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SUMMARY  Association rule mining discovers relationships among
variables in a data set, representing them as rules. These are expected to
often have predictive abilities, that is, to be able to predict future events, but
commonly used rule interestingness measures, such as support and confi-
dence, do not directly assess their predictive power. This paper proposes a
cross-validation -based metric that quantifies the predictive power of such
rules for characterizing software defects. The results of evaluation this
metric experimentally using four open-source data sets (Mylyn, NetBeans,
Apache Ant and jEdit) show that it can improve rule prioritization perfor-
mance over conventional metrics (support, confidence and odds ratio) by
72.8% for Mylyn, 15.0% for NetBeans, 10.5% for Apache Ant and O for
jEdit in terms of SumNormPre(100) precision criterion. This suggests that
the proposed metric can provide better rule prioritization performance than
conventional metrics and can at least provide similar performance even in
the worst case.

key words: association rule mining, defect prediction, cross-validation,
data mining, software quality

1. Introduction

Association rule mining discovers relationships among vari-
ables in a given data set and represents them as association
rules. In the software engineering field, it has been applied
to discover rules in software defect data sets [1]-[4], such
as “(max nest level > 5) and (fan-out > 5) = faulty”. This
rule implies that a software module is likely to contain a de-
fect (i.e. a fault) if its maximum nesting level and fan-out
complexity are both greater than 5. Such association rules,
derived from past software projects, are useful in helping
practitioners to not only understand the cause of defects but
also identify defect-prone modules in an ongoing or a future
software development project.

Applying association rule mining to real-world data is
a challenging task, since an unmanageably large number of
rules can often be extracted. To tackle this challenge, this
paper focuses on prioritizing association rules based on their
predictive power. If a rule has enough predictive power (i.e.
it can correctly predict many future events), it can be used to
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plan future actions. In contrast, rules that have little predic-
tive power are fairly useless, and using them to plan actions
may even be harmful. In our case, we want to select the
most predictive rules to better understand the characteris-
tics of defect-prone modules in previous software product
versions so that modules in the next version with similar
characteristics can be thoroughly tested or inspected before
release [1].

This paper proposes a cross-validation-based metric to
quantify these rules’ predictive power and hence prioritize
them. In the proposed method, a certain number of associa-
tion rules are derived from a given (training) data set, and
their prediction accuracy is evaluated via cross-validation
within the data set. Then, we create an empirical metric to
estimate the prediction accuracy based on the cross-valida-
tion results using log-log regression modeling. In regression
model, the objective variable is the cross-validation predic-
tion accuracy. And we choose the rules’ confidence and oc-
currence as predictor variables, since these are regarded as
important factors in their predictive power [4].

Various rule interestingness metrics have already been
investigated for prioritizing the association rules. Of these,
support and confidence are two of the most common. Sup-
port is an indicator of rule frequency, i.e. how frequently a
given rule’s conditions are satisfied in the data set, whereas
confidence is an indicator of association strength, i.e. how
often the rule is satisfied for a given condition. However,
despite these being common metrics, as shown by Le and
Lo [5], showed that support and confidence are not very ef-
fective to prioritize the rules for rule prioritization. They
compared 38 rule interestingness metrics, finding that the
odds ratio, which handles rule weakness by considering both
correlations and inverse correlations, outperformed all other
measures [5]. However, the odds ratio is also not a direct
measure of predictive power; and it does not appear to be
useful in all situations (as shown in Sect. 3). We therefore
aim to devise a direct measure of predictive power based on
cross-validation.

To evaluate the effectiveness of the proposed approach,
we then conduct a case study using four open-source defect
data sets (Mylyn, NetBeans, Apache Ant, and jEdit). This
compares the performance of our proposed rule prioritiza-
tion metric with those of several conventional metrics (odds
ratio, confidence, and support) in terms of cross-release de-
fect prediction.

The structure of this paper is as follows. First, Sect. 2
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introduces association rule mining and how it can be used
for defect characterization. Then, Sect. 3, introduces sev-
eral key rule interestingness metrics, including the odds ra-
tio, and gives a motivating example where these metrics are
not useful. Next, Sect.4 proposes our cross-validation ap-
proach calculating a rule prioritization metric. Section 5
describes an experiment for evaluating this new approach,
and Sect. 6 presents and discusses the experimental results.
Finally, Sect. 7 discusses the limitations of the proposed ap-
proach, before Sect. 8 summarizes our study and proposes
future research directions.

2. Characterizing Defects via Association Rule Mining
2.1 Definitions

Association rule mining was defined by Agrawal et al. as
follows [6].

Letl =1,,1,,...,1, be a set of m unique items where
each item I;, (1 < k < m) takes a binary value. An asso-
ciation rule is denoted by an expression (A = B), where
AcClI Bel and B ¢ A. We refer to A and B as the
antecedent and consequent of the rule, respectively. Next,
let D be a database consisting of n transactions T; C 1, de-
notedas D =T, T5,...,T,. We say that T; satisfies the rule
(A= B),ifAcT;ABeT,;.

In this paper, the binary items I; are derived from dis-
crete metrics that evaluate software modules with respect to
certain criteria, such as the cyclomatic complexity. Since
the cyclomatic complexity is an integer and can potentially
take any value in the interval [0, c0), it does not make sense
to use it directly in the evaluation. Such quantitative vari-
ables are therefore pre-processed and converted into discrete
variables. For example, we could define three cyclomatic
complexity categories, namely, low [0, 10), medium [10, 30)
and high [30, c0), and discretize it by defining the following
three items.

I = {cyclomatic complexity == low}
I, = {cyclomatic complexity == medium}
I; = {cyclomatic complexity == high}

For a software module with a cyclomatic complexity of
20, we would obtain I; = false, I, = true and I3 = false.

Transaction T; describes the state of module i subject to
a set of criteria and their respective possible categories. For
example, we could define the following three items to eval-
uate a module with respect to its fan-in complexity based on
the same three categories given above.

14 = {fan-in == low}
Is = {fan-in == medium}
I = {fan-in == high}
Next, let us add another item to describe the fault state of

software module i, namely I; = {faulty == true}. We can
then define a transaction by evaluating a given module with
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respect to such a set of criteria (cyclomatic and fan-in, com-
plexities, and fault state). For example, a faulty software
module i with cyclomatic and fan-in complexities of 20 and
40, respectively, would be described by the following trans-
action.

T; ={I, = false, I, = true, I3 = false, I, = false,

Is = false, I = true, I7 = true}

Given that, we can create a rule (A = B) by taking our
antecedent A as I A I and our consequent B as /; (omitting
“true” and “false” for brevity), which means that our rule
asserts that (I A I = I7). According to this rule, the above
module (with cyclomatic and fan-in complexities of 20 and
40) would be considered to be fault-prone. Explicitly, we
would say that 7; satisfies (A = B).

On this basis a database D defines the state of a set of
software modules with respect to a set of K items {[;},1 <
k < K. We can then use this database and item set to mine
for new rules and evaluate their performance, in terms of
metrics such as confidence and odds ratio.

2.2 Characterizing Defects Using Association Rules

In this paper, we characterize software defects using associ-
ation rule mining. After a set of rules has been derived from
a set of previous software project module data, we can use
it to understand the causes of defects and help in planning
ways to avoid adding new defects or detect hidden defects
in ongoing or future projects more efficiently. For exam-
ple, if modules with certain characteristics are found to be
defect-prone, similar modules should be thoroughly tested
or inspected during software development.

Several various defect prediction models have already
been proposed[7]-[11]. However, our focus in this pa-
per is on understanding rather than predicting defects be-
cause previous predictive models have been difficult for hu-
mans to understand, making it hard for software engineers
to recognize and agree why certain modules are (or are not)
faulty [1]. Even with simple linear discriminant models,
correlations between predictor variables make it difficult to
interpret their coefficients clearly. In contrast, association
rules are much easier to understand because they are de-
scribed in a simple and intuitive way, such as (condition =
faulty) or (condition = not faulty). Note, however, that
even though we are focusing on the understanding rather
than prediction, we still test the rules’ predictive power, be-
cause they need to be able to make predictions if we are to
use them for future planning or software process improve-
ments.

To make a prediction, given a rule set and a target mod-
ule, we need to be aware that more than one rule may match
the module, i.e. it may satisfy the antecedents of multiple
rules. To handle this, we take the approach described in [1],
which keeps the rule set small and understandable by only
mining rules whose consequent is “faulty” and ignoring the
rest. If at least one of these rules matches a module, then we
consider it to be faulty; otherwise, we consider it not to be



WATANABE et al.: A CROSS-VALIDATION-BASED ASSOCIATION RULE PRIORITIZATION METRIC FOR SOFTWARE DEFECT CHARACTERIZATION

faulty; otherwise, we consider it not to be faulty.
3. Rule Metrics and Motivating Example

Several metrics are commonly used in the literature, such
as the occurrence, support, and confidence. The occurrence
Occ of a rule is the number of transactions that satisfy the
rule,

Occ(A=>B)=|Ti|:ACT;ANBeT,;,

where the operator |.| denotes the cardinality of a set. We
can apply the occurrence metric not only to rules but also
to sets of items, such as antecedents or consequents. For
instance, the occurrence of the antecedent A is the number
of transactions that involve A,

OCC(A) = |Tl| tAC Ti~

The support Supp is an indicator of rule frequency, defined
as the fraction of transactions in the database that satisfy the
rule:

Occ(A = B)

Supp(A = B) = D]

Thus, the support is a measure of the rule’s statistical signif-
icance. In contrast, the confidence Conf is the probability
that the consequent B was preceded by the antecedent A,

Supp(A = B)
Supp(A)

The confidence thus helps in determining the rule’s
strength. In addition to these metrics, we also define the
length, denoted by ||.||, which describes a rule’s complex-
ity in terms of the number of metrics (i.e. items) in its an-
tecedent A:

Conf(A = B) =

Length(A = B) = ||A]|.

For example, the length of the rule “(cyclomatic complexity
= medium)A(fan-in = high) = faulty” is 2, since two met-
rics (cyclomatic complexity and fan-in) are present in the
antecedent. Longer lengths indicate more complex rules.

Le and Lo [5] showed, however, that these metrics are
not very effective for selecting rules with high predictive
power when used alone. In general, they must be used to-
gether to select useful rules, in which case lower bounds are
typically set for both support and confidence when selecting
rules.

That said, our previous study [4] showed that setting
constant lower bounds for these metrics is insufficient. For
example, we can accept rules with low support if their con-
fidence is very high, but not otherwise. This implies that we
need new metrics that intelligently combine these metrics,
an idea that we investigate in this paper.

Other metrics have also been considered. In partic-
ular, Le and Lo [5] compared a total of 38 rule interest-
ingness metrics empirically and found that the odds ratio
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Fig.1  Motivating examples for the rule (A = B).

OddsRatio was the best in quantifying the rules’ predictive
power. The odds ratio measures how strongly the presence
or absence of A is associated with B as follows:

OddsRatio(A = B) =
Occ(A A B)Oce(—A A =B)
Occ(A A =B)Oce(—A A B)'

6]

Although the odds ratio is useful in many cases, we
also believe that it is not always helpful. To demonstrate
this, we now give a motivating example showing how the
odds ratio depends on the occurrence and number of sam-
ples, comprising the following four cases:

Case 1: Low occurrence, small number of samples
(Occ™Sam™)

Case 2: High occurrence, small number of samples
(Occ*Sam™)

Case 3: Low occurrence, large number of samples
(Occ™Sam™)

Case 4: High occurrence, large number of samples
(Occ*Sam™)

Figure 1 shows these four cases for the rule (A = B).
In Case 1 (Occ™Sam™), five transactions match A, four of
which also match B, so the confidence is 4/5 = 0.8, and
the occurrence is 4. In this case, the rule’s confidence is
high, but it only matches four of the transactions in the data
set. Since this can easily happen accidentally, we cannot
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Fig.2 A procedure of the proposed method.

consider it to have high predictive power. Next, in Case
2 (Occ*Sam™), the confidence is the same as in Case 1
(Occ™Sam™), but the occurrence is much higher (40 trans-
actions match the rule, which is unlikely to happen acciden-
tally), so we consider this rule’s predictive power to be much
higher. The odds ratios are 4.26 in Case 1 (Occ™Sam™)
and 16 in Case 2 (Occ*Sam™), so they are useful for dis-
tinguishing between these two cases (higher odds ratios in-
dicate higher predictive power).

In contrast, Case 3 (Occ Sam') and Case 4
(Occ*Sam™) show situations where the odds ratio is not use-
ful. Here, the confidences are almost the same (0.8 and
0.78), but the occurrence is very low in Case 3 (Occ™Sam*)
and very high in Case 4 (Occ*Sam®*). Despite its high
confidence, the rule in Case 3 (Occ™Sam™) is useless be-
cause of its very low occurrence, unlike the rule in Case 4
(Occ*Sam™), which has much higher predictive power. De-
spite that, the odds ratio is lower in Case 4 (Occ*Sam™) than
in Case 3 (Occ™Sam™). These examples therefore show that
the odds ratio cannot properly account for the effect of very
low occurrences.

4. Proposed Method

This section describes the proposed method for calculating
a rule prioritization metric, that can quantify the predictive
power of association rules, illustrated in Fig.2. This pro-
ceeds according to the following six steps.

Step 1 involves oversampling the data set. This step is
essential, particularly for imbalanced defect data where the
majority of the instances are not faulty [12], [13]. This is
because using such imbalanced data sets to train prediction
models leads to high error rates when predicting the faulty
modules [14], because of the rules relating to such modules

being discarded on the grounds of low occurrence. Over-
sampling, a technique commonly used to mitigate this type
of problem, artificially increases the number of minority in-
stances in the training set, yielding a more balanced distri-
bution of faulty and non-faulty instances. This increases the
occurrences of certain rules, allowing us to derive more suit-
able association rules. Here, we employ random oversam-
pling, which is the simplest technique and is effective for a
variety of data sets and prediction models [8].

Steps 2—4 carry out cross-validation. In Step 2, we ran-
domly split the training data set into two subsets; one is used
to extract the association rules in Step 3, and the other is
used to evaluate the rules’ prediction accuracy (precision)
in Step 4. Here, we employ employ three-fold cross-valida-
tion, so Steps 3 and 4 are repeated three times to obtain the
final prediction results. In addition, to obtain stable results,
we repeat the data division process (Step 2) 10 times, each
followed by three repetitions of Steps 3—4, and use all of the
results as input to Step 5.

Next, in Step 5, we calculate an empirical prediction
accuracy metric via log-log regression modeling based on
cross-validation results. The regression process’s objective
variable, i.e. the cross-validation precision Precision, is de-
fined in the standard way as the ratio of the number of cor-
rect faulty module predictions (i.e. true positives or TP) to
the total number of faulty module predictions (including the
false positives or FP). For the rule (A = faulty), this is

TP
TP + FP’

Meanwhile, the predictor variables are the rule’s confi-
dence and the occurrence. We choose to employ these two
metrics because, in our previous study [4], we found that
they were key indicators of rule prediction power. A low oc-
currence is acceptable, if the confidence is very high, but not

Precision(A = B) =
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Table1  Summary of the defect data sets used in our experiments.
Project No. of metrics Version  Total No. of modules  No. of faulty modules % of faulty modules
Product  Process
2.0 1230 848 68.94
Mylyn 8 2 3.0 1502 606 40.34
4.0 4660 367 7.87
NetBeans 8 2 5.0 9332 319 3.41
1.6 351 92 26.21
Apache Ant 1 0 1.7 745 166 2228
o 4.0 306 75 24.50
JEdit 1 0 41 312 79 2532

if the confidence is lower. In addition, we chose to employ
log-log regression rather than the simpler linear regression
because the variable distributions are usually skewed, i.e. do
not follow Gaussian distributions, and log transformation is
a common way to improve the fitting of linear regression
models in such cases [15].

On the basis of our two predictor variables confidence
and occurrence, the log-log regression model to estimate the
prediction precision is as follows:

log(precision + 0.5) = k; log(Oce) + k; log(Conf) + C

where k) and k; are partial regression coefficients and, C is
a constant. We have added 0.5 to the precision on the left-
hand side of the equation because the actual precision values
are sometimes zero, and adding 0.5 (before model construc-
tion) is the recommended way to avoid computing log(0)
and hence to stabilize the data set’s variance [16]. We can
then transform this equation by exponentiating both sides,
yielding the following:

precision = C" - Occh - Conf - 0.5, 2)

where C’ = exp C. Using this, we can then obtain values
for the regression parameters using least squares approxi-
mation.

Finally, in Step 6, we evaluate the effectiveness of
Eq. (2) using the test data set. Here, we carry out cross-
release prediction, i.e. we mine the rules based on data from
a previous version of the software, and then apply the ex-
tracted rules to the subsequent version. In the experimental
evaluation below, we compare the performance of our pro-
posed rule prioritization metric with those of conventional
metrics (namely, the odds ratio, confidence, and support).

5. Experimental Setup
5.1 Data Sets

In these experiments, we employed defect data sets from
the following four open-source software projects: (1) Mylyn
(versions 2.0 and 3.0), an Eclipse task management plug-in;
(2) NetBeans (versions 4.0 and 5.0), a Java software devel-
opment platform; (3) Apache Ant (versions 1.6 and 1.7), a
software build tool; and (4) jEdit (versions 4.0 and 4.1), a

"Here we drop the rule terms for brevity, e.g. we use Conf
instead of Conf(A = B).

text editor. Table 1 gives an overview of these data sets. The
Mylyn and NetBeans data sets are described in more detail
in [4]. The Apache Ant and jEdit data sets were obtained
from the tera-PROMISE data repository [17], having been
donated by Jureczko et al. [18], [19]. They are described in
more detail in [19].

As shown in Table 1, the NetBeans, Apache Ant and
jEdit data sets were imbalanced, i.e. only small percentages
of the modules were faulty. We therefore applied oversam-
pling (Step 1 in Fig. 2) before carrying out cross-validation
(Steps 2—4). The Mylyn data set, on the other hand, was
relatively balanced, so we skipped Step 1 in this case.

5.2 Association Rule Extraction

Before mining the rules, we discretized all of the process
and product metrics in Table 1 into three categories, namely
H (high), M (medium), and L (low), using equal-frequency
binning so that each category contained approximately the
same number of modules. We then used NEEDLE [2], [20]
to mine the association rules, using the following thresholds:
minimum transactions = 5 and minimum Conf = 0.6. We
also set a maximum rule length threshold of 3 because this
gave us sufficient numbers of rules and longer rules are less
easily understood by humans.

Table 2 summarizes the rules extracted from the four
data sets and shows the impact of oversampling. The Net-
Beans data set stands out as particularly a clear example, il-
lustrating the necessity of oversampling, as this data set has
a very low percentage of faulty modules (Table 1). Without
oversampling, it would not have been possible to extract any
rules with minimum occurrences of 5, the criterion used in
this paper. We therefore generated additional 3882 modules
using oversampling, which increased the number of rules
extracted to 26247. The NetBeans data set’s average occur-
rence was particularly high (317.0, about 10 times higher
than any of the other projects) because of having a much
higher number of modules than the other projects.

More than 10,000 rules were extracted for each project,
which we consider to be sufficient to build stable regression-
based metrics for each project.

5.3 Evaluation Criterion
Before defining the criterion used to evaluate the rule pri-

oritization metrics, we first define the normalized preci-
sion NPrec(A = faulty) for a given association rule (A =
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Faulty) as follows:

NPrec (A = faulty) =
Precision (A = faulty)

ratio of faulty modules to all modules ®

The first term on the right-hand side of this equation,
normalizes the precision by its baseline value, namely, the
fraction of modules that are faulty. The additional negative
one term simply adjusts this metric’s baseline to be zero.

Given an association rule (A = faulty) and a test data
set to be predicted by the rule, if NPrec (A = faulty) > 0,
then the rule has at least some predictive power, with higher
values indicating higher predictive power.

On the basis of this definition, we evaluate the perfor-
mance of the rule prioritization metrics by defining a metric
called sum of normalized precision (SumNormPre) as fol-
lows:

SumNormPre(n) = Z NPrec(r,), 4)

i=1

where r; is ith rank rule, when they are sorted in descending
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order according to the given rule prioritization metric.

Intuitively, SumNormPre is the sum of prediction per-
formance of the top » ranked rules identified by the prioriti-
zation metric, so higher values indicate better prioritization
metrics.

6. Results and Discussion
6.1 Results

The execution cost of our method is low, where Steps 1 to 6
take about 15 minutes for each dataset.

Figure 3 shows the total prediction performance of the
top 100 rules for the Mylyn, NetBeans, Apache Ant and
jEdit, respectively, using four different rule metrics, namely,
the support, confidence, odds ratio and proposed metrics.
The x-axis indicates the rule rank, assuming that the rules
are arranged in decreasing order according to the given rule
metric (e.g. for the support metric, the first rule is the one
with the highest support value). The y-axis indicates the
corresponding SumNormPre values.

We should note that, although moving toward higher
rule ranks along the x-axis should lead to higher

Table2  Summary of the extracted association rules and oversampling impact (i.e. number of modules
added).
No. of
Project No. of rules Average Average Afverage modules
confidence  occurrence support
added
Mylyn 49081 0.799 49.8 0.0404 0
NetBeans 26274 0.734 317.0 0.037 3882
Apache Ant 12421 0.797 27.1 0.054 151
jEdit 26241 0.778 22.7 0.0510 139
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Table3  AUCs for SumNormPre(100) and SumNormPre(all rules).
AUC type Data set Support  Confidence = Odds Ratio  Proposed
Mylyn 2569 2943 2925 5086
NetBeans 9918 10847 12547 14432
SumNormPre(100) Apache Ant 8769 8168 8177 9691
jEdit 7739 8518 8575 8573
Mylyn 419279 518219 521436 534056
SumNormPre(all rules) NetBeans 557608 586857 594963 599601
Apache Ant 1605529 1681531 1698634 1696396
jEdit 526226 580137 583261 583368
Table4  Numbers of the rules meeting Occ™Sam™ criteria, out of the top Table 5  Numbers of the rules meeting Occ*Sam™ criteria, out of the top
100 of each metric. 100 of each metric.
Data set Allrules  OddsRatio(100)  SumNormPre(100) Data set Allrules  OddsRatio(100) SumNormPre(100)
Mylyn 22 18 0 Mylyn 80 43 69
NetBeans 0 0 0 NetBeans 1 1 1
Apache Ant 69 62 0 Apache Ant 1 0 1
jEdit 17 13 0 jEdit 0 0 0

SumNormPre values, there is a small decline at around a
rank of 90 in Fig.3-b. This is due to the data sets used
for rule extraction and prediction being taken from differ-
ent software versions, with an older version being used for
rule extraction and a newer one being used to evaluate the
prediction performance (see Table 1). Thus, the predictions
made by the extracted rules are not always correct and can
actually cause the SumNormPre value to decline, as shown
in Fig. 3-b

These results show that, for the Mylyn, NetBeans and
Apache Ant data sets, the proposed metric demonstrated
better performance than the conventional metrics (support,
confidence, and odds ratio), although its performance was
similar to that of the best conventional metric for the jEdit
data set. Overall, however, the proposed metric performed
well on all four data sets.

Table 3 shows area under the curve (AUC) of
SumNormPre(n) for n = 100 rules and all rules. This
indicates that the proposed metric produced improvements
in the SumNormPre(100) value of 72.8% for Mylyn (from
2943 to 5086), 15.0% for NetBeans (from 12547 to 14432)
and 10.5% for Apache Ant (from 8769 to 9691). For jEdit,
its SumNormPre(100) value was very similar to that of the
odds ratio metric. The AUCs for SumNormPre(all rules)
show smaller improvements by the proposed metric, but we
believe that this case is less important because practitioners
are not usually interested in the lower-ranked rules.

6.2 Discussion

Here, using the results for the four data sets presented in
Sect. 5.1, we focus on the observation frequency for the two
cases (Occ™Sam™ and Occ*Sam™), where the odds ratio is
expected to fail but the proposed approach is expected to
perform well.

First, we consider the rules, for the Occ™Sam™ case,
looking for occurrences of less than 10 and confidences of
more than 0.9. Table 4 shows the number of rules for each
data set that satisfied these conditions, taken from the top

100 rules sorted by odds ratio (i.e. OddsRatio(100)) and
sum of normalized precision (i.e. SumNormPre(100)).

Table 5 shows the results of a similar analysis for the
Occ*Sam* case, this time looking for occurrences of more
than 100 and confidences of more than 0.9. As is clear from
Tables 4 and 5, that these cases were not unusual in these
real-world data sets. In particular, Occ™Sam* case arose in
all of the data sets except the one for NetBeans. On the
other hand, although the Occ*Sam* case cropped up quite
frequently in the Mylyn data set, it was very rare in the oth-
ers.

In addition, the Occ™Sam™ rules were often mistakenly
selected by the odds ratio metric as being useful, whereas
they were successfully discarded by SumNormPre. Simi-
larly, the odds ratio metric often failed to identify the predic-
tive power of Occ™Sam™* rules, whereas the proposed metric
was more successful in giving them higher priorities.

Next, we investigate why the performance of the pro-
posed metric was better than that of the odds ratio metric,
despite it being empirically shown to be the best of the 38
rule metrics considered in a past study [5]. Tables 6 and
7 show the top 10 rules for the Mylyn project, ranked by
the proposed and odds ratio metrics, respectively. These
show each rule’s rank, support, confidence, and prediction
precision. For further details of the metric abbreviations
used (such as CBO, CHURN, and BFC), please see our pre-
vious study [4]. Table 7 shows that all of the rules with
Conf = 1.000 were ranked first because a confidence of
1 means that the denominator term in Eq. (1) is O, leading
to the Odds Ratio becoming infinite. This means it cannot
effectively prioritize the rules further and ranks several rules
as joint first.

In addition, note that all of these rules’ support values
are low, so their predictive power may not necessarily be
very high, as shown by the precision column (which ranges
from 0.467 to 0.882). In contrast, Table 6 shows that the
proposed metric did not rank all of the Conf = 1.000 rules
in the top 10. Instead, rules with both relatively high confi-
dence and relatively high support appear in the top 10, and
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Table 6  Top 10 rules for the Mylyn data set, ranked by the proposed metric.
Rank  Support Confidence  Precision  Rule
1 0.223 0.979 0.856 (CBO = H) A(CHURN = H) = faulty
2 0.223 0.979 0.856 (CBO = H) A(CHURN = H) A (BFC = H) = faulty
3 0.170 0.991 0.870 (MLOC = H) A (CBO = H) A(CHURN = H) = faulty
4 0.148 0.995 0.854 (NOF = H) A(CBO = H) A(CHURN = H) = faulty
5 0.186 0.983 0.843 (MLOC = H) A (CHURN = H) = faulty
6 0.186 0.983 0.843 (MLOC = H) A(CHURN = H) A (BFC = H) = faulty
7 0.146 0.989 0.876 (PAR = H) A (CBO = H) A(CHURN = H) = faulty
8 0.145 0.989 0.843 (MLOC = H) A (PAR = H) A(CHURN = H) = faulty
9 0.140 0.989 0.816 (MLOC = H) A(NOF = H) A(CHURN = H) = faulty
10 0.121 0.993 0.840 (NBD = H) A(NOF = H) A(CHURN = H) = faulty
Table 7  Top 10 rules for Mylyn data set, ranked by odds ratio.
Rank  Support Confidence Precision  Rule
1 0.033 1.000 0.882 (MLOC = H) A (VG = M) A (CHURN = H) = faulty
1 0.033 1.000 0.667 (PAR = H) A(NOM = M) A (CBO = H) = faulty
1 0.033 1.000 0.871 (PAR = H) A(NOM = M) A (CHURN = H) = faulty
1 0.024 1.000 0.500 (NBD = M) A (PAR = H) A (VG = M) = faulty
1 0.023 1.000 0.500 (MLOC = M) A (PAR = L) A(CHURN = H) = faulty
1 0.021 1.000 0.500 (MLOC = M) A (VG = H) A (NOM = M) = faulty
1 0.021 1.000 0.688 (NBD = L) A(CBO = H) A(CHURN = H) = faulty
1 0.019 1.000 0.625 (PAR = H) A (VG = M) A (CBO = H) = faulty
1 0.016 1.000 0.583 (PAR = L) A(CBO = H) A(CHURN = H) = faulty
1 0.015 1.000 0.467 (PAR = H) A (VG = M) A (RFC = H) = faulty
Table 8  Regression coefficients of the rule prioritization equations ob-

tained by the proposed approach.

Regression coefficients

Data set c ki k
Mylyn exp(0.270)  0.445  0.002
NetBeans exp(0.308)  0.531  0.001
Apache Ant exp(=0.019)  0.190  0.007
jEdit exp(0.037)  0.310  0.008

these all show relatively good prediction performance (pre-
cisions of 0.816 — 0.876). This suggests that the proposed
metric is appropriately considering both the support and pre-
cision of rules.

Finally, we consider the equations of the rule prioritiza-
tion metrics obtained by the proposed approach, which are
shown in Table 8 for the four data sets. Here, we can observe
that all of the equations have much higher multipliers for the
confidence than the occurrence, but the multiplier values are
not necessarily very similar to each other. This highlights
the need to calculate separate rule prioritization metrics for
each data set.

7. Potential Limitations

This section discusses the potential limitations of our work.
First, the data sets used in this study were limited to four
open-source projects, which could be a source of bias in the
results. To increase their generality, it will therefore be im-
portant to conduct experiments using data sets taken from
other software projects in our future work.

Second, the numbers of source file defects were always
obtained by analyzing commit comments in relevant version
control system. Although this practice is common in defect
prediction studies [21], it has the limitation that any defects

not recorded in commit comments cannot be identified. Fur-
ther study will therefore be required to improve the accuracy
of defect collection from version control systems.

Finally, to extract the association rules (Step 3 of the
proposed method) before predicting defects (Step 4), we set
certain threshold values, namely, minimum transactions = 5,
minimum Conf = 0.6 and maximum rule length = 3. Since
these value choices may have affected the results, we are
planning to conduct experiments using different values in a
future work.

8. Conclusion

This paper has proposed a cross-validation-based metric to
quantify the prediction power of the association rules used to
characterize software defects to prioritize them effectively.
The results of evaluating this metric experimentally using
four open-source data sets showed that it was able to im-
prove the SumNormPre(100) values by 72.8% for the My-
lyn data set, 15.0% for NetBeans, and 10.5% for Apache
Ant. For jEdit, it produced very similar results to the odds
ratio metric. These results suggest that the proposed met-
ric can provide better rule prioritization performance than
conventional metrics and can at least provide similar perfor-
mance even in the worst case.

In a future work, we are planning to conduct experi-
ments with a broader range of data sets to evaluate the gen-
erality of our approach. In addition, we are planning to com-
bine our rule prioritization approach with rule reduction [1]
to better identify useful association rules.
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