
280
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.2 FEBRUARY 2019

PAPER

An Empirical Study of README contents for JavaScript Packages

Shohei IKEDA†, Nonmember, Akinori IHARA†,††a), Member, Raula Gaikovina KULA†, Nonmember,
and Kenichi MATSUMOTO†, Fellow

SUMMARY Contemporary software projects often utilize a README.
md to share crucial information such as installation and usage examples
related to their software. Furthermore, these files serve as an important
source of updated and useful documentation for developers and prospec-
tive users of the software. Nonetheless, both novice and seasoned develop-
ers are sometimes unsure of what is required for a good README file. To
understand the contents of README, we investigate the contents of 43,900
JavaScript packages. Results show that these packages contain common
content themes (i.e., ‘usage’, ‘install’ and ‘license’). Furthermore, we find
that application-specific packages more frequently included content themes
such as ‘options’, while library-based packages more frequently included
other specific content themes (i.e., ‘install’ and ‘license’).
key words: documentation, README, association rule mining, JavaScript
packages

1. Introduction

To encourage prospective users and interested developers to
write documentation, it is common practice for Open Source
Software (OSS) projects to release software artifacts (i.e.,
source code, configuration files and documentation) through
platforms such as GitHub. Some projects release a meta-file
document called README, which typically includes a sum-
mary of the most useful and updated information, such as
an install guide and usage examples. This is especially cru-
cial for tracking changes once newer versions get released.
In fact, all GitHub hosted projects present the README on
their front page [1].

Developers often struggle to write documentation [2].
A large-scale GitHub survey∗ conducted in June 2017, re-
ported that although software documentation is highly val-
ued, it is frequently overlooked. Furthermore, most respon-
dents (approximately 93%) complained that most documen-
tation is either incomplete or outdated. In the survey, 60%
of contributors said that they rarely or never contribute to
documentation. Related studies also confirm that develop-
ers struggle to write documentation. Abebe et al. [3] advised
developers to note several content themes such as title, sys-
tem overview, resource requirements, installation, and ad-

Manuscript received February 22, 2018.
Manuscript revised September 9, 2018.
Manuscript publicized October 24, 2018.
†The authors are with Graduate School of Information Sci-

ence, Nara Institute of Science and Technology (NAIST), Ikoma-
shi, 630–0192 Japan.
††The author is with the Faculty of System Engineering, Waka-

yama University, Wakayama-shi, 640–8510 Japan.
a) E-mail: ihara@sys.wakayama-u.ac.jp

DOI: 10.1587/transinf.2018EDP7071

dressed issues (i.e., new features, bug fixes, and improve-
ments) as caveats in the release note. Moreno et al. [4] re-
ported that developers find it difficult to summarize a release
note because it has several content themes, such as fixed
bugs, new features, and the improvement of existing fea-
tures. They proposed an approach to automatically gener-
ate release notes. Similarly, other works [5], [6] investigated
the relationship between source code (i.e., API, code exam-
ples) and documentation. In terms of README files, Hassan
et al. [7] proposed an approach to extract a build command,
while Zhang et al. [8] used this approach to identify systems
with similar functions.

A README file contains key documentation patterns for
developers, especially when uncovering documentation pat-
terns specific to the types of software. For instance, library-
specific projects (i.e., projects used by other applications as
third-party libraries) may write their README file differently
in application-specific projects (i.e., projects used by end-
users).

In this study, we would like to understand the ex-
tent to which developers write and maintain their README
files. We conduct an empirical case study that analyzes over
43,900 packages belonging to the npm JavaScript ecosys-
tem in GitHub. In particular, we investigate (i) what consti-
tutes typical content themes and (ii) whether content themes
indicate the type of a package (i.e., library-specific vs.
application-specific). In this novel study, we learned the fol-
lowing valuable lessons along the way:

• Lesson 1: It is useful to build and summarize a tax-
onomy of 20 README content themes, which are used
by more than 1% of packages. - From over 30,000
content variations, we used a semi-automatic method
to build a taxonomy of README content themes.
• Lesson 2: “Usage”, “Install”, and “License” are

common README content themes. - This result com-
plements known guidelines for writing good documen-
tation. We also found that less apparent README con-
tent themes include “API”, “Test”, and “Todo”, are
used in 10%–24% of packages.
• Lesson 3: Our study shows that “Install” and

“License” are likely content themes for library-
specific packages, while the “Option” content theme
is more common for application-specific packages.
- “Install” (i.e., 40% packages) and “License” (i.e.,

∗Open Source Survey: http://opensourcesurvey.org/2017/

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

http://opensourcesurvey.org/2017/

IKEDA et al.: AN EMPIRICAL STUDY OF README CONTENTS FOR JAVASCRIPT PACKAGES
281

Fig. 1 Illustrative example of evolving README file for the express package. Note that we measure
the file size (in bytes) as a measure of changes.

Table 1 Guideline for writing a README file.

Content theme GitHub 18F OSCON2015 Summary
Overview � � � Description of what the project is for and how useful.
Install � � � Instructions for how to develop, use.
License � � � List for where your team can ask for contact information.
Contribution � � � Instructions for how people can help clarify the documentation.
Support � � � List the contact information for your team where to ask questions.
Author � List for who maintains and contributes to your project.
Usage � � List of code sample and config tips.
Release history � List of changes.
Product � Description of code for conduct.

20% packages) are common for npm libraries, while
nodejs application packages included the option con-
tent themes (i.e., 10% packages).

We conclude that README files reveal insights such as
project practices and product changes. Such information es-
pecially assists especially the novice developer.

This paper is laid out as follows. Section 2 describes
the background and motivation of this study. Section 3 pro-
vides the dataset to conduct our empirical study. Section 4
presents answers to each of the two research questions pro-
posed in this study. Section 5 discusses our findings. Sec-
tion 6 presents threats to validity. Finally, Sect. 7 concludes
the paper and presents our future work.

2. Motivation & Research Overview

2.1 Illustrative Example & Key Assumptions

Co-founder of GitHub, Tom Preston-Werner recently high-
lighted the importance of the README file, coining Readme
Driven Development (RDD)† as an important subset of Doc-
ument Driven Development. In this paper, our motivation is
to investigate the following assumptions:

• README file is a reliable source of important documen-
tation changes and content themes of the project.
• README content themes follow some useful guidelines

and may be indicative of its project type.

Figure 1 illustrates an example of how a README
changes over time and is indicative of other changes. This

†Readme Driven Development: http://tom.preston-werner.
com/2010/08/23/readme-driven-development.html

example shows the JavaScript express†† package. In de-
tail, express added content themes of “Test” in 2011. For
example, express moved the content theme of “Settings”
to “Documentation” linking to the official website in 2010.
Later, they deleted the content theme of “Contributor”. In-
terestingly, in a preliminary exploration of 119,093 npm
packages, we found on average that a README was updated
up to 7 times.

Table 1 shows the existing guidelines that hint at the
content theme. These guidelines are taken from the follow-
ing sources:

• GitHub††† project introduces the content themes which
the README file typically includes.
• 18F†††† project is a digital service agency which intro-

duced “Making READMEs readable”.
• OSCON2015††††† is an international conference for

open source development. Key-note speaker, Mr. Mike
Jang explained how open source projects failure to at-
tract users due to poor README quality. He later intro-
duced 10 key content themes.

As shown in Table 1, we find that key information such
as “Overview”, “Install”, “License”, “Contribution”, “Sup-
port”, “Author”, “Usage”, “Release history”, and “Product”
are perceived as vital for any software projects.

††express: https://www.npmjs.com/package/express
†††GitHub Help -About READMEs-: https://help.github.com/

articles/about-readmes/
††††18F Open Source Style Guide: https://open-source-guide.18f.

gov/making-readmes-readable/
†††††O’Reilly Open Source Convention: OSCON, July 20–24,

2015 in Portland, OR https://conferences.oreilly.com/oscon/open-
source-2015

http://tom.preston-werner.com/2010/08/23/readme-driven-development.html
https://www.npmjs.com/package/express
https://help.github.com/articles/about-readmes/
https://open-source-guide.18f.gov/making-readmes-readable/
https://conferences.oreilly.com/oscon/open-source-2015

282
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.2 FEBRUARY 2019

Fig. 2 Procedure of this study.

2.2 Research Questions

Our goal is to understand the content themes. We therefore
investigate the extent to which key content themes (i.e., as
found in the guidelines) appear in the README. As shown
in Fig. 2, we formulate the following research questions to
guide our study.

• RQ1: What do developers write in a README file? As
shown in Table 1, we would like to confirm what con-
tent themes constitute a README file. This may provide
information for crucial documentation and will confirm
the guidelines for good documentation.
• RQ2: Does the type of project affect how developers

write their README file? We investigate whether or
not projects write README files based on their project
type. For example, we speculate that some application
frameworks (e.g., express) or the plugin tools (e.g.,
gulp) projects would prioritize purpose and usage of
the software (e.g., sample code, example of option).

To answer our research questions, we perform an em-
pirical study on real-world projects. Specifically, we per-
form a case study. For RQ1, we first extract and conduct a
content theme analysis of README files. Then, for RQ2, we
investigate the relationship between the type of project and
the content themes.

3. Data Collection

In this section, we describe both the data extraction and
data preprocessing method for the empirical study. The final
dataset will be used to evaluate the two research questions.

3.1 Data Extraction

Our study targets a README file for JavaScript packages.
Specifically, we target on JavaScript projects that belong
to the npm ecosystem†, consisting of packages that run
on the nodeJS platform. Packages include libraries (e.g.,
react), frameworks (e.g., express), command line tools
(e.g., browserify), and plug-in-supporting tools to build
applications (e.g., grunt, glup). To support searching these

†npm: https://www.npmjs.com/

Table 2 Summary of Extracted Datasets.

Extraction Snapshot of Projects July 2008–July 2016
Extracted README files 153,857 packages
README files after preprocessing 43,911 packages
Content themes 30,939 content themes

packages, the npm repository adds a keyword tag to each
package to explain the features of the package. For exam-
ple, the express package has “framework”, “web” and “ex-
press”.

We use the same process described by Wittern et al. [9]
to extract similar datasets for libraries and applications. In
detail, we query the npm registry†† for all npm packages
that were hosted and available on GitHub. We then extract
the README files for all the packages. Finally, we collected
153,857 README files as shown in Table 2.

As shown in Fig. 2, our extracted dataset also consists
of an extraction of the project type. Hence, for each project,
we extract tagged keywords from the package.json meta-
file. In the Wittern et al. study [9], the authors showed that
keywords may be indicative of project type, which is needed
to answer RQ2.

3.2 Data Preprocessing

To ensure the quality of the dataset, we perform filtering to
remove the noise in the dataset. After data extraction, we are
able to collect 153,857 README files that are used “md” and
“markdown” as a file extension. Since most README files are
written in the markdown format and we plan to use English
as our main language of analysis, we use the unicodedata
library to filter out files which did not use the markdown
format (i.e., we exclude files written in Japanese, Cyrillic,
or Hangul). Then, there are 141,933 README files. Further-
more, to ensure that we capture all initial commits, we only
include projects that were created within the three year pe-
riod of our analysis (i.e., 2013∼2016) and passed more than
one year from the last update of the README. Because
we control the threshold to keep latest projects and to filter
out the incompleted README files. Hence, we left 43,911
README files after preprocessing.

For RQ2, we further separate our dataset into GitHub-
††accessible on July 1–15, 2016 at https://registry.npmjs.org/-/

all

https://www.npmjs.com/
https://registry.npmjs.org/-/all

IKEDA et al.: AN EMPIRICAL STUDY OF README CONTENTS FOR JAVASCRIPT PACKAGES
283

strong and npm-strong types of projects as application-
specific and library-specific packages. Details of this ap-
proach are explained in Sect. 4.2.

4. Empirical Study

In this section, we evaluate the two research questions pro-
posed in Sect. 2.2. For each research question, we describe
the approach and their results.

4.1 RQ1: What do developers write in a README file?

(1) Approach

To answer RQ1, we perform an analysis of the README file
contents. Our analysis consists of two steps:

• (Step 1) Extraction of README content themes. Our key
assumption is that headlines in the README file are in-
dicative of important content themes. Since we find
that README files often use a header as a summary of
their content themes, we perform the following:
(Step 1a) Extracting Headlines. Targeting the levels
1 and 2 (i.e., h1 and h2) headlines, we extract 79,898
headlines using this technique. Hence, using the mark-
down format, we can extract headlines using the syntax
(h1: # or ===, h2: ## or ---).
(Step 1b) Mapping Headline to Content. Since a head-
line is a natural language, variations, and spelling in-
consistencies cause noise in the dataset. For example,
developers use “How to Install?”, “installing”, “Instal-
lation” to summaries the “Install” content theme. We
use the stemming technique from the language process-
ing package (i.e., nltk package in Python) to normal-
ize and clean noise in the data. The nltk package is
well-known and provides a high accuracy of software
engineering datasets [10].
(Step 1c) Merging Similar Content Themes. To further
reduce the noise in the content theme dataset, we merge
content themes that contain manually merged content
themes with similar or related meanings. For exam-
ple, we conclude that content themes “Getting Started”,
“To setup”, and “Download” should be merged into the
“Install” content theme. In this study, the first author,
second author, and third author firstly make clusters to
merge content themes with each other. Next, if there
are the content themes in the different clusters between
the authors, we start a discussion to reach consensus on
common content themes.
• (Step 2) Classification of README content themes.

Based on the results of Step 1, we display the frequency
count of each content theme and its coverage (i.e., the
percentage of systems using each content theme).

Using our approach, we extracted 30,939 content
themes from 69,869 headlines from the README files (i.e.,
Steps 1a and 1b). Table 3 shows an example of Step 2. Fur-
thermore, Table 4 shows some exceptions and adjustments

Table 3 Example of our cleaning (i.e., using stemming) of the headlines.
In this data processing, we are able to map the variations of headlines to the
install content theme.

Headline Variations Content Theme

How to Install?

Install

installing
Install it
Installation
INSTALL
1. Installing

Table 4 Example of stopword exceptions in the mapping headline to
content theme (Step 2).

Stopword token Content Theme Example of Headline

to do todo To do
how usage How to
who

author
Who are we?

from From
more

document
More

other Others
about

overview

ABOUT
what What the . . . ?
that What is that?
can What can I do?

that we encountered to the conventional natural language
stemming approach. For instance, using the default set-
tings, the headline “who are we?” would be removed (i.e.,
Step 1b).

By merging the more frequent content themes and fil-
tering out the less common content themes (Step 1c and
Step 2), we finally ended up with the 20 most frequent con-
tent themes used by more than 1% of projects from the
30,939 content themes (i.e., Step 1c). In a semi-automatic
approach, we incrementally filter content themes not fre-
quently appearing (i.e., Step 2).

(2) Result

Observation 1 — Many software projects (36.22%–60.83%)
contain “Usage”, “Install” and “License” content themes
in their README files.

Table 5 shows README content themes which we
merged with the different headlines. These results also coin-
cided with the recommended guideline content themes (i.e.,
Table 1), which we show using a check mark (�).

We found that the top three README content themes are
“Usage” (i.e., 60.83%), “Install” (i.e., 59.43%), and “Li-
cense” (i.e., 36.22%). However, we find that developers
often use different variations of the same word to explain
each content theme. For instance, developers may use “Ex-
ample”, “Hello World”, and “Grunt tasks” content theme
keywords as “Usage”. Furthermore, while we knew that
“License” is a common header, only 36.22% of systems
note it in their README files. We suspected that developers
may place license information in other meta-files (i.e., pack-
age.json) or as a separate document file named “LICENSE”.

Observation 2 — Results confirm that README content
themes are targeted at its end users.

“Usage” and “Install” represent how to use the sys-

284
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.2 FEBRUARY 2019

Table 5 A taxonomy of common content themes in README files (note that PR=Packages/All pack-
ages). Note that we use the Top 6 content themes for analysis in RQ3.

Rank
Merged content

Packages (PR)
Guideline

Description Content Theme
theme from Table 1

1 Usage 26,758 (60.83%) � Basic usage example of the project Usage, Basic Usage, How to Use, Use Case,
Methods, Screenshot, Examples, Quick Exam-
ples, Tips, Syntax, Sample, Hello World, Grunt
tasks

2 Install 26,142 (59.43%) � How to install the project How to Install?, Installation, Getting Started, Get
started now!, To setup, Download, Initialization,
Instructions, npm, node.js

3 License 15,932 (36.22%) � Type of license applied to the project LICENSE, MIT License, Unlicense, License,
Copyright, Legal

4 API 10,675 (24.27%) API list of the project API, API References, API Documents, Com-
mand Line, CLI, Build, Events, Constructor,
Action, To run, Objects, Interface, Commands,
Function, Execute

5 Option (Product) 10,459 (23.78%) � Option list of the project Options, Format, Style, Parameter, Configure,
Import, Custom, Compatibility, Browser, Con-
fig, Client, Server, Module, Promise, Util, Class,
Variables, Router

6 Release history 5,874 (13.35%) � Release history of the project Release History, ChangeLog, Change logs, Ver-
sion history, Versions, Release Notes

7 Contribute 4,938 (11.23%) � How to contribute to the project How to Contribute, Contribution Guides, Devel-
opment, Donations, CONTACT, Hacking

8 Test 4,374 (9.94%) Test commands of the project Run test, testing, To test, How to Test
9 Todo 4,293 (9.76%) TODO list of the project TODO, Todos, To-Do List, To-do soon, Task, In

the future . . . , The future, Requirements, Coming
soon!

10 Overview 4,219 (9.59%) � Description of the project Overview, Summary, Synopsis, Description, In-
troduction, Why?, What’s this?, About The
Name

11 Status 3,491 (7.94%) Build status by continuous integration Build Status, Current Status
12 Document 3,384 (7.69%) Further Documentation for using the

project
Documentation, Doc, Doe, Notes, Info, Informa-
tion, TL;DR, Notice, Detail, See also

13 Author 2,607 (5.93%) � Project author Authors, About the Author, who am i?, Credits,
Backers, Contributors, Other Contributors, Re-
sources

14 Support 1,555 (3.53%) � How to get support Supports, FAQ?, Help, Troubleshooting, Ques-
tions

15 Feature 1,379 (3.13%) Features list of the project Key Features, Attributions
16 Relate 1,297 (2.95%) Introduction of other projects related to

the project
Related, Related Projects, Link, Inspirations, Al-
ternatives, Source, Other libraries

17 Issue 1,039 (2.36%) Issues Issues, Known issues, Problems, Warning,
Caveats, Bugs

18 Demo 839 (1.91%) Example output of the project Demo, Codepen demo, Example Output, Result
19 Purpose 821 (1.87%) Purpose of the project Purpose, Goals, Solution, Motivation, Back-

ground, Concepts, Key Ideas, Philosophy, Ratio-
nale

20 Refer 772 (1.75%) References and Acknowledge References, Thanks, Special Thanks, Acknowl-
edgements

tem for users. The other content themes for users, “API”
(24.27%) and the “Option” (23.78%) content theme explain
the different list of functions for package usage. When
there are many functions in a system, developers often
note the feature list of the system with “Feature” con-
tent (3.13%). They may note “Support” (3.53%), “Demo”
(1.91%), “Limit” (1.75%), and “Error” (1.04%) together as
troubleshooting.

The lesser documented content themes are more related
to contributors’ information “Contribute”, “Test”, “Todo”,
“Issue”, and “Roadmap”. We suspected that such content
themes may indicate that the packages are not fully ma-

ture and require more development to become stable for end
users.

Observation 3 — “Overview”, “Author” and “Sup-
port” are rarely noted in README files.

While “Overview”, “Author” and “Support” are typi-
cally included in README as shown in Table 1, they account
for less than 10% of the systems. We found that 9.59% for
“Overview”, 5.93% for “Author”, and 3.53% for “Support”
still exist in the README files. Furthermore, “Overview” is a
more generic content theme while developers are less likely
to include contributor content themes such as “Author” and
“Support”.

IKEDA et al.: AN EMPIRICAL STUDY OF README CONTENTS FOR JAVASCRIPT PACKAGES
285

4.2 RQ2: Does the type of project affect how develop-
ers write their README file?

(1) Approach

To answer RQ2, we explore the relationship between the
type of software project and its README content themes.
In detail, as a case study, we compare two types of npm
projects—library-specific projects (i.e., projects used by
other applications as third-party libraries) and application-
specific projects (i.e., projects used by end users as applica-
tions) [9]. Our approach consists of two steps:
(Step 1) Classification of README based on project type.
As defined by Wittern et al. [9], we define two types of npm
projects. The previous study found some keywords to de-
scribe for each type of packages. We can find the keywords
in each project web site (e.g., The project “jquery”† tagged
“jquery”, “javascript”, “browser”, and “library”). The
detail keywords are for GitHub-strong (i.e., identified by the
keywords: “gruntplugin”, “gulpplugin”, “express”, “react”,
“authentication”) and (b) npm-strong (i.e., identified by the
keywords: “util”, “array”, “buffer”, “string”, “file”).
(Step 2): Identification of README content theme patterns.
To identify common usage patterns between the two types
of projects (i.e., GitHub-strong and npm-strong). Using our
content theme results from RQ1, we then use the Associa-
tion Rule Mining technique [11], [12] to identify common
usage patterns.

Association Rule Mining is a method to extract a rela-
tionship between two or more items as an association rule
from the combination of a large number of items. The asso-
ciation rule R is represented by a pre-condition, which is the
README content (RC), and a post-condition (Pt) as follows:
Let RC as a set of README content themes (i.e., “Install”,
“License”, . . .) and Pt refer to a set of project types (i.e.,
GitHub-strong or npm-strong).

R = RC ⇒ Pt (1)

To evaluate the extracted rules R, we use the three metrics:
support, confidence, and lift. We define the support as the
proportion of rules where both pre-condition (RC) and post-
condition (Pt) exist in all rules.

support(RC) =
|RC ∩ Pt|
|Pt| (2)

The confidence metric is the proportion of rules which both
the pre-condition (RC) and post-condition (Pt) exist in rules
with the pre-condition (RC).

conf (R) =
support(RC ∪ Pt)

support(RC)
(3)

Finally, Lift measures the magnification of the data in
which the pre-condition (RC) and post-condition (Pt) exist
in rules with the post-condition (Pt).

†jquery https://www.npmjs.com/package/jquery

lift(R) =
conf (R)

support(Pt)
(4)

Our study implements association rule mining using
the Orange [13] library in Python. The library uses an apri-
ori algorithm, which is used to filter out the minor rules (i.e.,
using minimum support value (0.03), minimum confidence
value (0.03), and minimum lift value (1)).

Table 6 shows the identified README files (Step 1). In
fact, we extracted 2,788 GitHub-strong type packages and
1,870 npm-strong type packages from our dataset. Dur-
ing the analysis, we discarded the keyword “gruntplugin”
as gruntplugin related projects use different README format.
We also ignore systems which include keywords from both
project types.

We report our README content theme patterns in two
forms. Table 7 shows the extracted 36 rules which the tar-
get README files frequently use sorted by lift value. The
second representation is a graph-based visualization of the
generated rules.

Figure 3 shows how our generated rule is translated
into a graph representation. In this example, each of the
incoming edges (i.e., “Usage”, “Install”, “License”, “Test”)
represents each of the precondition content themes, while
the outgoing edge is the postcondition (i.e., npm-strong) The
color of the node represents the lift metric, and as shown in
the example, the color shows 1.49 lift. Our assumption is
that the colors will show whether or not the content theme
is related to either “GitHub-strong” or “npm-strong”.

Figure 4 shows the generated graph (i.e., displayed
using the Fruchterman Reingold algorithm) for the 36
rules generated in Table 7. The color of the node follows the
lift score from a light color (low) to a strong color (high).

Table 6 GitHub-strong type packages and NPM strong packages.

GitHub-strong type packages
Filtered Projects 2,788 packages
Content Theme 2,254 kinds of headline variations

npm-strong type packages
Filtered Packages 1,870 packages
Content Theme 1,567 kinds of headline variations

Fig. 3 An example of the content theme pattern rule represented as a
directed graph, with nodes and edges. Note that the color indicates the lift
metric.

https://www.npmjs.com/package/jquery

286
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.2 FEBRUARY 2019

Table 7 Top 36 Association Rules for GitHub-strong vs. npm-strong type packages .

Id Content Themes ⇒ Project type support confidence lift
1 {Usage,Install,License,Test} ⇒ {npm-strong} 0.04 0.60 1.49
2 {Install,License,Status} ⇒ {npm-strong} 0.03 0.59 1.48
3 {Install,License,Test} ⇒ {npm-strong} 0.05 0.59 1.47
4 {License,Status} ⇒ {npm-strong} 0.04 0.58 1.44
5 {Usage,License,Test} ⇒ {npm-strong} 0.04 0.58 1.43
6 {License,Test} ⇒ {npm-strong} 0.05 0.57 1.42
7 {Install,Status} ⇒ {npm-strong} 0.04 0.56 1.41
8 {Usage,Install,Test} ⇒ {npm-strong} 0.05 0.56 1.39
9 {Usage,Status} ⇒ {npm-strong} 0.04 0.54 1.35

10 {Install,Test} ⇒ {npm-strong} 0.06 0.54 1.35
11 {Install,License,API} ⇒ {npm-strong} 0.06 0.54 1.34
12 {Usage,Test} ⇒ {npm-strong} 0.06 0.54 1.34
13 {Status} ⇒ {npm-strong} 0.05 0.53 1.33
14 {Test} ⇒ {npm-strong} 0.07 0.53 1.31
15 {Usage,Option} ⇒ {GitHub-strong} 0.14 0.76 1.27
16 {License,Option} ⇒ {GitHub-strong} 0.08 0.75 1.25
17 {Install,API} ⇒ {npm-strong} 0.09 0.50 1.25
18 {Install,Option} ⇒ {GitHub-strong} 0.12 0.74 1.24
19 {Option} ⇒ {GitHub-strong} 0.19 0.73 1.21
20 {License,API} ⇒ {npm-strong} 0.07 0.47 1.18
21 {Install,License} ⇒ {npm-strong} 0.16 0.47 1.17
22 {Usage,Install,Releas History} ⇒ {npm-strong} 0.03 0.46 1.16
23 {Install,Author} ⇒ {npm-strong} 0.03 0.46 1.16
24 {Install,Releas History} ⇒ {npm-strong} 0.04 0.46 1.14
25 {Todo} ⇒ {GitHub-strong} 0.04 0.68 1.13
26 {API} ⇒ {npm-strong} 0.11 0.45 1.13
27 {Usage,Overview} ⇒ {GitHub-strong} 0.04 0.67 1.11
28 {License} ⇒ {npm-strong} 0.20 0.44 1.10
29 {Install,Overview} ⇒ {GitHub-strong} 0.04 0.65 1.09
30 {Overview} ⇒ {GitHub-strong} 0.05 0.65 1.08
31 {Author} ⇒ {npm-strong} 0.04 0.43 1.07
32 {Install} ⇒ {npm-strong} 0.25 0.42 1.05
33 {Releas History} ⇒ {npm-strong} 0.05 0.42 1.04
34 {Contribute} ⇒ {npm-strong} 0.04 0.41 1.03
35 {Usage} ⇒ {GitHub-strong} 0.41 0.61 1.02
36 {Document} ⇒ {GitHub-strong} 0.05 0.61 1.01

Fig. 4 36 README content theme rules generated as a directed graph.

(2) Result

Observation 1 — “Install” and “License” content themes
are likely to be important for a npm-strong type package.

While RQ1 shows that a README file typically includes
“Usage”, “Install” and “License”, Fig. 4 provides evidence
that the “License” content theme is closely related to the
npm-strong type of packages. Correspondingly, Table 7
shows that many npm packages with higher lift and higher
confidence scores have some of the same rules as “License”.
From this result, we believe that it is important for core util-
ity packages to share the license because it is frequently
reused by the other systems. Additionally, the graph shows
that the “Status” and “Test” content themes are more closely
associated closely to npm-strong types of packages. Fur-
thermore, we suspect that the developers of these packages
may be expected to be adapted correctly to the ‘test’ and the
‘build’ states.

Observation 2 — The “Option” content theme is likely
to be an important content theme for GitHub-strong type
packages. Figure 4 shows that “Option” is closely related
to the GitHub-strong type packages. Table 7 shows that
many of the GitHub-strong type packages have higher lift

IKEDA et al.: AN EMPIRICAL STUDY OF README CONTENTS FOR JAVASCRIPT PACKAGES
287

and higher confidence scores with rules associated with the
“Option” content theme. Furthermore, we suspect that the
“Option” content themes are more important for the end-
user package, as end user packages are more likely to have
more lists of product options than npm-strong type (i.e., util-
ity) packages.

5. Summary of Results

In order to aid developers faced with documentation issues,
we conducted an empirical study to understand the writ-
ten content themes of the README file. The co-founder of
GitHub Tom Preston-Werner, even discussed the importance
of the README file, coining Readme Driven Development
(RDD)† as an important subset of Document Driven Devel-
opment. We learned some valuable lessons along the way:

• Lesson 1: Although a README file contains numerous
variations, we built a taxonomy of 20 README con-
tent themes - Surprisingly, from over 30,000 content
theme variations, we were able to build a taxonomy of
20 headline content themes, which are used by more
than 1% of packagess. We conjecture that the content
themes may reveal insights such as project practices or
may be an indicator of changes in the project.
• Lesson 2: Content themes “Usage”, “Install”, and

“License” are common README content themes - “Us-
age”, “Install”, and “License” are typically included in
the README. Furthermore, less apparent README con-
tent themes include “API”, “Test”, and “Todo”, used
in 10%–24% of packages. Such information may be
important, especially for novice developers.
• Lesson 3: Especially for npm packages, the study

shows that “Install” and “License” are likely content
themes for library-specific packages, while the “Op-
tion” content theme is more common for application-
specific packages.
We found some specific README content themes ac-
cording to the type of projects. We found “Install”
(40% packages) and “License” (20% packages) are
common for npm libraries, while nodeJS application
packages included the option content themes (10%
packages). Such information may be important for de-
velopers, especially for novice developers.

6. Threats to Validity

External validity - refers to the generalization concerns of
the study to other software systems including some pack-
age ecosystem such as Java library and Ruby RubyGems.
This study found some specific results for the npm pack-
age ecosystem. For example, while “Install” is reported as
one a major content theme from our findings and is used by
59.43% of systems, we carefully restrict these findings to

†Readme Driven Development: http://tom.preston-werner.
com/2010/08/23/readme-driven-development.html

the npm package ecosystem because other systems may de-
pict different patterns and tendencies for a README file. This
might be an interesting future avenues for research.

Internal validity - refers to the concerns that are inter-
nal to this study. In this study, we found two main inter-
nal threats that could affect our results. First is the prepro-
cessing of the dataset. In RQ1, we classified 30,939 content
themes into the 20 most frequent content themes by merging
the more frequent contents and filtering out the less common
content themes. The manual merging of content themes in
RQ1 was conducted through a reached consensus among au-
thors. However, we followed a strict iterative process and
are confident of the results. The second threat is related
to the content themes of the README files (i.e., RQ2). As
shown in our results, not every README file will include key
content themes. For example, some projects have separate
meta-files for licenses; thus, the content theme for licenses
may not exist in the README file. For future work, it will
be interesting to investigate all meta-files to understand how
developers maintain and keep all files.

Construct validity - refers to the concerns of the result.
We found one threat that related to the extraction of content
themes from the README file. This study used the Markdown
Format to extract the headline levels 1 and 2 (i.e., h1 and h2).
There may, however, be cases where the project is using
level 3 (i.e., h3) to write major content themes. Nonethe-
less, we are confident of the results and of our extraction
approach.

7. Conclusions and Future Work

In this paper, we investigated content themes of the README
file. Although we found that the README file contains nu-
merous ambiguous naming variations, we were able to sum-
marize and build a taxonomy of 20 README content themes
used by more than 1% of packages. The results show
that README files contain common content themes such as
“Usage”, “Install”, and “License”, as outlined in known
guidelines. Furthermore, we found that “Install” and “Li-
cense” are likely content themes for library-specific pack-
ages, while the “Option” content theme is more common
for application-specific packages. Finally, we showed that
packages rarely remove README content themes.

As future work, we would like to extend our project
types and techniques to provide more comprehensive guide-
lines for writing a good README file. We also believe that
further understanding of README will assist both developers
and their end users in keeping up with ongoing changes in a
project.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
ber 16K16037, 18KT0013, 18H04094 and 17H00731.

References

[1] J. Coelho and M.T. Valente, “Why modern open source projects

http://tom.preston-werner.com/2010/08/23/readme-driven-development.html
http://dx.doi.org/10.1145/3106237.3106246

288
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.2 FEBRUARY 2019

fail,” Proc. 11th Joint Meeting on Foundations of Software Engi-
neering (ESEC/FSE ’17), pp.186–196, 2017.

[2] T.C. Lethbridge, J. Singer, and A. Forward, “How software engi-
neers use documentation: The state of the practice,” IEEE Softw.,
vol.20, no.6, pp.35–39, 2003.

[3] S.L. Abebe, N. Ali, and A.E. Hassan, “An empirical study of soft-
ware release notes,” Empirical Software Engineering, vol.21, no.3,
pp.1107–1142, 2016.

[4] L. Moreno, G. Bavota, M.D. Penta, R. Oliveto, A. Marcus, and G.
Canfora, “ARENA: An approach for the automated generation of
release notes,” IEEE Trans. Softw. Eng., vol.43, no.2, pp.106–127,
2017.

[5] J. Kim, S. Lee, S.-W. Hwang, and S. Kim, “Enriching documents
with examples: A corpus mining approach,” ACM Trans. Informa-
tion Systems, vol.31, no.1, pp.1–27, 2013.

[6] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall,
“Analyzing APIs documentation and code to detect directive de-
fects,” Proc. 39th International Conference on Software Engineering
(ICSE ’17), pp.27–37, 2017.

[7] F. Hassan and X. Wang, “Mining readme files to support auto-
matic building of Java projects in software repositories,” Proc.
39th International Conference on Software Engineering Companion
(ICSE ’17), pp.277–279, 2017.

[8] Y. Zhang, D. Lo, P.S. Kochhar, X. Xia, Q. Li, and J. Sun, “De-
tecting similar repositories on GitHub,” Proc. IEEE 24th Interna-
tional Conference on Software Analysis, Evolution and Reengineer-
ing (SANER ’17), pp.13–23, 2017.

[9] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics
of the JavaScript package ecosystem,” Proc. 13th International Con-
ference on Mining Software Repositories (MSR ’16), pp.351–361,
2016.

[10] F.N.A.A. Omran and C. Treude, “Choosing an NLP library for ana-
lyzing software documentation: A systematic literature review and a
series of experiments,” Proc. 14th International Conference on Min-
ing Software Repositories (MSR ’17), pp.187–197, 2017.

[11] C. Zhang and S. Zhang, Association rule mining: Models and algo-
rithms, Springer-Verlag, 2002.

[12] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candi-
date generation,” Proc. International Conference on Management of
Data (SIGMOD ’00), pp.1–12, 2000.

[13] J. Demšar, T. Curk, A. Erjavec, Č. Gorup, T. Hočevar, M.
Milutinovič, M. Možina, M. Polajnar, M. Toplak, A. Starič, M.
Štajdohar, L. Umek, L. Žagar, J. Žbontar, M. Žitnik, and B. Zupan,
“Orange: Data mining toolbox in Python,” Journal of Machine
Learning Research, vol.14, pp.2349–2353, 2013.

Shohei Ikeda received the B.E. degree from
the National Institute of Technology, Nara Col-
lege, Japan in 2016. He is currently a Master’s
Degree student at the Nara Institute of Science
and Technology. His research interests includes
software engineering.

Akinori Ihara received the B.E. degree in
Science and Technology from Ryukoku Univer-
sity, Japan in 2007, and the M.E. degree (2009)
and D.E. degree (2012) in Information Science
from the Nara Institute of Science and Tech-
nology, Japan. He is currently a lecturer at
Wakayama University, Japan from 2018. And,
he was an Assistant Professor at Nara Institute
of Science and Technology from 2012. His re-
search interests include the quantitative evalua-
tion of open source software development pro-

cess. He is a member of the IEEE and IPSJ.

Raula Gaikovina Kula is currently a Spe-
cially Appointed Assistant Professor at Nara In-
stitute of Science and Technology. In 2013, he
graduated with a Ph.D. from Nara Institute of
Science and Technology, Japan. He is currently
an active member of the IEEE Computer Society
and ACM. His research interests include reposi-
tory mining, code review, software libraries and
visualizations.

Kenichi Matsumoto received the B.E.,
M.E., and Ph.D. degrees in Engineering from
Osaka University, Japan, in 1985, 1987, 1990,
respectively. He is currently a professor in the
Graduate School of Information Science at Nara
Institute of Science and Technology, Japan. His
research interests include software measurement
and software process. He is a senior member of
the IEEE and a member of the IPSJ and SPM.

http://dx.doi.org/10.1145/3106237.3106246
http://dx.doi.org/10.1109/ms.2003.1241364
http://dx.doi.org/10.1007/s10664-015-9377-5
http://dx.doi.org/10.1109/tse.2016.2591536
http://dx.doi.org/10.1145/2414782.2414783
http://dx.doi.org/10.1109/icse.2017.11
http://dx.doi.org/10.1109/icse-c.2017.114
http://dx.doi.org/10.1109/saner.2017.7884605
http://dx.doi.org/10.1145/2901739.2901743
http://dx.doi.org/10.1109/msr.2017.42
http://dx.doi.org/10.1007/3-540-46027-6
http://dx.doi.org/10.1145/342009.335372
http://www.jmlr.org/papers/v14/demsar13a.html

