], [19]
(

sin
cos t

)
on t=[0; π4 ] 12 24 8 16 54 88 10 20 8 16 35 70 12 24 8 16 41 80 14 28 46 74 32 60 13 26 8 15 45 76

arctan on [0;1] 17 34 9 18 52 86 14 28 9 14 40 74 13 26 8 16 46 92 14 29 45 84 35 70 14 28 9 18 47 66(
sinh t
cosh t

)
on t=[0; 1] 19 37 12 24 45 90 17 34 10 20 42 82 16 32 11 22 51 98 15 30 53 94 42 84 15 30 10 20 37 72

arg tanh on t=[0; 0.7] 17 34 10 20 43 79 12 24 7 13 35 69 14 28 8 16 37 48 15 30 34 68 41 81 13 24 9 17 31 60
exp on [0;1.5] 15 30 10 19 63 103 11 20 6 12 32 64 9 18 6 12 30 59 17 34 8 16 45 87 14 28 9 17 31 59
ln on [1;2] 17 34 9 18 44 88 10 20 7 14 32 62 13 25 8 15 33 64 15 30 8 16 49 97 18 36 11 22 32 64

SDN [59]
(

sin
cos t

)
on t=[0; π4 ] 19 38 11 22 62 98 15 30 10 20 41 82 14 28 10 20 47 89 16 32 53 97 45 89 17 32 12 24 56 98

arctan on [0;1] 21 42 12 24 66 101 19 38 11 22 45 90 17 34 11 22 51 102 19 38 62 110 47 94 19 38 11 22 55 98(
sinh t
cosh t

)
on t=[0; 1] 22 44 14 28 61 94 20 40 12 24 47 95 21 42 13 26 55 107 20 40 61 110 48 96 20 40 13 26 59 101

arg tanh on t=[0; 0.7] 23 46 15 30 51 96 17 34 9 17 42 84 17 34 11 22 47 63 18 36 44 88 46 92 17 33 11 21 39 72
exp on [0;1.5] 17 34 11 22 64 109 12 24 7 14 33 66 10 20 7 14 32 64 18 36 9 17 47 92 15 30 10 20 32 64
ln on [1;2] 18 36 11 22 45 90 12 24 8 15 32 62 14 28 9 17 34 68 16 32 9 17 50 99 19 38 13 26 34 66

MWD [66]
(

sin
cos t

)
on t=[0; π4 ] 21 41 13 25 63 110 16 32 11 21 43 85 15 30 11 22 49 97 18 36 54 106 46 91 19 38 14 28 57 111

arctan on [0;1] 23 46 13 26 67 112 21 42 13 26 46 92 19 38 12 24 52 103 21 42 65 120 49 97 21 42 14 28 57 110(
sinh t
cosh t

)
on t=[0; 1] 24 48 15 30 62 120 22 44 14 28 50 99 23 46 15 30 56 109 25 49 63 120 51 101 23 46 15 30 60 118

arg tanh on t=[0; 0.7] 25 49 16 31 52 101 19 38 11 22 45 89 19 38 13 26 48 75 20 39 47 92 47 93 19 38 13 25 41 82
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Core i7-2600K@3.40 GHz and 8 GB DDR3 RAM. Our pro-
posed algorithms show smaller computational time than the
other methods. We achieved 77.95% (Fig. 3.a.3), 77.83%
(Fig. 3.b.3), 78.08% (Fig. 3.c.3), 78.12% (Fig. 3.d.3), and
77.94% (Fig. 3.e.3) computational time improvement com-
pared to the other methods. Our OICI estimates scale pa-
rameter m from one way, from the left or right side kernel
only. In contrast, original ICIs [17]–[19] and other meth-
ods [30], [59], [64] have a big number of iterations in es-
timation as shown in Fig. 5. Also, the ISNR values of our
proposal are positive and higher values of SNR up to 30 dB
than the other methods.

In Table 9, Y(t) was computed with the required accu-
racy 2−n. In each stepK of the shift and add algorithms, the
absolute error on t is |t − tK | � 2−K+1 with tK =

∑K
j=0DK

and the value computed at step K , yK , was exactly equal
to Y(tK ). It was determined the step h of the numerical in-
tegration method corresponding to a method error less than
2n. Let I be the smallest integer for h � 2I+1. Shift and add
algorithms are stopped after the I − th iteration by giving tI

and yI . If an iteration of the numerical integration method is
performed by using a step h

′
= t − tI , the error is bounded

by |yI+1 − Y(t)| � 2−n.
We have determined the value of I which corresponded

to the single (32 bits) and double (64 bits) IEEE floating-
point numbers, for the various elementary functions when
the numerical integration method is either explicit E + + or
RK4 + +. The error has to be less than 2−24 for the single
precision and less than 2−53 for the double precision. Table 9
shows our E + + and RK4 + + algorithms which compute
floating-point numbers for various elementary functions.

We have estimated the number of clock cycles. E + +,
RK4 + +, and shift and add methods were performed in one
clock cycle, whereas a division was ten times longer. We ob-
serve that this is in good performance with the experimental
times. Our E++ and RK4++ algorithms took over shift and
add ones by a multiplicative factor between 1.9 and 3.6. We
have estimated the number of clock cycles with a favorable
configuration of Intel Core i7-2600K@3.40 GHz processor.
It was performed a shift in one clock cycle, an addition or
a multiplication in 5 clock cycles, a single precision divi-
sion in 20 clock cycles and a double precision division in 30
clock cycles. For this processor, our E + + and RK4 + + al-
gorithms were reduced computational time of the shift and
add ones. Furthermore, RK4 + + algorithm is superior to
E + + algorithm as described in Table 10.

5. Conclusions

We proposed new deblocking artifact algorithms by using
adaptive soft-threshold anisotropic filter values in wavelet.
Our deblocking artifact algorithms outperform other meth-
ods, both conventional and non-conventional methods. Our
deblocking artifact algorithms are adaptable to different
blocking artifact in distorted and undistorted satellite image.
In reconstruction and estimation, we proposed OICI for es-
timated deblocking artifact. Our OICI improves MSE of

estimated deblocking artifact up to 98%, RMSE up to 89%,
and MAE up to 99%. Computational time was reduced up
to 77.98% compared to the other methods.

We have accelerated shift and add algorithms by substi-
tuting some iterations E ++ and RK4++ algorithms. These
combine the advantages of the two kinds of methods, with-
out suffering their drawbacks. Our E ++ and RK4++ algo-
rithms have performed less steps, but shift and add methods
have performed more steps. We have compared the num-
ber of clock cycles required by each method. On a proces-
sor, our E + + and RK4 + + algorithms have improved and
reduced computational time in terms of the shift and add.
RK4 + + algorithm is superior to E + + algorithm.
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