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PAPER

Highly Efficient Mobile Visual Search Algorithm

Chuang ZHU†a), Xiao Feng HUANG††, Nonmembers, Guo Qing XIANG†††, Student Member,
Hui Hui DONG†, and Jia Wen SONG†††, Nonmembers

SUMMARY In this paper, we propose a highly efficient mobile visual
search algorithm. For descriptor extraction process, we propose a low
complexity feature detection which utilizes the detected local key points
of the coarse octaves to guide the scale space construction and feature
detection in the fine octave. The Gaussian and Laplacian operations are
skipped for the unimportant area, and thus the computing time is saved.
Besides, feature selection is placed before orientation computing to further
reduce the complexity of feature detection by pre-discarding some unim-
portant local points. For the image retrieval process, we design a high-
performance reranking method, which merges both the global descriptor
matching score and the local descriptor similarity score (LDSS). In the cal-
culating of LDSS, the tf-idf weighted histogram matching is performed to
integrate the statistical information of the database. The results show that
the proposed highly efficient approach achieves comparable performance
with the state-of-the-art for mobile visual search, while the descriptor ex-
traction complexity is largely reduced.
key words: mobile visual search, descriptor extraction, feature selection,
reranking

1. Introduction

Content-based image retrieval (CBIR) is always a hot topic
to study these years [1]. Generally, the research on CBIR
can be classified into two categories: hand-crafted feature
based method [2] and deep learning based method [3]–[6].
The first category of CBIR designs specific local features,
such as SIFT [7], and performs precise feature matching, ge-
ometric consistency check and reranking. The deep learning
based algorithms conduct retrieval by applying the output of
fully connected layers [3] or the max/sum polling of feature
maps of CNN [4], [5] to represent the image.

Background. With the steadily growing amounts of
mobile devices, a new type of CBIR technique, mobile vi-
sual search [8], is attracting keen attention of researchers.
In mobile visual search, there are several significant chal-
lenges: limited wireless network bandwidth, small mobile
battery capacity, little memory space to store features and
the requirement of feature interoperability [9]. To partly ad-
dress these challenges, the ISO/IEC moving pictures experts
group (MPEG) drafts the compact descriptors for visual
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search (CDVS) [10]. To future support the large-scale video
retrieval applications, the MPEG is carrying out the draft of
Compact Descriptors for Video Analysis (CDVA) [13]. The
recent work [14] shows that the combination of hand-crafted
feature or descriptor, such as CDVS, and deep features can
improve image retrieval performance dramatically. Conduct
research on highly efficient hand-crafted feature/descriptor
based visual search is still important and this paper focuses
on the CDVS based mobile visual search.

A typical CDVS application framework is shown in
Fig. 1, which is composed of mobile-end descriptor gen-
eration and server-end image retrieval. The local features
are extracted and compressed to produce compact visual
descriptors on the mobile devices and the retrieval is per-
formed on the remote server using the received descrip-
tors. The above word “feature” refers to the original un-
compressed key point, and the word “descriptor” means the
encoded local feature or the aggregated global feature.

Problem. In the mobile-end, feature detection mod-
ule of CDVS adopts a low-degree polynomial (ALP) de-
tector [10] to find the interest points by approximating the
result of the Laplacian of Gaussian (LoG) filter. For mo-
bile devices, the complexity of feature detection is still
too high, in which the pyramid scale-space construction
is the most complicated part. Koutaki et al. proposed a
low-complexity scheme which uses 4-basis images to ac-
curately reconstruct the Gaussian or sLoG within the scale
range s ε[1.0, 5.0] [11]. The authors further improved the
filtering to XY-separable form by Gaussian lobes approxi-
mation [12]. Chen et al. [15] proposed a block-based Fre-
quency Domain Laplacian of Gaussian (BFLoG) detector,
which has been adopted by the MPEG CDVS standard, to
alleviate the computational burden. However, the relation-
ships between different octaves are not utilized to decrease
the computing complexity in CDVS. It is meaningful to fur-

Fig. 1 Mobile device extracts features of the query image and transmits
the compressed features (local descriptor and global descriptor) via wire-
less network. The remote server performs image retrieval algorithm and
transmits the results back to the mobile device.
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ther reduce the scale-space construction time. In the server-
end, the CDVS standard adopts the Scalable Compressed
Fisher Vector (SCFV) [16] to conduct image retrieval, and
then reranks the returned results by using geometric con-
sistency check (GCC) which includes a ratio test and a fast
geometric model estimation [9]. However, the statistical in-
formation of the image database, such as inverse document
frequency (idf ), is ignored and the global similarity score is
discarded in the reranking stage. To summarize, there are
two problems to be addressed in the existing CDVS stan-
dard:

• How to design a highly efficient feature detection
scheme remains a problem to be addressed by con-
sidering the relationships between different octaves in
the scale-space pyramids. Here, the highly efficient
scheme means the low-complexity of feature detection
algorithm which achieves comparable retrieval perfor-
mance when compared with the original CDVS.
• We believe that the ignorance of database statistical

information and the global similarity in the image re-
ranking stage will hurt the visual search performance.
Research on how to fuse such information into the im-
age reranking algorithm is still an open question.

Approach. For feature detection, we propose a highly
efficient algorithm which utilizes the small blocks (say,
32 × 32) containing important detected local feature points
of the higher-level scale space as the initial key area. Then,
we use dilation operations on the initial key area to gener-
ate an expanded important area (EIA). The EIA is used to
guide the low-level scale space construction and feature de-
tection. The Gaussian and Laplacian operations are skipped
for the area outside EIA to save the computing time of fea-
ture detection. Besides, feature selection is placed before
orientation computing to further reduce the complexity by
pre-discarding the orientation calculating process of some
unimportant local points.

For image reranking, first a short visual codebook
is generated to represent the statistical information of the
database. Then, an accurate local descriptor similarity
score (LDSS) is computed by merging the “term frequency-
inverse document frequency” (tf-idf ) weighted histogram
matching and the ratio based weighting strategy in CDVS.
At last, both the global descriptor matching score (GMS)
and the LDSS are summed up to rerank the retrieval results
according to the learned zone weights. Our previous confer-
ence article [18] has reported some related contents about
reranking and they are included as part of this work.

Outline. The remainder of the paper is structured as
follows. In Sect. 2, we review the mobile visual search tech-
niques: compact descriptor extraction and image retrieval.
In Sect. 3, we present the details of our proposed highly effi-
cient mobile visual search algorithm. In Sect. 4, we discuss
the performance comparisons and then in Sect. 5 we con-
clude our paper.

Fig. 2 Compact descriptor extraction process in CDVS standard. Com-
pressed local descriptors and global descriptors are extracted from the
query image and combined to form the CDVS bitstream.

2. CDVS Overview

For a typical mobile visual search application based on
CDVS, there are two stages to perform: Compact descriptor
extraction and image retrieval using CDVS descriptor.

2.1 Compact Descriptor Extraction

The user supplies a query image or a query object by se-
lecting a region of the query image, and then the feature
detection module extracts local features, such as SIFT [7];
feature encoding module, which has gained a lot of interest
in recent years [16], [17], [19], will compress the original
local features to produce compact descriptors.

Figure 2 outlines the workflow of the CDVS bitstream
extraction, which includes seven building blocks: interest
point detection, local feature selection, local feature descrip-
tion, local feature compression, local feature aggregation,
local feature location compression and CDVS encoding.

For a query image, the CDVS standard first adopts ALP
detector [10] to find the interest points by approximating the
result of the LoG filter. Secondly, a subset of local features
is selected to meet the bandwidth limitation according to a
statistically learned relevance measure, which indicates the
priori probability of a feature from query image matching
a feature of database image correctly. After local feature
selection, each picked local feature is described as original
128-dimensional (1024 bits) SIFT vector [7]. Then, on one
hand, CDVS standard adopts a SCFV model to aggregate
the local features to build a global descriptor for the query
image; on the other hand, CDVS adopts a transform coding
scheme followed by a scalar quantization and entropy cod-
ing to compress the selected local SIFT features [18]. Be-
sides, the local feature location compression is performed
to record the x and y location information, which will be
used in the GCC step of image retrieval. At last, the global
descriptor, the compressed local features, and the coded lo-
cations are merged to produce the CDVS bitstream in en-
coding module. In the above blocks, the local feature detec-
tion (including scale-space construction) is the most time-
consuming part and in Sect. 3 we will design a low com-
plexity feature detection scheme.

To conduct feature detection, we first need to build
scale-space pyramid of the input image I(x, y), as shown in
Fig. 3. The GS scale-space is constructed according to (1).

IGS (x, y, σ) = GS (x, y, σ) ∗ I(x, y) (1)
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Fig. 3 Scale-space pyramid.

where GS(x, y, σ) is a series of Gaussian functions of differ-
ent scale factors, and * denotes convolution operation. The
local extrema of LoG with scale normalization will produce
the most stable interest points, and LoG is generated by (2).

LoG(x, y, σ) = σ2∇2IGS (x, y, σ) ∗ I(x, y) (2)

where∇2 is the Laplacian operator. Generally, as depicted in
Fig. 3, the continuous scale-space is represented as discrete
octaves, and each octave contains S (say 4) smoothed im-
ages with scale factor σl = 2l/Sσ0, l = 1, . . . , S . The input
of the higher octave is the downsampled image with scale
2σ0 in the previous octave. In this paper, we treat octave 0
as the fine octave and the other as coarse octaves.

2.2 Image Retrieval Based on Compact Visual Descriptor

Generally, the retrieval system returns a ranked list of im-
ages that contain the same object based on the Bag-of-Words
(BoW) [20] signature or global descriptors such as fisher
vectors (FV) [21] and vector of locally aggregated descrip-
tors (VLAD) [22]. However, the BoW signature and global
descriptors are generated based on the orderless local fea-
tures, which lead to the disregarding of information about
the spatial layout of the features. To further improve im-
age retrieval performance, Philbin et al. [23] propose to add
an efficient spatial verification to rerank the results returned
from the BoW model. Similarly, in work [25] the authors
first retrieve videos using the weighted frequency vector and
then rerank them based on the spatial consistency measure.
Although the above BoW based methods, which contain
very large visual word tables [9], can yield decent perfor-
mance, the fact that mobile visual search generally requires
low memory makes these approaches unsuitable. For mobile
search, the CDVS adopts the retrieval framework in Fig. 4.

First, the global and local descriptors are separated out
from the query bitstream by the CDVS decoding module.
Second, the global descriptor of the query is compared with
each global descriptor in the global database, and based on
the GMS a shortlist with the top-ranked N images, such as
500, is returned. In the GMS comparison, the Hamming
distance-based similarity score SGMS is computed accord-
ing to

Fig. 4 Image retrieval framework based on CDVS bitstream.
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where X and Y are the SCFVs of two images. In CDVS,
SCFV is built based on a selected subset of Gaussian com-
ponents (512 in total) from the Gaussian Mixture Model
(GMM). In Eq. (3), bX

i = 1 if ith Gaussian is selected, if
not then bX

i = 0. Ha(uX
i , u

Y
i ) and wHa(uX

i ,u
Y
i ) are the Ham-

ming distance and the correlation weight of ith Gaussian be-
tween X and Y , respectively. Third, an exhaustive pairwise
comparison is performed to find all matched local descrip-
tor pairs between the query image and each candidate image
in the shortlist. Then, the ratio test and GCC are conducted
to remove the wrong matched pairs, which are also called
outliers. The left P inlier good match pairs are used to gen-
erate the matching score L between two images. At last, the
reranked results are generated according to L.

L =
P∑

i=1

cos(
π

2
mini

smini
) (4)

In Eq. (4), cos is the cosine transform function, and
mini/smini is the ratio between the distance of the closest
neighbor and that of the second-closest neighbor in comput-
ing the ith inlier matching pair [7]. For image retrieval, this
paper focuses on the image reranking part in Fig. 4.

3. Proposed Highly Efficient Mobile Visual Search Al-
gorithm

In this section, we will design a highly efficient mobile vi-
sual search algorithm. For the compact descriptor extraction
part, we propose a low complexity feature detection scheme
which uses the key areas as a guide to save the computing
time. For the image retrieval part, the image reranking algo-
rithm of CDVS is redesigned to achieve higher performance
by merging more information, while the computing load of
reranking just slightly increases.

3.1 Low Complexity Feature Detection Algorithm

The architecture of our feature detection algorithm is sum-
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Fig. 5 Low complexity feature detection flow: (a) coarse scale-space
construction and feature detection (b) important area mask generation
based on key points in the coarse scales (c) fine scale-space construction
and feature detection for the important area.

marized in Fig. 5. First, the proposed algorithm will con-
struct the scale-space for the coarse octaves, and then detect
the key points in the coarse pyramid. Second, we will con-
duct the important area generation based on the detected key
points in the coarse octaves. Finally, we will perform the
fine level scale-space construction and then conduct feature
detection according to the generated important area. In the
final stage, the scale-space construction and feature detec-
tion of the unimportant area in the fine octave are skipped
and thus the computing time is saved.

3.1.1 Coarse Scale-Space Construction and Feature De-
tection

Different from the traditional GS scale-space construction,
the coarse octaves, as shown in Fig. 5, of the pyramid are
built first. It should be pointed out that the input for the
coarse octave 1 is the down-sampled GS image with scale
2σ0 in octave 0. Thus, the corresponding GS image in oc-
tave 0 must be generated prior to the coarse octave building.
After coarse GS pyramid construction, the coarse LoG pyra-
mid will be generated and then the feature detection can be
performed to produce the most stable image features, as de-
scribed in the following.

In the generated coarse LoG pyramid, ALP detector
is adopted to find the local extremas, which generally are
viewed as the interest points. In the ALP detection process,
for each detected interest point, a relevance measure r is cal-
culated according to (5) at the same time. The relevance
measure r indicates the priori probability of an interest point
from query image matching a point of database image cor-
rectly [9] and thus a bigger r means a more important key
point.

r(σ, p, d, ρ, pσσ) = f1(σ)· f2(p)· f3(d)· f4(ρ)· f5(pσσ) (5)

where “·” is dot product and f1 ∼ f5 are normative tables sta-
tistically learned conditional distributions according to the
following characteristics of each key points: the scale σ,
the peak response value p of the LoG, the distance d (from
the interest point to the image center), the ratio ρ of the
squared trace to the determinant of the Hessian, and the sec-
ond derivative pσσ of the scale-space function with respect
to scale.

Both the spatial positions and the relevance measure

r of each detected point will be taken into account in the
following important area generation stage.

3.1.2 Important Area Mask Generation

First, we split the original image with size W × H into cells
of w × w (say, 32 × 32) and use a state mask matrix M to
represent the important state of the cells. If element m(i, j)
of M (i from 0 to �W/w� − 1, j from 0 to �H/w� − 1) is equal
to 1, the corresponding cell will be defined as an important
area and the fine scale space construction and feature de-
tection process will be performed for cell(i, j) in Sect. 3.1.3.
However, the related computing process will be skipped for
the cells with m(i, j) = 0.

Second, the matrix M will be initially set according to
the positions and relevance measures of detected key points.
In detail, all the generated key point positions of the coarse
octaves are up-scaled to the original image size accordingly,
and then each key point will fall into one specific cell. The
total relevance measure for each cell will be generated by
(6), and the matrix M will be set according to (7).

I(i, j) =
∑

r(k) k ∈ cell(i, j) (6)

M(i, j) =

{
1 I(i, j) ≥ T
0 I(i, j) < T

(7)

where T is a threshold. Obviously, if one cell contains more
key points with bigger relevance values, it will tend to be
judged as an important area. Besides, threshold T can be
used to control the proportion of important and unimportant
cells: a smaller T will lead to more cells are classified as im-
portant areas, and visa versa. Although bigger T can bring
more time saving, the image retrieval performance is prone
to be ruined in this situation.

Third, the number of elements with value 1 in matrix
M is increased by using morphological dilation operation.
In this paper, we believe that the areas in the fine octave
around the centers of the detected key points are also apt
to contain key information. Thus, we expand the important
areas through applying the dilatation operator recursively.
With each iteration, important areas will grow a cell width
to the surrounding areas. In our work, we perform dilatation
operation only once.

3.1.3 Fine Scale-Space Construction and Feature Detec-
tion

In fact, the construction process of the fine scale-space (oc-
tave 0) is the most time-consuming part of the original pyra-
mid. In order to decrease the computing load, the fine scale-
space images are also split into cells of size w × w, and the
construction of cells with the element m(i, j) = 0 will be
skipped. It should be pointed out that for the GS pictures,
all the skipped cells will be filled with pixels in the corre-
sponding original image. This is because in the feature de-
scription stage of CDVS, the key points in the border of the
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important areas may need the GS pixels in the unimportant
areas and the filled original pixels are the rough estimations
of the GS pixels. After the construction of GS pyramid for
the important areas, the GS pictures are Laplace filtered in
advance to build the LoG pyramid. In the LoG pyramid for
the important areas, ALP detector is used to detect the key
points.

For the original CDVS standard, in the feature detec-
tion process, one or more orientations (up to 4 in CDVS)
are assigned to each detected key point. Then feature se-
lection is performed after feature detection to remove some
unimportant interest points. However, the orientation com-
puting based on local image gradient directions is a time-
consuming task due to the large amount of detected key
points. To further reduce the complexity of feature detec-
tion, we proposed to conduct feature selection before the
orientation computing. The orientation computing is just
performed for a small amount of important key points.

3.2 Image Reranking Algorithm

Generally, image retrieval first sorts the database based on
BoW [20] or global descriptor [16] and yields a shortlist
with top-ranked images. Then image reranking algorithm
will be followed to refine the results based on just local de-
scriptor matching. In this paper, we propose to perform im-
age reranking by using both LDSS and GMS. Our proposed
image reranking architecture is shown in Fig. 6.

Local database statistical information is integrated into
our proposed image reranking architecture. The local
database is a collection of local descriptors, and we clus-
ter them to create a l size, such as 300, codebook C = (c1,
c2, . . . , cl) by using k-means algorithm. Based on the code-
book, we quantize and represent the local descriptors of
database images as visual words and then compute the id f
for each visual word. The id f is calculated according to (8).

id fci = log
N
Ni

(8)

where ci (i from 1 to l) is the ith visual word of the codebook,
N is the number of database images and Ni is the number of
images containing visual word ci. Then the id f weighting
table is

Wid f = (id fc1 , id fc2 , . . . , id fcl ) (9)

Both the codebook C and the generated weighting table
Wid f will be used in LDSS computing.

We propose to use the following equation in image
reranking.

S = λS GMS + (1 − λ)S LDS S (10)

where S GMS is the GMS presented in (3) and S LDS S is LDSS
which will be discussed later. In Eq. (10), λ and (1 − λ) are
the weights for global zone and local zone, respectively. In
the following, we will describe the calculation of S LDS S and
weight λ.

Fig. 6 Image retrieval architecture. The area inside the red dotted rect-
angle is our proposed image reranking.

Fig. 7 Histogram matching based LDSS computing flow.

3.2.1 S LDS S Computing Based on tf-idf Weighted His-
togram Matching

S LDS S represents the similarity between the query image lo-
cal descriptor (QLD) and the reference image local descrip-
tor (RLD) in the database. We use the following (11) to
compute S LDS S .

S LDS S = bK + (1 − b)L (11)

where K is the tf-idf weighted histogram matching score
(HMS), L is the reranking criteria used in original CDVS
reference model as shown in (4), and b is a constant to bal-
ance K and L. The key of computing LDSS is to find K.

The LDSS computing flow is shown in Fig. 7. We per-
form local descriptor matching for the QLD and a RLD
first, and then conduct GCC to remove the wrongly matched
pairs. The left inlier pairs are used to compute K. Finally,
we compute LDSS based on K and L.

Let QLD and RLD are
{

QQLD = (q1, q2, . . . , qm)
RRLD = (r1, r2, . . . , rn)

(12)

where qi (i from 1 to m) and r j ( j from 1 to n) are two sets
of local descriptors in CDVS standard corresponding to the
query image and a database reference image, respectively.
After GCC, we get h number of good matching pairs (the
inliers) M, as shown in Eq. (13).

M(QQLD,RRLD) = {(qi1, r j1), (qi2, r j2), . . . , (qih, r jh)}
(13)
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where qio and q jo (o from 1 to h) are from QQLD and
RRLD, respectively. Then, qio and q jo are quantized to create
two weighting histograms H(Q) and H(R), according to the
codebook and id f weighting table. H(Q) and H(R) are his-
tograms with l bins, corresponding to the l visual words of
the codebook. Based on Eq. (9), we have

{
H(Q) = ((id fc1 )Nq1, (id fc2 )Nq2, . . . , (id fcl )Nql)

H(R) = ((id fc1 )Nr1, (id fc2 )Nr2, . . . , (id fcl )Nrl)
(14)

where Nqi and Nri (i from 1 to l) denote the counts of query
and reference inlier points, contained in Eq. (13), which fall
into the ith bins of H(Q) and H(R), respectively.

We know that histogram intersection effectively counts
the number of points in two sets that fall into the same bin,
and we use this criteria to evaluate the matching degree of
H(Q) and H(R). Then, we get the tf-idf weighted histogram
matching score K

K(H(Q),H(R)) =
l∑

i=1

min(H(Qi),H(Ri)) (15)

where min is the minimum function.
Combining Eqs. (4) and (15), we rewrite (11) as

S LDS S = bK + (1 − b)L

= b
l∑

i=1

min(H(Qi),H(Ri))

+ (1 − b)
P∑

i=1

cos(2π
mini

smini
)

(16)

In this paper, we set b = 0.5 throughout experiments to
achieve a good balance between histogram matching score
K and CDVS reranking criteria L.

3.2.2 Learning of Zone Weight λ

Zone weight λ is a balancing factor to decide the reranking
contributions of S LDS S and S GMS , respectively.

Firstly, the image dataset is divided into a training set
and a testing set, and the training set is used to learn zone
weights. Then, for the training set, we match each image
with the others to generate a series of image pairs, in which
the image pairs containing the same targets are labeled as α
and the others are labeled as β. At last, we select P image
pairs with label α and N image pairs with label β to train λ as
follows. We first normalize S GMS and S LDS S of the pairs to
a range of [0, 1] by using min-max normalization, as shown
in Eq. (17).

y = (x − MIN)/(MAX − MIN) (17)

where x is the input value and y is the normalized output.
MIN and MAX are the minimum and maximum of the input
values. Then, let Paα and Paβ as

Fig. 8 The distribution of reranking score with different λ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Paα = {(S ′GMS α1
, S ′LDS S α1

), . . . , (S ′GMS αi
, S ′LDS S αi

),
. . . , (S ′GMS αP

, S ′LDS S αP
)}

Paβ = {(S ′GMS β1
, S ′LDS S β1

), . . . , (S ′GMS β j
, S ′LDS S β j

),
. . . , (S ′GMS βN

, S ′LDS S βN
)}

(18)

where S ′GMS i
and S ′LDS S i

are the ith normalized GMS and
LDSS of the image pairs. For explanation convenience, we
randomly select 300 pairs with label α and 300 pairs with la-
bel β, and depict the corresponding reranking scores S with
different λ values, as shown in Fig. 8.

We can see that different λ values generate different
distributions of S . Then, the question becomes how to
choose a proper λ which generates a S distribution that can
be easily classified by a fixed threshold value. We propose
to use Eq. (19) to train λ.

λ̂ = argmin
λ

Cinner

Dinter
(19)

where Cinner represents the sum of concentration degree in
each class, Dinter denotes the separation degree between
class α and class β. We will formulate Eq. (18) in detail
in the following. Corresponding to Paα and Paβ, we have⎧⎪⎨⎪⎩ S ′α(λ) = {S ′α1(λ), . . . , S ′αi(λ), . . . , S

′
αP(λ)}

S ′β(λ) = {S ′β1(λ), . . . , S ′β j(λ), . . . , S
′
βN(λ)}

(20)

with ⎧⎪⎪⎨⎪⎪⎩
S ′αi

(λ) = λS ′GMS αi
+ (1 − λ)S ′LDS S αi

S ′β j
(λ) = λS ′GMS β j

+ (1 − λ)S ′LDS S β j

(21)

where i starts from 1 to P and j starts from 1 to N. Let mα(λ)
and mβ(λ) are the expectations, and varα(λ) and varβ(λ) are
the variances of S ′α(λ) and S ′β(λ), respectively. Then we can
get the expectation of the whole, including both S ′α(λ) and
S ′β(λ).

m′(λ) = Rαmα(λ) + Rβmβ(λ) (22)

where Rα = P/(P + N) and Rβ = N/(P + N). Finally, we
yield Cinner and Dinter as{

Cinner = Rα(varα(λ)) + Rβ(varβ(λ))

Dinter = Rα(mα(λ) − m′(λ))2 + Rβ(mβ(λ) − m′(λ))2

(23)
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Table 2 Performance comparison between our proposed low complexity descriptor extraction and
the original CDVS method.

Dataset UK INRIA Graphics Paintings Buildings
Bitrate ΔmAP Δ T Δ mAP Δ T Δ mAP Δ T Δ mAP Δ T Δ mAP Δ T

0.5 −1.1 −12.2% −1.78 −3.3% −1.06 −11.7% −0.58 −14.0% −2.06 −32.3%
1 −0.9 −17.0% −1.59 −5.3% −0.82 −7.9% −1.28 −15.1% −1.47 −23.3%
2 −0.96 −17.7% −2.39 −7.7% −1.36 −7.1% −0.75 −16.0% −0.77 −16.0%
4 −1.17 −18.6% −2.5 −6.1% 0.01 −8.4% −0.02 −11.8% −0.34 −16.4%
8 −0.79 −21.9% −2.22 −6.1% 0.03 −10.0% −1.11 −5.8% 0.52 −21.9%

16 −0.76 −23.8% −2.33 −11.2% 0.07 −11.5% −1.17 −8.0% 0.37 −31.3%
Average −0.95 −18.5% −2.135 −6.6% −0.52 −9.4% −0.82 −11.8% −0.63 −23.5%

Table 1 Typical values of used parameters in this paper.

Parameter T b P N

Value 0.002072 0.5 300 300

We substitute Eq. (23) into Eq. (19) producing

λ̂ = argmin
λ

Rα(varα(λ)) + Rβ(varβ(λ))

Rα(mα(λ) − m′(λ))2 + Rβ(mβ(λ) − m′(λ))2

(24)

Our proposed zone weight learning method will train
the best λ by minimizing (24). One simple solution for λ is
directly checking all the results of (24) by increasing λ with
a small step, such as 0.01, from 0 to 1.

Once we obtain the best λ, we will rerank the shortlist
according to

S ′(λ̂) = λ̂S ′GMS + (1 − λ̂)S ′LDS C (25)

where S ′GMS and S ′LDS C are the normalized values, and λ̂ is
the best λ.

The typical values (used in this paper) of the related
parameters in this section are summarized in Table 1. The
adopted parameter λ will be presented in Sect. 4.

4. Experiments

The CDVS standard defines the feature extraction process
and 6 different query descriptor lengths (0.5KB, 1KB, 2KB,
4KB, 8KB and 16KB) to support different scenarios. The
standardized CDVS bitstream makes the interoperability of
the descriptors from different devices possible. We make
comparisons for all the available modes. The experiments
are conducted based on CDVS reference software test model
framework 11 (TM 11.0) [26].

Dataset. We evaluate our proposed method on bench-
mark datasets University of Kentucky Benchmark (UK) [23]
and INRIA Holidays (INRIA) [24]. UK dataset contains
2550 tagged ground truth groups, and each group contains
4 pictures of the same object with different views. INRIA
dataset includes 1491 images, and 500 ground truth queries
can be used for testing. Besides, 2500 graphic, 455 paint-
ing, and 466 building images are selected from the MPEG-7
CDVS dataset to further evaluate our algorithm.

Performance evaluation criteria. The mean aver-
age precision (mAP) and computing complexity are used

to evaluate our proposed highly efficient visual search al-
gorithm.

The mAP is used to evaluate the image retrieval perfor-
mance. The mAP is shown in Eq. (26).

mAP =
1
N

N∑
i=1

∑Mi
relevant

r=1 P(r)

Mi
relevant

(26)

where i is the ith query index and N is the number of total
queries. Mi

relevant is the number of relevant images corre-
sponding to the ith query, r is the rth relevant image index
and P(r) is the precision at the cut-off rank of rth relevant
image.

The time-saving is adopted to evaluate the complexity
reduction by using our feature detection. Large time-saving
means high degree efficientness of feature detection algo-
rithm, and vice versa. To realize this, we calculate ΔT which
is defined as

ΔT =
Tpro DE − Torg DE

Torg DE
× 100% (27)

where Tpro FD and Torg FD represent the compact descriptor
extraction time with the proposed algorithm and with the
original CDVS implementation, respectively. When com-
paring ΔT , we indicate the total descriptor extraction time
including the processes other than feature detection, such as
feature compression.

4.1 Low Complexity Descriptor Extraction

We compare our proposed low complexity method with the
descriptor extraction in original CDVS on a PC with a quad-
core 2.4GHz CPU and 8GB memory. As shown in Table 2,
our proposed method works very well on datasets UK and
Buildings, and the average time-saving ratio can reach up to
18.5% and 23.5% respectively when compared to the origi-
nal CDVS. In other words, the proposed method can largely
reduce the complexity of descriptor extraction on the above
two datasets, but only introduces average 0.95% and 0.63%
mAP loss for the image retrieval performance. For INRIA
dataset, our method saves only 6.6% computing time but in-
troduces 2.135% mAP loss. The reason is that there are no
obviously unimportant areas for INRIA, and all regions have
almost equally important attributes. Our method achieves
the middle improvements for Graphics and Paintings.
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4.2 Image Reranking Comparisons

Zone weight learning. In this paper, we use UK dataset to
generate zone weights. For UK dataset, we divide it into
two parts. We choose 300 images for zone weight λ train-
ing, and the rest dataset is used for the visual search perfor-
mance evaluation. Table 3 depicts the learned λ. With the
increase of bitrate, more local features are encoded into the
CDVS bitstream and thus the reliability of S ′LDS S becomes
strong, which results in the decrease of λ. Figure 9 shows
the image retrieval performance improvements on different
datasets with learned zone weight λ. Although the zone
weights are trained based on UK dataset, different retrieval

Fig. 9 The effectiveness of λ for different datasets.

Table 3 Learned λ in different bitrate modes.

Bitrate (KB) 0.5 1 2 4 8 16

λ 0.66 0.53 0.44 0.44 0.36 0.35

Table 4 Image reranking performance comparisons.

Dataset UK INRIA Graphics Paintings Buildings

Bitrate
mAP

[23] CDVS Proposed [23] CDVS Proposed [23] CDVS Proposed [23] CDVS Proposed [23] CDVS Proposed

0.5 76.17 76.27 76.8 59.07 59.28 59.44 69.28 69.67 70.13 77.52 77.79 78.25 35.23 35.41 35.52

1 76.18 77.44 79.39 58.58 60.15 60.65 71.81 73.4 74.51 83.04 83.38 83.47 34.08 34.43 34.93

2 80.76 82.25 83.03 64.83 67.09 67.54 78.68 79.57 79.2 90.07 90.74 91.8 34.97 35.83 36.28

4 82.59 83.86 84.99 67.18 69.57 70.05 79.38 80.53 80.8 90.23 90.61 91.63 35.67 36.9 37.45

8 84.23 84.62 85.03 69.95 70.71 70.82 80.23 81.01 81.15 91.31 91.31 91.95 36.65 37.3 37.14

16 84.2 84.64 85.05 69.81 70.64 70.65 80.21 80.99 81.11 91.4 91.4 91.42 36.99 37.65 37.48

Average 80.69 81.51 82.4 64.90 66.24 66.53 76.60 77.53 77.82 87.26 87.54 88.09 35.60 36.25 36.47

Table 5 Image retrieval performance of proposed visual search.

Dataset UK INRIA Graphics Paintings Buildings

Bitrate
mAP

Δ mAP
mAP

Δ mAP
mAP

ΔmAP
mAP

Δ mAP
mAP

ΔmAP
CDVS Proposed CDVS Proposed CDVS Proposed CDVS Proposed CDVS Proposed

0.5 76.27 75.71 −0.56 59.28 58.2 −1.08 69.67 69.25 −0.42 77.79 77.79 0 35.41 33.452 −1.96

1 77.44 78.34 0.9 60.15 59.73 −0.42 73.4 73.76 0.36 83.38 82.63 −0.75 34.43 33.39 −1.04

2 82.25 81.85 −0.4 67.09 65.47 −1.62 79.57 78.05 −1.52 90.74 91.05 0.31 35.83 35.92 0.09

4 83.86 83.78 −0.08 69.57 67.49 −2.08 80.53 80.51 −0.02 90.61 91.61 1 36.9 36.92 0.02

8 84.62 84.23 −0.39 70.71 68.84 −1.87 81.01 81.01 0 91.31 90.84 −0.47 37.3 37.97 0.67

16 84.64 84.29 −0.35 70.64 68.67 −1.97 80.99 81.16 0.17 91.4 90.23 −1.17 37.65 38.12 0.47

Average 81.51 81.37 −0.15 66.24 64.73 −1.51 77.53 77.29 −0.24 87.54 87.36 −0.18 36.25 35.96 −0.29

performance gains are introduced on the other datasets. In
the following evaluation, we use the same zone weights as
shown in Table 3 for all the selected datasets.

Reranking Comparisons. The image reranking
method based on spatial verification in [23] and the image
retrieval algorithm in CDVS are tested to make comparisons
with our reranking algorithm. All the methods are integrated
into TM 11.0. Test results are tabulated in Table 4. The
results show that our proposed reranking achieves the best
searching performance among all 3 methods.

4.3 Results of Proposed Highly Efficient Visual Search

For mobile visual search, CDVS achieves the state-of-the-
art performance. To evaluate our proposed highly efficient
visual search, in this part, we integrate both the low com-
plexity feature detection and the proposed reranking method
into TM11 together. Both our method and the original
CDVS are tested.

The image retrieval performance is summarized in Ta-
ble 5. Our proposed highly efficient visual search algo-
rithm achieves comparable retrieval performances in aver-
age for all bitrates, which are just less than 0.3% mAP loss
than the state-of-the-art for dataset UK, Graphics, Paint-
ings, and Buildings. For descriptor extraction, as dis-
cussed in Sect. 4.1, our method can save between 9.4% and
23.5% computing time for these four datasets, which can
largely alleviate the complexity problem for the mobile de-
vices. However, for INRIA dataset, the retrieval perfor-
mance loss still reaches 1.51% even when enabling our pro-
posed reranking scheme. For the server-end image retrieval
process, most part of our proposed reranking method can
be pre-computed offline (stored as tables), the online im-
age retrieval computing complexity is just increased slightly
compared with CDVS.
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5. Conclusion

In this paper, we propose a highly efficient compact mobile
visual search algorithm. For descriptor extraction process,
we propose a low complexity feature detection algorithm
which utilizes the detected local key points of the coarse
octaves to guide the scale space construction and feature
detection in the fine octave. Besides, feature selection is
placed before orientation computing to further reduce the
complexity of feature detection. For the image retrieval
process, we design a high-performance reranking method,
which merges both the GMS and the LDSS. The test results
show that the proposed highly efficient approach achieves
comparable performance with the state-of-the-art for mo-
bile visual search, while the descriptor extraction complex-
ity is reduced largely in average for most datasets. In the
future, we target at highly efficient algorithm with adaptive
cell partition size. Besides, we will focus on low complex-
ity scheme for the hybrid feature (including both the hand-
crafted feature and deep feature) based mobile visual search.
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