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PAPER

Weighting Estimation Methods for Opponents’ Utility Functions
Using Boosting in Multi-Time Negotiations∗

Takaki MATSUNE†a), Nonmember and Katsuhide FUJITA†b), Member

SUMMARY Recently, multi-issue closed negotiations have attracted
attention in multi-agent systems. In particular, multi-time and multilateral
negotiation strategies are important topics in multi-issue closed negotia-
tions. In multi-issue closed negotiations, an automated negotiating agent
needs to have strategies for estimating an opponent’s utility function by
learning the opponent’s behaviors since the opponent’s utility information
is not open to others. However, it is difficult to estimate an opponent’s util-
ity function for the following reasons: (1) Training datasets for estimating
opponents’ utility functions cannot be obtained. (2) It is difficult to ap-
ply the learned model to different negotiation domains and opponents. In
this paper, we propose a novel method of estimating the opponents’ utility
functions using boosting based on the least-squares method and nonlinear
programming. Our proposed method weights each utility function esti-
mated by several existing utility function estimation methods and outputs
improved utility function by summing each weighted function. The ex-
isting methods using boosting are based on the frequency-based method,
which counts the number of values offered, considering the time elapsed
when they offered. Our experimental results demonstrate that the accuracy
of estimating opponents’ utility functions is significantly improved under
various conditions compared with the existing utility function estimation
methods without boosting.
key words: automated multi-issue negotiation, automated negotiating
agents competition, multi-time negotiation, multilateral negotiation, boost-
ing

1. Introduction

In multi-agent system research, automated negotiation is
playing an important role ([2]–[5]). Achievement of the au-
tomated negotiating agent will enable several independent
and autonomous agents to automatically negotiate and act
cooperatively in the case of conflict among them. Addi-
tionally, development of automated negotiating agents for
realistic situations has the potential to support negotiations
among people and achieve decision-support systems.

The latest Automated Negotiating Agents Competition
(ANAC) [6] focused on the three-party multi-issue closed
negotiation problem [7], assuming a case where negotiation
is conducted by three or more agents. It also considered
the realistic negotiation model, such as the discount factor
and adoption of realistic negotiation scenarios. In addition,
multi-time negotiations, which can utilize past negotiation
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records by repeating negotiations with the same agent in the
same domain, have also attracted attention. By saving bid
information exchanged in the past and utilizing the saved
information in the next negotiations with the same domain,
an agent can estimate the opponent’s utility function more
accurately by using machine learning. For example, when
the opponent makes the same offer many times, it is likely
to be an effective bid for the opponent. On the other hand,
the bid in the final stage for making agreements may indicate
the lowest utility to make agreements for the opponent.

To proceed negotiations with advantage, it is important
to learn an opponent’s negotiation strategy appropriately and
to utilize the learned model for one’s own negotiation strat-
egy. For these purposes, a method was proposed of predict-
ing how the opponent will compromise in the future as time
elapses by evaluating the bids proposed by the opponent us-
ing TrAdaboost [8]. Despite some existing methods for esti-
mating an opponent’s utility function, further improvement
of estimation accuracy is still important [9].

This paper proposes a novel method to improve the es-
timation accuracy, assuming multilateral multi-time closed
negotiations. By estimating opponent utility function ac-
curately, it can apply to negotiation strategies. For exam-
ple, the applied strategy can offer or reject the opponents’
offers to obtain the higher individual utility. In addition,
the agent with our proposed approach can estimate a Pareto
front, which is the one of the optimal agreements in the ne-
gotiation, and it also can minimize the effort of the discount
factor by reaching an agreement at an early stage.

Our proposed method combines several existing util-
ity function estimation methods using boosting [10] based
on the least-squares method and nonlinear programming.
The existing methods to be used with boosting are based
on the frequency-based method, which counts the number
of values offered, considering the time elapsed when they
offer bids [11]. Utility functions that are suitable for op-
ponents and domains can be estimated appropriately as our
proposed method can combine several utility function esti-
mation methods by adding weights and summing them up
appropriately using boosting. In addition to this, we pro-
pose a method to estimate a Pareto front using the estimated
opponents’ utility function.

Experiments evaluating our proposed utility function
estimation method are conducted. We demonstrate that our
proposed method can estimate more accurately compared
with the existing methods in many cases.

The rest of the paper is organized as follows. First, we
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describe the multi-issue closed negotiation problem. Next,
we propose an estimation method of opponents’ utility func-
tions using boosting. Then, the proposed utility function es-
timation methods will be evaluated. Finally, we present our
conclusions.

2. Related Works

This paper focuses on research in the area of multi-issue
closed negotiation, which is an important class of real-
life negotiations. Closed negotiation means that opponents
do not reveal their preferences to each other. Negotiating
agents designed using a heuristic approach require exten-
sive evaluation, typically through simulations and empirical
analysis, since it is usually impossible to predict precisely
how the system and the constituent agents will behave in
a wide variety of circumstances. Motivated by the chal-
lenges of bilateral negotiations between people and auto-
mated agents, the Automated Negotiating Agents Compe-
tition (ANAC) was organized in 2010 [12] to facilitate re-
search in the area of multi-issue closed negotiation.

The followings are the competition’s declared goals:
(1) to encourage the development of practical negotiation
agents that can proficiently negotiate against unknown op-
ponents in a variety of circumstances; (2) to provide a
benchmark for objectively evaluating different negotiation
strategies; (3) to explore different learning and adaptation
strategies and opponent models; (4) to collect state-of-the-
art negotiating agents and scenarios and make them avail-
able to the wider research community. The competition was
based on the Genius environment: the General Environment
for Negotiation with Intelligent multi-purpose Usage Simu-
lation [13].

By analyzing the ANAC results, the stream of the
ANAC strategies and the important factors for developing
the competition have been shown. Baarslag et al. presented
an in-depth analysis and the key insights gained from ANAC
2011 [14]. This paper mainly analyzed different strategies
using the classifications of agents with respect to their con-
cession behavior against a set of standard benchmark strate-
gies and empirical game theory (EGT) to investigate their
robustness. It also showed that even though the most adap-
tive negotiation strategies are robust across different oppo-
nents, they are not necessarily the ones that win competi-
tions. Furthermore, the EGT analysis highlights the impor-
tance of considering metrics.

Chen and Weiss proposed a negotiation approach
called OMAC, which learns an opponent’s strategy to pre-
dict the future utilities of counteroffers by discrete wavelet
decomposition and cubic smoothing splines [15]. They also
presented a negotiation strategy called EMAR for such en-
vironments that relies on a combination of Empirical Mode
Decomposition (EMD) and Autoregressive Moving Aver-
age (ARMA) [16]. EMAR enables a negotiating agent to
acquire an opponent model and to use it to adjust its target
utility in real time on the basis of an adaptive concession-
making mechanism.

Williams et al. proposed a novel negotiating agent
based on Gaussian processes in multi-issue automated ne-
gotiation against unknown opponents [17]. Baarslag et al.
focused on the acceptance dilemma; accepting the current
offer may be suboptimal, since better offers might still be
presented [18].

These above strategies mainly focus on bilateral nego-
tiations. However, in recent years, multilateral negotiations
have also attracted attention. From ANAC 2015, a multi-
lateral negotiation protocol [19] was used instead of bilat-
eral negotiation protocol [20] because a multi-lateral nego-
tiation assumes more realistic scenarios. After that, many
negotiation strategies have been proposed ([21]–[24]). In
addition, Shinohara et al. proposed a negotiation protocol,
which considers fair privacy for multilateral closed negotia-
tion [25]. This protocol adaptively changes the proposal or-
der to adjust the fairness of the revealed private information.
While our proposed method can be used to bilateral negotia-
tion problems, this paper focuses on multilateral, multi-time
negotiation mainly because we can demonstrate that our ap-
proach works appropriately in state-of-the-art (ANAC2016)
negotiating agents.

3. Multi-Issue Closed Negotiation

This paper considers the multilateral multi-issue closed ne-
gotiation problem. A negotiation problem (domain) D in-
cludes n issues I1, . . . , In and each issue Ii includes k values
vi1, . . . , v

i
k. To vic, the value of issue Ii, an evaluation value

in integral number eval(vic) ∈ [0,+∞) is set, and an issue
weight wi ∈ R is given to each issue. The issue weight wi

satisfies Σn
i=1wi = 1 as well as wi ≥ 0. A bid is shown as

�b = [v1c , . . . , v
n
c], assuming that a value c is selected for each

issue Ii, and utility function U(�b) that determines the util-
ity of the agent is shown as formula (1). Each agent has a
different utility function, respectively.

U(�b) =
n∑

i=1

wi × eval(vic)
max(eval(Ii))

(1)

In this paper, the normalized time in the range of t ∈ [0, 1]
is used. t = 0 means the starting time of the negotiation, and
t = 1 means that the negotiation was past the deadline. Some
domains have discount factors (DF) and reservation values
(RV) [26]. As the discount factor d, the actual utility that can
be actually acquired is reduced according to time t as shown
in formula (2). The reservation value is the minimum utility
acquired in this domain where agreement is not achieved,
and the discount factor is applied to the reservation value.

UD(�b) = U(�b) × dt (2)

In this paper, we consider Stacked Alternating Offers Proto-
col (SAOP) [19], which extends the application of Alterna-
tive Offers [20] from bilateral negotiations to three-party or
more cases. Flow of SAOP is shown in Fig. 1. We consider
the case in which Agents A, B, and C conduct a negotia-
tion. In SAOP, each agent takes action always in the order
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Fig. 1 SAOP flow chart.

of agent A, agent B, and agent C. At the beginning, agent
A proposes a bid to agent B. Next, agent B takes one of the
following actions to agent C.

• Offer: Rejecting the previous bid and proposing a new
bid.
• Accept: Accepting the previous bid.
• EndNegotiation: Ending the negotiation without mak-

ing an agreement before the deadline reaches. This ac-
tion can be used to prevent losing a utility when Reser-
vation Value (RV) and Discount Factor (DF) are set.

Afterwards, agent C takes a new action to agent A, and each
agent will proceed in turn. In SAOP, negotiations will be
continued until the following conditions are satisfied.

• All agents accept the bid, except for the one who of-
fered it.
• Negotiation deadline passes before agreement was

reached.
• One of the agents terminates the negotiation by select-

ing EndNegotiation.

The negotiation is successful only when all agents have ac-
cepted the bid except for the one who offered it. All actions
by the agents are shared by all agents. When the negotia-
tions are conducted several times under the same opponent
and the same profile, the bid and the time of the proposal
can be taken over. Therefore, the opponent’s strategy and
the opponents’ utility functions can be estimated by machine
learning and so on.

4. Estimation of Opponent’s Utility Functions Using
Boosting

We propose a novel method of estimating opponents’ utility
functions using boosting based on the least-squares method
and nonlinear programming. In addition, we propose a
method to estimate a Pareto front using the estimated op-
ponents’ utility function. The proposed method focuses on
negotiations that are repeated several times for the same op-
ponent under the same domains.

4.1 Frequency-Based Estimation Method of Opponent’s
Utility Function

Ikarashi et al. proposed a method of estimating opponents’
utility function by counting the number of values offered,

considering the elapsed rounds [11]. However, the relation-
ship of the actual elapsed time and rounds elapsed is affected
by the machine performance. Therefore, we modified the
estimation method to use the normalized time in the range
of [0, 1] as variables for weight addition, not the number of
rounds as used in the existing works:

(1) Unweighted:
Vi =

∑n
k=1 Offered(i, k)

(2) Upward-sloping linear function:
Vi =

∑n
k=1 tk · Offered(i, k)

(3) Downward-sloping linear function:
Vi =

∑n
k=1 (1 − tk) · Offered(i, k)

(4) Convex downward quadratic function:
Vi =

∑n
k=1 (tk − 1

2 )2 · Offered(i, k)

(5) Convex upward quadratic function:
Vi =

∑n
k=1 {−(tk − 1

2 )2 + 1
4 } · Offered(i, k)

(6) Exponential upward-sloping function:

Vi =
∑n

k=1 e
tk
ξ · Offered(i, k)

Vi is the estimated evaluation value for the ith value of a sin-
gle issue. tk means the time of the kth proposal by the oppo-
nent. Offered(i, k) is the binary function that returns 1 when
the ith value among v1, . . . , vm was proposed, and 0 other-
wise. m is the number of values in the domain. Although
the weighting function based on logarithmic function was
also included in the existing works, it is omitted in this pa-
per. This is because that a logarithm function log t returns a
negative value when t is 0 < t < 1. Therefore, we cannot
apply a logarithm function to our approach directly. In ad-
dition, the experimental result of Ikarashi et al. [11] shows
that logarithm function was not so effective.

4.2 Estimation Method of Opponent’s Utility Function
Using Boosting

We propose a novel method of estimating an opponent’s
utility function by weighting the existing utility function
estimation methods (called learner) and summing each
weighted learner. This method only works when the negoti-
ations under the same opponents and domains are repeated.

Initialization

Against N learners, the weighting vector of the learner W
= {w1, . . . , wN+1} is prepared. The value of each element is
initialized as 1

N+1 . The vector U(R) = {u(R)
1 , . . . , u

(R)
N , u

(R)
N+1}

for saving the utility calculated by the learners is prepared
(R is the number of opponent’s offers in a negotiation).

Step 1

The estimated utility of offered bids by each learner L
= {L1, . . . , LN , LN+1} which contains estimated evaluation
values for the domain L = {V1, . . . ,Vm} is calculated. m
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is the number of values in the domain. L is added to U(R)

respectively as {u(r)
1 , . . . , u

(r)
N , u

(r)
N+1} (r is the number of re-

ceived bids from the beginning of the negotiation to now).
The learner LN+1 is a bias that outputs all value evaluations
as 1. This bias has the following roles in the process of
boosting:

(1) Prevention of selecting specific learners only: The
weight is unevenly added to one learner in some cases
without the bias when the output curves of all learners
are lower than the compromising model curve C(t) in
nonlinear programming in Step 2.

(2) Correction to the value with low evaluation: The util-
ity function estimation methods based on frequencies of
bids have a tendency to consider the value including a
small number of proposals as an extremely low score.
By adding the bias, the extremely low value evaluation
can be corrected.

Step 2

Solve formula (3) using nonlinear programming and set the
solution as learner’s weight (W = {w1, . . . , wN+1}).

minimize
∑r

i=1(
∑N+1

j=1 (u(i)
j · w j) − C(t))2

s.t.
∑N+1

j=1 w j = 1 (3)

w j ≥ 0 ( j = 1, . . . ,N + 1)

wN+1 ≤ 1
N+1

The first line of formula (3) is a squared error between u(i)
j ,

which is the utility estimated using the learner Lj weighted
by w j and the utility by the compromising model curve C(t)
in the time t. The compromising model curve C(t) means
the function of time t that predicts how the utility of the op-
ponent’s bids will compromise its own utility in the future.
Most of the agents’ strategies try to compromise as time
elapses. Therefore, we consider the compromising model
curve as the function in which the utility [0, 1] will be re-
duced as time t increases. We set the maximum wN+1 as 1

N+1
to prevent it from being too large.

Step 3

The output learner Lw is obtained by summing each
weighted learner as formula (4).

Lw =
N+1∑

i=1

Li · wi (4)

4.3 Estimating Pareto Fronts Using Estimated Opponent’s
Utility Function

We also propose a method that estimates Pareto fronts us-
ing the estimated opponent’s utility function between two
agents.

(1) The list of all possible bids is generated within the do-
main.

(2) The utility of the listed bids is estimated using the esti-
mated opponent’s utility function.

(3) Bids with identical utility on opponent’s utility func-
tions are removed from the list except for the one with
the highest utility for the opponent.

(4) The list is sorted in ascending order based on one’s own
utility.

(5) From the bids with the lowest utility, other bids are eval-
uated to determine whether the utilities of the opponent
are smaller based on the sorted list. When the evalu-
ated bid is smaller for the opponent’s utility, the bid is
identified as a Pareto optimal bid.

Based on the above procedures, our method can estimate
Pareto fronts based on the estimated opponent’s utility func-
tion. In the proposal and acceptance strategies in a nego-
tiation, one important measure is Pareto optimality. If our
proposed method can also estimate Pareto optimal bids, the
agent’s strategy will be very effective.

5. Experiments

5.1 Determining Parameters C(t) for Our Proposed
Method

In our hypothesis, whenC(t) is exactly the same as the utility
of the bid proposed by the agents, the estimation accuracy
is considered to be the best. However, the agents cannot ob-
tain the real utility for the bid proposed by opponents in the
negotiation because this paper assumes closed negotiation
problems.

Before we decide the parameter C(t), we recorded the
negotiation histories with the same settings of Sect. 5.2 and
analyzed the behavior of ANAC2016 agents. The exper-
imental results demonstrate that the utility of a bid pro-
posed by the opponent varies greatly depending on oppo-
nents’ strategy (Fig. 2). Especially, some agents do not make

Fig. 2 The histogram of the time elapsed and utility of proposed bid.
Approximately 30 million offers have been recorded in 840 negotiations.
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any concessions until the time reaches near the negotiation
deadline. On the other hands, the most agents with the con-
cession strategies follow in the range of two simple models
(1.0 − 0.2t and 1.0 − 0.3t). For these reasons, we decided to
use these simple models: 1.0 − 0.2t and 1.0 − 0.3t by focus-
ing on the changes of the estimation accuracies considering
the behavior of state-of-the-art agents with the concession
strategy.

5.2 Estimation Errors in ANAC2016 Domains

5.2.1 Experimental Settings

In experiments that estimated opponents’ utility functions,
we used the Genius [13] negotiation platform, which was
developed to facilitate research in multi-issue negotiations.
For learning opponents’ utility functions and domains, the
negotiation history is recorded by round-robin tournaments
with the domains and agents used in ANAC2016. The fol-
lowing are the details of the experimental settings:

• Tournament setting: Round-robin.
• Agents: Top seven agents in individual utility category

in ANAC2016: Caduceus, YXAgent, ParsCat, Farma,
MyAgent, Atlas3, and Ngent.
• Domains: Four types of domains in ANAC2016 (Ta-

ble 1). The profiles of each agent are respectively used
from 1 to 3 in each domain.
• Number of agents per negotiation: 3.
• Negotiation time: 180 seconds.
• Total number of negotiations: 210 × 4 = 840.

The following are the settings of the estimation method
in the experiments:

• The parameter of the exponential function was set to
ξ = 0.3.
• Because the sizes of the obtained estimated utilities are

different depending on the weighting function, all of
the estimated utilities were normalized as [0, 1]. In
the normalization, the estimated utilities were divided
by the maximum utility in each issue where the target
value belongs.
• Only the value in each issue was evaluated since no

estimation was conducted for the weights of each issue.
• (Estimation error) = abs((Estimated utility of each

value) − (Correct utility of each value)).

In boosting our proposed method, we evaluated the weights
just before finishing the negotiation because the weights of
each estimated utility function are updated sequentially.

Table 1 Domains used in experiments.

Domain Issues Domain Size DF RV
Clockwork 3 120 0.6 0.4
MyAgent 5 1280 0.7 0.2
MaxOops 7 7200 1.0 0.0

Terra 7 35840 0.5 0.4

We compared ten methods: six existing methods de-
scribed in Sect. 4.1 above and four proposed methods us-
ing two kinds of weighting functions and two compromising
models:

• Unweighted: Counting the number of bids without
weighting
• Upward-sloping linear function: Upward-sloping

linear function
• Downward-sloping linear function: Downward-

sloping linear function
• Downward-convex quadratic function: Downward-

convex quadratic function
• Upward-convex quadratic function: Upward-convex

quadratic function
• Exponential function: Exponential function
• Proposed method (1): these weighting functions were

used: Unweighted, Upward-sloping linear, Downward-
sloping linear, Downward-convex quadratic, Convex
quadratic, and Exponential functions. The compromis-
ing model curve formula is C(t) = 1.0 − 0.2t.
• Proposed method (2): these weighting functions were

used: Unweighted, Upward-sloping linear, Downward-
sloping linear, Downward-convex quadratic, Convex
quadratic, and Exponential functions. The compromis-
ing model curve formula is C(t) = 1.0 − 0.3t.
• Proposed method (3): these weighting functions were

used: Unweighted, Downward-sloping linear function,
and Downward-convex quadratic functions. The com-
promising model curve formula is C(t) = 1.0 − 0.2t.
• Proposed method (4): these weighting functions were

used: Unweighted, Downward-sloping linear function,
and Downward-convex quadratic functions. The com-
promising model curve formula is C(t) = 1.0 − 0.3t.

5.2.2 Experimental Results

Figure 3 shows the average estimation errors in all the do-
mains. Tables 2–5 show the details of the estimation errors
for each domain. The average estimation error of the pro-
posed method is reduced more than the existing methods.
Since the estimation errors of proposed methods (3) and (4)
are lower than proposed methods (1) and (2), two of our
proposed methods effectively estimated opponent utilities
by accurately weighting all learners during boosting. We
confirmed that our proposed method reduced the estimation
error to about 59% in the Clockwork domain (Table 2). In
the MaxOops domain, however, it only reduced the estima-
tion error to about 82% (Table 3).

Considering the YXAgent result in Table 3, we con-
firmed that cases exist where the result is worse than using
the existing method. This is because the bias used in our
proposed method was weighted inappropriately. In addition,
we confirmed cases where the estimated utility became too
high by excessively weighting the learners. Therefore, im-
provements of the limitations of weighting the learners are
necessary. In addition, the minor differences between the
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Fig. 3 Estimation error averages in all domains† ,††.

compromising models are small because both compromis-
ing models are simple linear functions and do not substan-
tially affect the results of the formula (3).

Our proposed method improved the average estimation
errors because it can optimize the combinations of many
frequency-based estimation methods. In other words, the
purpose of this paper can be demonstrated in ANAC2016
domains. However, our proposed method is worsened when
estimation methods with low performances are investigated
in boosting. This is because that it addresses the learners as
much as possible even though the performances of estimat-
ing opponents’ utility functions might be worsened.

5.3 Estimation Errors in Bilateral Negotiations

5.3.1 Experimental Settings

Although this paper focuses on multilateral negotiation, our
proposed method can also apply to bilateral negotiations. In
this section, we conducted experiments to show the accuracy
of our method in bilateral negotiations. The experimental
settings are the same as in Sect. 5.2, except as follows:

• Number of agents per negotiation: 2.
• Negotiation protocol: SAOP. However, this proto-

col works substantially equivalent to Alternating Offers
Protocol in bilateral negotiations.
• Total number of negotiations: 126 × 4 = 504.

5.3.2 Experimental Results

Figure 4 shows the average estimation errors in all the do-
mains. Comparing the result in multilateral negotiations
(Fig. 3) with the one in bilateral negotiations (Fig. 4), the
proposed methods outperform the conventional methods in
the both cases. Therefore, although the method with the

†The error bars denote the standard deviation of the results.
††Experimental results have high standard deviations and are

not statistically significant because the results are not shown for
each domain or agent.

Fig. 4 Estimation error averages in all domains in bilateral
negotiation† ,††.

highest accuracy is different in bilateral and multilateral ne-
gotiations, our proposed method can perform well in both
cases.

5.4 Estimation Errors in Changing Discount Factors

5.4.1 Experimental Settings

In the previous section, we demonstrated that our proposed
methods can accurately estimate the utility functions of op-
ponents in ANAC2016 domains. In general, most agent
strategies propose various bids when the discount factor is
small to reach a compromise at an earlier stage. It can also
improve our method’s accuracy because it prevents specific
values from being estimated as high values by proposing
them many times before compromising.

Experiments were conducted to demonstrate the esti-
mation errors in changing discount factors. Experimental
settings are the same as in Sect. 5.2, except as follows:

• Domains: party domain (included in GENIUS). The
profiles of each agent are respectively used from 1 to 3
in each domain.
• Negotiation time: 30 seconds.
• Discount factors (DF): 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4,

0.3, 0.2, 0.1
• Total number of negotiations: 210 × 10 = 2100.
• The proposed method (3) was used for our estimation

method.

5.4.2 Experimental Results

Tables 6 and 7 show the average estimation errors when the
discount factors are changed.

Comparing both tables, since our proposed method out-
performs the simple unweighted frequency-based method in
various discount factors, it can estimate opponents’ utility
functions by combining some simple frequency-based esti-
mation methods.
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Table 2 Details of estimation error averages (Domain: Clockwork)†††.
Weighting Function Average Caduceus YXAgent ParsCat Farma MyAgent Atlas3 Ngent
Unweighted 0.29244 0.34910 0.18790 0.22072 0.34257 0.35582 0.25493 0.33883
Upward-sloping linear function 0.29344 0.34214 0.18774 0.22321 0.37446 0.35214 0.22774 0.34923
Downward-sloping linear function 0.29384 0.35287 0.18799 0.23532 0.32949 0.35618 0.26058 0.33719
Downward-convex quadratic function 0.30445 0.35352 0.18793 0.27712 0.33483 0.35665 0.28074 0.34269
Upward-convex quadratic function 0.29333 0.34719 0.18783 0.22840 0.36062 0.35303 0.22992 0.34899
Exponential function 0.29351 0.33968 0.18778 0.21336 0.37358 0.35412 0.24134 0.34740
Proposed method (1) 0.19859 0.23564 0.12631 0.13527 0.23001 0.28029 0.14898 0.23727
Proposed method (2) 0.19883 0.23597 0.12634 0.14004 0.22980 0.28029 0.14868 0.23434
Proposed method (3) 0.17135 0.19593 0.11295 0.12307 0.19600 0.24170 0.13521 0.19770
Proposed method (4) 0.17150 0.19630 0.11283 0.12349 0.19825 0.24170 0.13522 0.19583

Table 3 Details of estimation error averages (Domain: MaxOops)†††.
Weighting Function Average Caduceus YXAgent ParsCat Farma MyAgent Atlas3 Ngent
Unweighted 0.26181 0.33040 0.17735 0.10969 0.34594 0.14313 0.30823 0.41790
Upward-sloping linear function 0.26823 0.32827 0.18015 0.13627 0.35971 0.13843 0.30884 0.42598
Downward-sloping linear function 0.26485 0.33851 0.18605 0.10962 0.34819 0.14737 0.31192 0.41228
Downward-convex quadratic function 0.26690 0.33759 0.19320 0.12178 0.34117 0.15415 0.31242 0.40799
Upward-convex quadratic function 0.26580 0.32954 0.18008 0.12634 0.35192 0.14073 0.30825 0.42373
Exponential function 0.26893 0.32971 0.18032 0.13470 0.36389 0.13865 0.30898 0.42626
Proposed method (1) 0.23092 0.26629 0.18227 0.12486 0.29123 0.12008 0.28303 0.34867
Proposed method (2) 0.23842 0.28217 0.18485 0.11215 0.30680 0.13237 0.30115 0.34945
Proposed method (3) 0.21342 0.23752 0.19039 0.11215 0.26142 0.11201 0.26817 0.31227
Proposed method (4) 0.22542 0.25873 0.18959 0.10694 0.28555 0.12896 0.29524 0.31293

Table 4 Details of estimation error averages (Domain: MyAgent)†††.
Weighting Function Average Caduceus YXAgent ParsCat Farma MyAgent Atlas3 Ngent
Unweighted 0.29465 0.29728 0.27436 0.22195 0.34324 0.24649 0.31832 0.36090
Upward-sloping linear function 0.30220 0.29347 0.27360 0.23406 0.36040 0.24434 0.33978 0.36974
Downward-sloping linear function 0.29597 0.30458 0.27392 0.23416 0.33911 0.24647 0.31288 0.36067
Downward-convex quadratic function 0.29340 0.29921 0.27327 0.23271 0.34450 0.24940 0.30860 0.34607
Upward-convex quadratic function 0.30160 0.29688 0.27369 0.23604 0.35252 0.24353 0.33470 0.37384
Exponential function 0.30099 0.29422 0.27403 0.22678 0.36803 0.24697 0.33389 0.36302
Proposed method (1) 0.23187 0.20846 0.25824 0.19633 0.24826 0.21823 0.24085 0.25270
Proposed method (2) 0.23655 0.21658 0.26294 0.19393 0.26533 0.22037 0.24389 0.25280
Proposed method (3) 0.21357 0.18486 0.25533 0.19617 0.22194 0.21486 0.20326 0.21854
Proposed method (4) 0.22069 0.19512 0.26178 0.19497 0.24444 0.21831 0.21142 0.21881

Table 5 Details of estimation error averages (Domain: Terra)†††.
Weighting Function Average Caduceus YXAgent ParsCat Farma MyAgent Atlas3 Ngent
Unweighted 0.25053 0.31051 0.11317 0.15392 0.33007 0.27070 0.24404 0.33267
Upward-sloping linear function 0.25685 0.29891 0.11477 0.13454 0.37726 0.26107 0.26009 0.35162
Downward-sloping linear function 0.25086 0.31999 0.11516 0.16729 0.31359 0.27305 0.24198 0.32645
Downward-convex quadratic function 0.24927 0.30949 0.11665 0.17563 0.30066 0.27909 0.24364 0.32172
Upward-convex quadratic function 0.25697 0.31155 0.11357 0.14357 0.36164 0.26254 0.25573 0.35053
Exponential function 0.25475 0.29625 0.11652 0.13542 0.37206 0.26471 0.25375 0.34517
Proposed method (1) 0.17291 0.19615 0.08078 0.08287 0.22702 0.21782 0.18107 0.22767
Proposed method (2) 0.17560 0.21036 0.08089 0.08272 0.22083 0.22915 0.18019 0.22865
Proposed method (3) 0.14639 0.15846 0.08364 0.07676 0.18799 0.20257 0.13660 0.18245
Proposed method (4) 0.15165 0.17988 0.08370 0.07689 0.18317 0.21975 0.13708 0.18566

As shown in Table 7, the estimation errors of our pro-
posed method weren’t affected by the discount factor be-
cause the estimation accuracy of the opponents’ utility func-
tions in each learner is hardly affected by the discount fac-
tor. Usually, simple frequency-based methods are affected
by discount factors because most agents try to compromise
at an early stage when the discount factor is small. How-
ever, the frequency-based methods used as the learners in
our proposed method consider the timeline changes.

In addition, our proposed method improved the accura-
cies of the estimation method of ParsCat, Farma, and Ngent
more than the Unweighted method. The main reasons are
that these agents forge compromises based on the discount
factors. In other words, our method improves the accuracies
of the opponent estimations because their agents proposed
various bids in short terms.

†††Bold indicates the best performance per agent.
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Table 6 Details of estimation error averages (Domain: Party domain, Unweighted).

DF Average Caduceus YXAgent ParsCat Farma MyAgent Atlas3 Ngent
0.1 0.28146 0.33485 0.13924 0.20370 0.36224 0.34198 0.22643 0.36240
0.2 0.28183 0.33405 0.13989 0.20156 0.36224 0.34661 0.22332 0.36512
0.3 0.27787 0.33307 0.13835 0.19570 0.35077 0.34756 0.21373 0.36593
0.4 0.27644 0.33393 0.13766 0.18731 0.35306 0.34875 0.20971 0.36469
0.5 0.27219 0.33329 0.13737 0.18055 0.34241 0.34857 0.20330 0.35984
0.6 0.27352 0.33109 0.13690 0.17929 0.34425 0.34864 0.20486 0.36959
0.7 0.27162 0.33049 0.13637 0.17165 0.33830 0.34871 0.20140 0.37444
0.8 0.26866 0.32547 0.13769 0.16031 0.33156 0.34849 0.20007 0.37700
0.9 0.26759 0.31781 0.13790 0.15292 0.33763 0.34802 0.19992 0.37895
1 0.26584 0.32705 0.13698 0.14979 0.29852 0.34136 0.20183 0.40534

Table 7 Details of estimation error averages (Domain: Party domain, Proposed method (3)).

DF Average Caduceus YXAgent ParsCat Farma MyAgent Atlas3 Ngent
0.1 0.17797 0.18979 0.10868 0.11646 0.22848 0.23592 0.13135 0.23495
0.2 0.17829 0.19049 0.10741 0.11426 0.23419 0.24245 0.12928 0.22996
0.3 0.17611 0.18929 0.10730 0.10981 0.22449 0.25175 0.12677 0.22337
0.4 0.17558 0.19123 0.10720 0.10626 0.22642 0.25466 0.12780 0.21551
0.5 0.17361 0.19058 0.10645 0.10325 0.21842 0.25757 0.12718 0.21182
0.6 0.17533 0.19388 0.10577 0.10520 0.21306 0.25830 0.12722 0.22390
0.7 0.17458 0.19589 0.10589 0.10453 0.20569 0.25687 0.12727 0.22589
0.8 0.17554 0.20611 0.10467 0.10347 0.20665 0.25796 0.12641 0.22347
0.9 0.17980 0.21641 0.10149 0.10035 0.24614 0.23866 0.13003 0.22549
1 0.17183 0.23165 0.10217 0.10175 0.18746 0.21213 0.12956 0.23808

On the other hand, the trends of our proposed method
resemble the unweighting method by changing the discount
factors and the opponents because our proposed method
uses a frequency-based method.

Therefore, our proposed method can estimate oppo-
nents’ utility functions by adjusting the combinations of
each frequency-based method when a discount factor is
changed.

5.5 Estimation Errors when Cooperativeness of Domains
is Changed

5.5.1 Experimental Settings

ANAC2015 introduced a qualitative index that is referred
to as Cooperativeness [27]. A cooperative domain includes
bids through which all agents can obtain high utilities, and
a competitive domain includes bids where the variances of
the utilities of each agent are high even though the social
welfare of the bids is high. We experimentally showed the
performance of our method under different kinds of cooper-
ative or competitive domains. Experiments were conducted
to see the effect of estimation errors in Cooperativeness
with agents used in ANAC2016 and some domains used in
ANAC2015 (Table 8). Experimental settings are the same
as in Sect. 5.2, except as follows:

• Domains: Domain ID 5, 6, 7, and 8 (used in
ANAC2015).
• Negotiation time: 60 seconds.
• Total number of negotiations: 210 × 4 = 840.
• The proposed method (3) was used for our estimation

method.

Table 8 Ten domains used for ANAC2015.

Domain ID Issues (size) DF RV Cooperativeness
1 1 (5 outcomes) 1.0 0.5 very competitive
2 1 (5 outcomes) 1.0 0.5 a bit cooperative
3 2 (25 outcomes) 0.2 0.0 very competitive
4 2 (25 outcomes) 1.0 0.5 quite collaborative
5 4 (320 outcomes) 0.5 0.0 competitive
6 4 (320 outcomes) 0.5 0.0 collaborative
7 8 (38 outcomes) 1.0 0.0 competitive
8 8 (38 outcomes) 1.0 0.0 collaborative
9 16 (216 outcomes) 0.4 0.7 very collaborative
10 16 (216 outcomes) 0.4 0.7 very competitive

5.5.2 Experimental Results

Tables 9 and 10 show the averages of the estimation errors.
Our proposed method outperformed the simple unweighting
method in all domains. In addition, its estimation errors are
almost the same, even though the estimation errors of the
existing method are affected by the cooperativeness of do-
mains. This is because our proposed method adjusted the
combination of some frequency-based methods when the
domain’s cooperativeness was changed.

Focusing on the collaborative domains, our proposed
method drastically improved the estimation accuracies. This
is because the opponents proposed more various bids (which
can obtain high social welfare) in the collaborative domains
than the competitive domains. On the other hand, the trends
of our proposed method resemble the unweighting method
for changing the cooperativeness of the domains because it
used a frequency-based method. Therefore, our proposed
method estimated opponent utility functions by adjusting
the combinations of each frequency-based method when the
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Table 9 Details of estimation error averages (Method: Unweighted).

ID Cooperativeness Average Caduceus YXAgent ParsCat Farma MyAgent Atlas3 Ngent
5 competitive 0.24145 0.22824 0.25844 0.14454 0.27020 0.22424 0.24216 0.32376
6 collaborative 0.27622 0.31804 0.18613 0.17485 0.36729 0.24824 0.28730 0.35170
7 competitive 0.22661 0.28475 0.09600 0.11027 0.26275 0.27343 0.16702 0.39206
8 collaborative 0.25215 0.31603 0.10452 0.14944 0.30765 0.27624 0.23780 0.37337

Table 10 Details of estimation error averages (Method: proposed method (3)).

ID Cooperativeness Average Caduceus YXAgent ParsCat Farma MyAgent Atlas3 Ngent
5 competitive 0.16337 0.15280 0.25770 0.10166 0.18201 0.11042 0.15981 0.17927
6 collaborative 0.16681 0.16676 0.16184 0.07763 0.21704 0.19065 0.15749 0.19624
7 competitive 0.15426 0.23216 0.10197 0.06330 0.16915 0.17245 0.11641 0.22439
8 collaborative 0.16804 0.24164 0.04060 0.05402 0.26701 0.20139 0.16235 0.20930

Fig. 5 Inverted generational distance.

cooperativeness of the domains was changed.

5.6 Accuracies of Estimated Pareto Fronts

5.6.1 Experimental Settings

We conducted experiments to show the accuracy of our es-
timated Pareto fronts using our proposed method. First, we
define some metrics for their accuracy.

(1) Inverted Generational Distance (IGD)
IGD is a metrics used in multi-objective optimization
that indicates how much the estimated Pareto front re-
sembles the correct Pareto front [28]. Figure 5 shows
the concept of IGD, which can be calculated by for-
mula (5):

IGD =
1
N

N∑

i=1

di. (5)

N means the number of Pareto optimal solutions that are
included in the correct Pareto front. di is the Euclidean
distance in the correct utility space between Pareto op-
timal solution i, which is included in the correct Pareto
front, and the Pareto optimal solution nearest the esti-
mated Pareto front.

(2) F-score
F-score is a measure of the estimation accuracy used in
the statistical analysis, shown as formula (6):

F1 = 2 · precision · recall
precision + recall

, (6)

where precision is the estimated Pareto optimal solu-
tions included in the correct Pareto fronts divided by
the estimated Pareto optimal solutions. recall is the es-
timated Pareto optimal solutions included in the correct
Pareto fronts divided by the correct Pareto optimal so-
lutions.

We experimentally evaluated the accuracies of our method
using these metrics with agents from ANAC2016 and do-
mains from ANAC2015 (Table 8). Experimental settings
are the same as in Sect. 5.2, except as follows:

• Domains: Domain ID 1 to 10 (used in ANAC2015).
• Negotiation time: 60 seconds.
• Total number of negotiations: 210 × 10 = 2100.
• Proposed method (3) was used for this experiment.

5.6.2 Experimental Results

Table 11 shows the details of the average metrics related
to the estimated Pareto fronts. The average metrics of the
proposed method improved in many cases. In particular, our
method significantly improved the F-score in Domains 1 and
2 because it can estimate the bids with smaller utilities than
the existing method.

In some cases, the IGD score is worse than the exist-
ing method, because our method searched for a non-optimal
solution as a Pareto optimal solution.

In addition, our method couldn’t drastically outperform
the existing method in domains that are competitive and/or
large number of issues. The main reason is that our estima-
tion method can’t receive many kinds of bids in the nego-
tiation. Our proposed method needs to receive various do-
mains to estimate Pareto fronts based on domain sizes and
bid distributions.
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Table 11 Details of average metrics related to estimated Pareto fronts††††.
DomainID Competitiveness Method Precision Recall F-score IGD
1 Very competitive Unweighted 0.9918 0.5523 0.6841 0.4315
1 Very competitive Proposed method (3) 0.9898 0.8933 0.9294 0.1695
2 Slightly cooperative Unweighted 0.9612 0.5112 0.6467 0.3736
2 Slightly cooperative Proposed method (3) 0.9945 0.8755 0.9196 0.2043
3 Very competitive Unweighted 0.8856 0.6905 0.7503 0.1358
3 Very competitive Proposed method (3) 0.9000 0.7159 0.7733 0.0885
4 Quite collaborative Unweighted 0.7856 0.6248 0.6665 0.1216
4 Quite collaborative Proposed method (3) 0.7980 0.6677 0.7069 0.0837
5 Competitive Unweighted 0.4910 0.5179 0.4714 0.0895
5 Competitive Proposed method (3) 0.4960 0.5342 0.4857 0.1165
6 Collaborative Unweighted 0.6111 0.5928 0.5813 0.0788
6 Collaborative Proposed method (3) 0.6207 0.6038 0.5925 0.0654
7 Competitive Unweighted 0.4505 0.3675 0.3872 0.0476
7 Competitive Proposed method (3) 0.4472 0.3655 0.3854 0.0461
8 Collaborative Unweighted 0.5303 0.5644 0.5214 0.0683
8 Collaborative Proposed method (3) 0.5332 0.5705 0.5270 0.0462
9 Very collaborative Unweighted 0.5645 0.2488 0.3171 0.0445
9 Very collaborative Proposed method (3) 0.5504 0.2612 0.3280 0.0372
10 Very competitive Unweighted 0.4431 0.2986 0.3123 0.0512
10 Very competitive Proposed method (3) 0.4245 0.3127 0.3171 0.0573

5.7 Summary of Experimental Results

The following summarizes our experimental results:

• Our proposed method outperformed the existing
frequency-based methods.
• It estimated the opponent utility functions in domains

with various discount factors and cooperativeness.
• It accurately estimated the Pareto front compared with

the existing method in various domains.

6. Conclusion

This paper focused on multi-time negotiations that are con-
ducted several times under the conditions of the same do-
mains and opponents. We proposed a method of estimating
the opponents’ utility functions by combining several exist-
ing methods of estimating the opponents’ utility functions
using boosting based on the least-squares method and non-
linear programming. Furthermore, we proposed a method to
estimate a Pareto front using the estimated opponents’ util-
ity function. The experimental results demonstrated that the
estimation accuracy of the opponents’ utility functions was
improved in many cases by combining several existing esti-
mation methods. In addition, the average estimation errors
were reduced by about 69% in the best cases compared with
the existing methods.

One of the possible future works is the improvement
of the proposed estimation method of the opponents’ utility
functions. Such improvements are anticipated by adopting
other effective utility function estimation methods. Another
possible future work is to propose the negotiation strategy
based on our proposed estimation method using boosting.

††††Bold indicates the best performance per domain.

For this purpose, the estimation of an opponent’s compro-
mising and the utility function are utilized at the same time,
and self-evaluation of the estimation should be effective.
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