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PAPER

Selecting Orientation-Insensitive Features for Activity Recognition
from Accelerometers

Yasser MOHAMMAD†,††∗a), Nonmember, Kazunori MATSUMOTO†††, and Keiichiro HOASHI†††, Members

SUMMARY Activity recognition from sensors is a classification prob-
lem over time-series data. Some research in the area utilize time and fre-
quency domain handcrafted features that differ between datasets. Another
categorically different approach is to use deep learning methods for fea-
ture learning. This paper explores a middle ground in which an off-the-
shelf feature extractor is used to generate a large number of candidate time-
domain features followed by a feature selector that was designed to reduce
the bias toward specific classification techniques. Moreover, this paper ad-
vocates the use of features that are mostly insensitive to sensor orientation
and show their applicability to the activity recognition problem. The pro-
posed approach is evaluated using six different publicly available datasets
collected under various conditions using different experimental protocols
and shows comparable or higher accuracy than state-of-the-art methods on
most datasets but usually using an order of magnitude fewer features.
key words: activity recognition, machine learning, feature selection

1. Introduction and Motivation

Activity recognition from mobile and wearable devices has
several applications for end users, third parties, and so-
cial groups. Applications for end users include fitness and
health tracking, fall detection, context-aware notifications,
self-management apps among many others. Third parties
can also utilize outputs from activity recognition for targeted
advertising, and corporate management. Combining activity
recognition results from several people can have social ap-
plications in participatory sensing, connecting people with
similar activity profiles, event detection among many oth-
ers.

Activity recognition from smart-phone sensors can be
further divided into systems that deal with the problem
as a temporal time-series classification task employing ap-
proaches like HMMs [1], and systems that treat activity
recognition as a standard classification problem from pre-
defined windows of sensory data [2]–[4]. This paper fo-
cuses on feature extraction and selection common to both
approaches.

One of the distinguishing features for robust activity
recognition on mobile devices is the low computation power
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available for these devices compared with traditional com-
puters and the rise of concerns regarding privacy issues sur-
rounding uploading raw sensory data from these devices to
be processed over the cloud. Because of these considera-
tions, this work limits itself to the most computationally ef-
ficient option in every stage of the classification pipeline.

Only accelerometer data is utilized in this work to re-
duce the energy consumed while reading the data from the
sensors and to limit the total number of signals being pro-
cessed. Both of these factors lead directly to energy sav-
ing. Moreover, accelerometers are shown in earlier stud-
ies to provide superior activity recognition results compared
with gyroscopes [3].

Moreover, the proposed method further reduces ex-
pected energy requirements of the algorithm by not requir-
ing continuous sampling of accelerometer data. This means
that the algorithms used for classification can only assume
the availability of short windows of data that are not related
temporally which eliminates algorithms that try to model the
temporal structure like HMMs and LSTMs [1], [5], [6]

The main goal of this work is to devise an activity
recognition system that achieves consistent state-of-the-art
results on a wide range of benchmark datasets using a sin-
gle sensor (accelerometer) without the need to continuously
sample that sensor (sparse sampling).

There are in general two methods to extract features
from raw accelerometer data activity recognition: hardwired
statistical features and feature learning (usually through
deep learning). The first approach has the advantage of
speed and reduced energy requirements compared with the
second but with the disadvantage of lower recognition ac-
curacy. This paper advocates a middle ground in which a
large number of statistical features are compared offline and
only the best of them are evaluated in real-time leading to
a speed comparable to the first approach but — as will be
shown in Sect. 5 — with an accuracy that is on the bar of
the best performing algorithms in most datasets considered.
Another advantage of the proposed approach that is shared
with feature learning is relying mostly on automated feature
discovery instead of having to manually define different sta-
tistical features for different datasets.

The main contributions of this work are four folds:

• A novel signal for accelerometer readings that is robust
to axis permutations.
• A robust feature selection method based on multiple

model evaluations that is shown to provide better fi-
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nal classification results on multiple datasets compared
with standard model based feature selection avoiding
the usual classifier bias of wrapper methods.
• A systematic analysis of the effect of signal and fea-

ture selection on classification performance on a va-
riety of publicly available datasets and using different
time-series aware evaluation strategies.

The rest of this paper is organized as follows. Section 2
discusses related work in the field of activity recognition.
The methodology used in this paper is described in Sect. 3
and the datasets used are introduced in Sect. 4. Section eval-
uates the proposed system on all the datasets and on com-
binations of them. The lessons learned from the analysis
of Sect. 5 are discussed in Sect. 6 along with limitations and
directions of future research. The paper is then concluded.

2. Related Work

There are two main approaches to feature engineering in ac-
tivity recognition: Most available systems use handcrafted
feature sets that are extracted from the time and frequency
domains [7]. The other extreme is to use deep learning
methods for feature learning [8], [9])

Barshan and Yuksek [10] applied several classifiers
including Support Vector Machines (SVM), and Random
Forests (RF) to the problem of recognizing 19 different
sports related activities using five Inertial Measurement
Units (IMUs) (i.e., 15 sensors) attached to the trunk, hands
and knees of eight subjects. Feature extraction employed
1170 statistical features that were then reduced to 30 fea-
tures using PCA. An accuracy of 99.2% was reported using
all sensors employing within-session evaluation. Calatroni
et al. [2] studied the collection of activity datasets in highly
rich networked sensor environments. The system used 7
IMUs, 12 3D acceleration sensors, 4 3D coordinates from
a localization system with a total of 37 body worn sensors.
The data was annotated with three types of activities: loco-
motive activities like walking and setting, low level activi-
ties like opening and closing a fridge, and high level activ-
ities like relaxation, grooming, eating a sandwich, etc. The
maximum accuracy obtained with one of the four subjects
using a neural network was 85.3% employing all the sen-
sors.

State of the art feature learning methods employ deep
neural architectures. Alsheikh et al. [8] trained a deep model
consisting of one input Gaussian Restricted Boltzman Ma-
chine followed by four Binary Restricted Boltzman Ma-
chines each containing 1000 neurons to achieve 98.23% ac-
curacy on the WISDM [3] dataset. The input to the system
was a 303 dimensional spectrogram of the acceleration data.
Zeng et al. [9] used convolutional neural networks (CNN)
instead of RBMs for building a deep feature selector and
classifier. The system used one 36-neuron convolution layer
followed by a max-pooling layer and two fully connected
hidden layers (1024, and 30 neurons in size) to generate
30 features from 64 input samples. This system achieved

96.88% accuracy on Actitracker [7] and 76.83% accuracy on
the Opportunity datasets. Plotz et al. [11], evaluated using
the empirical cumulative distribution function (ECDF) com-
bined with a restricted Boltzman machine (RBM) to learn
suitable features for activity recognition and reported an ac-
curacy of 75.9% compared with 69% using statistical fea-
tures [4].

A more promising approach for our goal of on-device
recognition, is to use feature selection instead of feature
learning. Wang et al. [12] recently conducted a compar-
ative study using the UCI dataset in which they used 561
statistical features then compared PCA, a feature filtering
approach (FCBF), a greedy wrapping approach (Wrapper),
and a novel combination of them and showed that the later
is superior to other approaches achieving 85.1% accuracy
using 58 features on the UCI HAR [13] dataset using only
accelerometer data

Deep learning approaches have also been proposed for
both feature learning and classification of activities. Al-
sheikh et al. [8] trained a deep model consisting of one
input Gaussian Restricted Boltzman Machine followed by
four Binary Restricted Boltzman Machines each containing
1000 neurons to achieve 97.85% accuracy on the Actitracker
dataset. The input to the system was a 303 dimensional
spectrogram of the acceleration data. Zeng et al. [9] used
convolutional neural networks (CNN) instead of BRMs for
building a deep feature selector and classifier. The system
used one 36-neuron convolution layer followed by a max-
pooling layer and two fully connected hidden layers (1024,
and 30 neurons in size) to generate 30 features from 64 in-
put samples. A softmax classifier is then used for activity
recognition. This system achieved 96.88% accuracy on Ac-
titracker and 76.83% accuracy on the Opportunity datasets.

3. Methodology

The basic structure of the proposed activity recognition sys-
tem is a standard machine learning pipeline. Training data
from chosen sensor (i.e., accelerometer in this paper) is first
preprocessed to increase the signal-to-noise ratio and op-
tionally reduce the effect of gravity on accelerometer data.
A set of signals are then extracted from segments of pre-
processed data. This signal extraction step is designed to
reduce the dependency of the final classification on the de-
tails of data collection like sensor orientation. The signals
evaluated are then passed through a feature extraction mod-
ule. The calculated features are analyzed by a feature se-
lection system to keep the minimum number of features that
does not significantly reduce the performance. In this work,
we evaluate several feature numbers so the feature selector
greedily keeps half of the features at every step. Finally only
selected features are used to train the classifier. At recogni-
tion time, only the selected features need to be calculated on
the mobile device. In accordance with our goal of requiring
only sparse sampling (i.e. not sampling the sensors continu-
ously), we model the classification problem as a supervised
learning from features extracted from a single window in-
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stead of a sequence learning problem. That allows the sys-
tem to sample windows of sensor data with relatively long
time delays between these samples but restricts it by being
unable to use sequence modeling classifiers based on LSTM
and similar methods.

3.1 Preprocessing

Preprocessing can improve the accuracy of later stages by
improving the signal to noise ratio (SNR), yet it provides
a source of computational complexity that we try to mini-
mize in this paper. For this reason, only a 20Hz low pass
filter is applied to the data under the assumption that 90% of
the energy in human body motion is found in this frequency
range [14].

3.2 Orientation-Insensitive Features

The accelerometer is a sensor that measures acceleration on
three orthogonal dimensions that are usually called x,y, and
z. These directions refer to a frame of reference intrinsic to
the sensor and may be different for different smart-phones.
Moreover the orientation of the smart-phone itself is not al-
ways the same during data collection in real-world scenarios
and do not stay in the same orientation even for a single ses-
sion of data collection. All of this suggests that relying on
these three raw signals (x,y, and z) would reduce the accu-
racy of any activity recognition system in real-life situations.

To reduce the sensitivity to sensor orientation, some re-
searchers use only the motion signal which is the norm of
the raw signal at every time-step. This signal is orienta-
tion independent, yet it does not provide any information
about the relative values of the three acceleration dimen-
sions. Mizell [15] suggested the use of vertical-horizontal
decomposition in which the direction of gravity is estimated
as the mean direction of acceleration during a suitably long
time-period (10 seconds in our experiments). The motion
vector is then projected on the direction of gravity provid-
ing the vertical component and the difference between this
vertical vector and the original vector is taken as the hori-
zontal dimension.

This vertical-horizontal decomposition reduces the de-
pendence of the classification pipeline on sensor orientation,
yet it does not provide enough information about the relative
amplitudes of motion on the three directions.

In this paper, we employ a novel axes-permutation in-
dependent signal along side motion and vertical-horizontal
decomposition described by:

c =
y − x
z − x

+
z − y
x − y +

x − z
y − z

(1)

The main property of this novel signal is that it does not
depend on permutations of the three axes x, y, and z which
means that the same value will be generated for any multiple
of 90 degree rotations as can clearly be seen from Eq. (1).

Using motion, horizontal-vertical decomposition, and
c as described above reduces the effect of rotation on the

signals processed by the next stages in the classification
pipeline. Another problem with raw accelerometer signals
is that their amplitude depend on the strength by which the
motion is executed. For example, a user raising their arm
slightly faster will generate higher accelerations. It is not
a-priori clear whether or not amplitude information is ad-
vantageous for any given activity recognition task. For this
reason, we combine the four aforementioned features (mo-
tion, horizontal-vertical decomposition, and c) with their z-
score normalized versions to provide the set of “invariant
signals” that are used for feature extraction and selection.

Another possible approach to reduce the dependence
on the raw signals is to use the first two PCA components
of the Hankel matrix representing the time-series [16]. In
Sect. 5.3, these three approaches to signal generation (raw
signals, the proposed invariant signals, and PCA) are com-
pared in terms of the final classification accuracy.

3.3 Feature Extraction

For feature extraction, we employ the TSFRESH li-
brary [17] which generates over 800 features from any input
time-series (e.g., mean, median, quantiles, entropy based
features etc). Feature extraction was applied for all dimen-
sions of the signals generated from the previous step. For
some of the databases (WISDM and UCI HAR datasets),
handcrafted statistical features utilizing both time-domain
and frequency domain information (unlike our time-domain
only features) are available. For such cases, we applied fea-
ture selection and classification to both TSFRESH features
as well as the handcrafted statistical features.

3.4 Feature Selection

The core step of our approach is aggressive feature selec-
tion to reduce the number of features required to reduce the
computational overhead of running the classifiers. Several
approaches for feature selection have been proposed. Refer
to [18] for a recent review.

One common approach for feature selection is random-
ized logistic regression (RLR) [19] in which randomly se-
lected subsets of training samples are fitted using an L1 spar-
sity inducing penalty that is scaled for a random set of coeffi-
cient. The features that appear repeatedly in such selections
(with high coefficients) are assumed to be more important
and are given higher scores. RLR exemplifies the problems
of not taking the time-series nature into account when pro-
cessing sensory information for activity recognition. Con-
sider applying RLR with some training data collected from
the same user (i.e., personal evaluation). During the normal
running of the feature selector, the random selection of sam-
pling will result in having a within-session train/test split
strategy which will lead to poor generalization in general.
As will be shown later, this approach to feature selection
does not provide acceptable results for activity recognition
on our datasets.

A second common approach is to use a linear model
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Fig. 1 The standard combination method and the proposed switching
method for employing multiple base feature selectors

(e.g., a linear SVM) with an L1 penalty to fit the data and
then select the features that have nonzero coefficients (or co-
efficients under a given threshold) from in the fitted model.
In this work, we used a linear SVM as an example of these
feature selection models.

A third approach is to employ algorithms that generate
small tress (e.g., Random Forests or Extra Trees). During
the process of learning the trees used for classification by
these algorithms, an estimate of the quality of each feature
is calculated at every step to generate a new node in the tree.
These estimates can be used as the basis for feature selec-
tion. We employ Extra Trees for this work but experiment-
ing with Random Forests gave similar results.

The final base feature selection approach considered
here utilizes Principal Component Analysis (PCA). We find
the set of Eigen vectors describing 80% of the variance in
the data and use the absolute value of the coefficient for
each vector weighted by the Eigen value corresponding to
that vector to estimate the importance of each feature. To
combine the importance measure from each Eigen vector,
we use the geometrical mean.

In this paper, and along side the four aforementioned
approaches, we proposed combining multiple feature ex-
tractors to provide a more robust feature selection strategy.
The standard method for combining the scores of multiple
feature selectors is shown in Fig. 1 (a) where the importance
measure or score assigned to features using the base selec-
tors are firstly normalized to a common numeric range and
then combined using either geometric or arithmetic mean.
The geometrical mean provides a sense of ANDing of fea-
ture importances which means that a feature that gets a high

score in multiple vectors (after weighting) will have a much
higher chance of being selected than a feature that only gets
a high score from one or fewer vectors. Comparison of the
geometrical mean and the arithmetic mean showed better
performance of the geometrical mean in most datasets. Due
to lack of space, we will only the results using the geomet-
rical mean.

The alternative proposed in this paper (called “switch-
ing” hereafter) uses only one base method at every stage and
switches between base feature selection methods in a round-
robin fashion. At each stage, a predefined number (or per-
centage) of features are pruned and the process is repeated
with the next base selector. Figure 1 (b) shows the proposed
method.

The proposed switching method provides a natural
method for selecting the number of features to retain in
the final set by evaluating the classification accuracy (see
Sect. 3.5) on a validation set and stopping when it becomes
lower than the required accuracy for the application. More-
over, it runs faster than the standard combination method
because each successive feature selector is trained using
smaller number of features. When using slow selectors such
as the L1SVM method, this can provide substantial increase
in selection speed. As will be shown in Sect. 5.4.2, these ad-
vantages are achieved without any loss in final classification
accuracy on the hold-out set.

3.5 Classification

Several classifiers have been proposed for activity recog-
nition including random forests [3], SVM [20], [21],
MLPs [4], etc. We utilized Extremely Randomized Trees
(ET) [22], and Random Forests (RF) [23] as examples of
tree-based approaches, Multilayer Perceptrons (MLP), and
Support Vector Machines (SVM) [24] as examples of statis-
tical and connectionist approaches. The choice of these clas-
sifiers is based on previous research that showed that they
consistently performed successfully in activity recognition
tasks with different datasets [1], [3], [10]. The complexity
of any classification problem is inversely correlated with the
success of feature selection and extraction. To evaluate the
effectiveness of the proposed feature extraction and selec-
tion method, we also utilize the simple K-Nearest Neighbor
(KNN) method.

For all these methods, cross-validation based model se-
lection was conducted employing an evolutionary algorithm
that used cross-validated accuracy as the fitness measure.
Best model parameters were then used in a separate cross-
validation run to evaluate the classifier selected. Reported
results used that classifier’s prediction at every data-point
when it was in the test set (i.e., cross-validation prediction).
All classifier types performed roughly on the same level and
due to lack of space comparative analysis between them will
not be given in this paper.
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4. Datasets

This section describes different public datasets used in this
work. Most of the datasets used mobile phone sensors but
few of them utilized Inertial Measurement Units (IMUs) and
were included for comparison purposes. For each dataset,
the collection protocol, classes of activities considered, and
base evaluation results will be presented.

4.1 WISDM

The WISDM (WIreless Sensors Data Mining) 1.0 dataset [3]
was collected by having 30 subjects carry a mobile phone
in their pocket and were asked to perform specific activ-
ities while sensory data is collected using 20Hz sampling
frequency. Data collection was supervised by one of the
WISDM team members [3]. A total of 43 statistical fea-
tures were calculated from every 10seconds of data in the
dataset and the raw sensory data as well as calculated fea-
tures were made publicly available. Six activities were cho-
sen in this dataset: walking, jogging, climbing upstairs, de-
scending downstairs, standing and sitting.

4.2 Actitracker

The Actitracker dataset [25]. was collected by having 36
subjects carry a mobile phone in their pocket while per-
forming six daily activities (walking, jogging, ascending or
descending stairs, standing, sitting and laying down). Ac-
celerometer data were sampled at a 20Hz sampling fre-
quency [7]. The same 43 features used for WISDM dataset
were also calculated and shared publicly for Actitracker
data [25]. Notice that compared with WISDM dataset, Acti-
tracker combined stair activities and added the laying down
activity. When we analyze the combined dataset, we had to
combine the stairs activities as well and to combine all static
activities (laying down, standing and sitting) due to this in-
consistency. The data collection protocol in this case is less
restrictive then the one employed in the WISDM dataset.

4.3 UCI HAR Datasets

UCI HAR stands for the UCI repository’s dataset on Hu-
man Activity recognition Using Smart-phone Datasets [13].
A group of 30 volunteers were recruited for the collection
experiment. Each participant carried a Samsung Galaxy II
smart-phone while being instructed to do a predefined series
of activities comprising 192seconds per session [13]. Each
subject performed the same protocol twice. In the first trial,
the smart-phone was fixed on the left side of the belt but the
user was free to place it as preferred in the second trial. A
separation of 5 seconds between each activity within the ses-
sion were added to facilitates repeatability of the activities.
The activity classes considered in this dataset were: walk-
ing, climbing upstairs, descending downstairs, standing, sit-
ting and laying down. Other than the accelerometer data, the

datasets contained gyroscope readings synchronized with
accelerometer data. [14]. A total of 561 features from both
accelerometer and gyroscope data were calculated for every
2.56seconds of data with an overlap of 50%. The data was
divided into 70% training and 30% testing sets. In this pa-
per we employ only the 386 accelerometer based features
and combine the training and test sets then use 10-fold cross
validation for all reported results.

4.3.1 HAPT

The Smart-phone-Based Recognition of Human Activities
and Postural Transitions Data Set (HAPT) dataset [26] uses
the same raw data used by the UCI HAR dataset but adds to
ground-truth data six more labels each representing a tran-
sition between two of the basic six activities used in UCI
HAR. The same preprocessing is used and the same fea-
tures are extracted. When evaluating the SVM classifica-
tion algorithm on this dataset, a series of heuristic rules for
reducing the fluctuation between basic activities using the
postural transition classes were used and the evaluation cri-
terion did not consider errors in classifying the postural ac-
tivities as long as they are considered either from one of
the transitioning classes (e.g., a stand-to-sit misclassified as
stand or sit) or to the newly added unknown class. In this
paper, we count these misclassification as errors as is done
with the other datasets. Wu and Zhang reported an accuracy
of 89.88% [27] when using interpersonal evaluation without
cross validation on the same dataset using the SVM classi-
fier.

4.4 Sensor Datasets

For comparison purposes, we also include two datasets in
which data collection employed on-body sensors instead of
smart-phones. In both cases, several sensors were attached
to the participant body but we will always use a single ac-
celerometer sensor for all evaluations. It will be shown that
even with this single sensor, it is possible to achieve simi-
lar or higher performance to systems that employ all of the
sensors giving more credence to the applicability of smart-
phone sensors to the activity recognition problem.

4.4.1 DSA

The Daily Sports Activity database (DSA) [10] was col-
lected at the Bilkent University Sports Hall, in the Electrical
and Electronics Engineering Building, and in a flat outdoor
area on campus. Eight participants performed 19 different
activities repeatedly for 5 minutes. The subjects were asked
to perform the activities in their own style and were not re-
stricted on how the activities should be performed. We only
employ the accelerometer value from the IMU attached to
the left leg in this paper.

4.4.2 Opportunity

The Opportunity Dataset for Human Activity recognition
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from Wearable, Object, and Ambient Sensors (hereafter Op-
portunity dataset) is a dataset devised to benchmark human
activity recognition algorithms [2]. The dataset comprises
the readings of motion sensors recorded while users exe-
cuted typical daily activities in a room simulating a studio
flat. The following body-worn sensors were used: 7 iner-
tial measurement units (IMUs), 12 3D acceleration sensors,
4 3D coordinates from a localization system. Only the ac-
celerometer sensor attached to the left leg is used in this
paper.

4.5 Combined Datasets

Combined datasets are created by concatenating data from
two or more of the aforementioned datasets. They are
named with the first character of each database used in
them. For example, w+a+u is a concatenation of the data
in WISDM, Actitracker, and UCI HAR datasets. Because
different classes are used in different datasets, some of the
class labels had to be combined. Namely, climbing up and
down stairs were combined into the same class whenever the
Actitracker dataset was used because they are not separated
in this dataset. Moreover, Lying down, standing and sitting
are also combined whenever the Actitracker dataset is used
for the same reason. Three combined datasets were created
by combining the WISDM dataset with either UCI HAR
dataset (w+u), Actitracker dataset (w+a) or both (w+a+u).
The final combined datasets use the predefined 43 hand-
crafted statistical features used in both WISDM and Acti-
tracker datasets (w+a-pre).

5. Evaluation

To evaluate the proposed approach, we applied it to all the
datasets presented in Sect. 4 and compared the results with
the best result we could find in the literature for each of
these datasets that were achieved using the same evalua-
tion methodology. The proposed approach is designed to
be applicable even when data cannot be streamed continu-
ously from the sensors to reduce energy consumption which
means that methods like Hidden Markov Models, Long-
Short Term Memory (LSTM), etc that has this requirement
are not considered in this study. This section starts by pre-
senting the evaluation methodology employed in order to
simplify reproducibility of the results (Sect. 5.1). We then
present the main findings of the study supporting the claim
that the proposed method can achieve comparable perfor-
mance to state-of-art methods on all datasets while requiring
less feature evaluation due to the proposed feature selection
scheme in combination with the proposed invariant signals
(Sect. 5.2). To evaluate the effect of each of these two fac-
tors on the final results, more evaluations of alternatives for
each of them are provided in Sect. 5.3 and Sect. 5.4.

5.1 Evaluation Methodology

There are three main strategies to evaluate activity recogni-

tion systems that we can find in literature. Firstly, data from
the same user can be randomly split into training and test
sets disregarding the session in which they were collected
(within-session evaluation) [10]. A more representative ap-
proach is using data from the same person for training and
testing but ensuring that the training and testing sets do not
overlap in terms of time of data collection (personal evalua-
tion) [2], [28]. Thirdly, training data could be collected from
a group of people and then testing data could be collected
from different people (interpersonal evaluation). Weiss et
al. proposed a fourth approach in which cross-validation is
used on the complete dataset disregarding the source (hy-
brid evaluation) [28]. Finally, for the purpose of this work,
we define general evaluation as the case when training and
testing sets share no participants from the same dataset. This
mode of evaluation better reflects expected real-world per-
formance due to the differences in collection protocol that
simulate real-world variability.

Regarding the evaluation metric (e.g., accuracy, re-
call, precision, F-measure), the correlation between any two
of these measures in our experiment was higher than 0.95
which means that they all give the same picture of compar-
ative performance between different approaches. The main
reason for that is that reported results were obtained using
classifier parameters optimized using cross-validation. Only
the accuracy metric will be reported in this paper due to lack
of space.

Evaluation of activity recognition algorithms is a chal-
lenging problem due to the sensitivity of the results to the
details of the evaluation criterion. For example, it is com-
mon in machine learning tasks to use cross-validation with
stratification as a method for evaluating classifiers. Most
ML packages (e.g., Weka, PRTools, etc) resort to randomiz-
ing the samples before applying cross-validation to it by de-
fault which in general is a good practice in machine learning.
Nevertheless, due to the fact that the features are extracted
from mostly smooth time-series in activity recognition, this
randomization may lead to having subsequences that were
very near (and are expected to be very similar) in the time
series split between the training and testing sets. This con-
verts personal evaluation to a within-session evaluation and
may lead to inaccurate characterization of the algorithm ac-
curacy. In this work we strictly reserve the term personal
evaluation to the case in which no such randomization is
applied at any step of the algorithm. Moreover, no overlap
was allowed between segments when using within-session
evaluation. Just running normal cross validation with ran-
domization is not considered here as within-session evalua-
tion but simply an evaluation mistake that can easily lead to
extremely high accuracy figures.

Throughout this section, when the proposed feature se-
lection algorithm is applied to data extracted using hand-
crafted statistical features that appeared before in literature,
it will be suffixed with the “pre” keyword, otherwise TS-
FRESH is used for feature extraction.

All evaluations conducted in this paper were conducted
on a server with the following specifications: Two 2.20GHz
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Fig. 2 Best accuracy obtained on each of the datasets employed in this work.

Xeon CPUs (E5-2660) each with 8 cores and 256GB mem-
ory.

5.2 Main Results

Figure 2 shows the best obtained accuracy using the pro-
posed system on each dataset employed in this work in-
dependent of the number of features. An apparent feature
of the results is that interpersonal evaluation gives consis-
tently lower accuracy than personalized classifiers. That
is in agreement with the analysis done in [28] and shows
that the similarity of behavior when using personal evalu-
ation more than compensates for the dramatic reduction in
the amount of training data. Moreover, accuracy in com-
bined datasets is lower than that in each individual dataset
in most cases. For example combining WISDM and Acti-
tracker datasets (collected with only slightly different pro-
tocol using the same group) results in a reduction of mean
accuracy of the top ten classifiers from 82% and 78% to
74%. The effect is less for the best performing classifier
going down from 83% and 74% to 76%. The following sub-
sections will discuss in details the results in relation to each
step of the proposed approach.

Table 1 summarizes the main findings of this paper.
The proposed approach was able to achieve a within-session
evaluation higher than the state of art results except for the
WISDM dataset in which it achieved 94.8% accuracy us-
ing 66 features compared with 96.6% accuracy using 540
features [29]. Even in this case the 9 folds reduction in the
number of features needed more than compensates for the
2% reduction in accuracy. For personal evaluation, the story
is more mixed. The proposed approach achieved higher
accuracy than the best performing algorithm in the Op-
portunity dataset (with a 7.7% accuracy improvement) but
not in the Actitracker dataset (with 4.7% reduction in ac-
curacy). Again the proposed method in general needed a

smaller number of features in the later case (5 compared
with 43). Finally, for the interpersonal evaluation, the pro-
posed method outperformed other approaches (or achieved
within 2% of the best performing approach) in all databases
except for WISDM in which it could only achieve 83% ac-
curacy compared with 91.7%.

5.3 Signals

Figure 3 shows the effect of signal choice on the accuracy of
the best classifier. Using PCA for signal generation resulted
in worse performance on all databases compared with us-
ing the raw x,y, and z signals with a difference up to 12%
in accuracy for the sensor datasets and 38% for the UCI
HAR dataset. Moreover, the proposed orientation invari-
ant signals achieved a performance on bar with utilizing
all of the signals together on all databases using all evalu-
ation criteria and performed higher than using the raw sig-
nals in most cases with 7% improvement for the personal
profile in WISDM datasets, and 18% for UCI HAR dataset.
The choice of signals did not affect the accuracy in com-
bined datasets and raw signals outperformed the proposed
signals for sensor datasets by 2% for interpersonal evalua-
tion. This final result is not surprising given the fact that on-
body sensors are more likely to be fixed in orientation and
position during all data collection sessions compared with
smart-phone sensors.

Considering the results in Table 1, the proposed in-
variant signals appear 13 times (out of 18) compared with
only once for raw signals. Applying t-tests to check the
difference that appear in Fig. 3 with Bonferroni’s multiple-
comparisons corrections, it was found that the invariant sig-
nals lead to higher accuracy compared with raw signals
(t = 17.06, p < 0.0001), and PCA based signals (t = 19.47,
p < 0.0001) but is not different from using all signals
(t = −2.75, p = 0.006 > 0.05 × 12). Moreover raw sig-
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Table 1 Comparison of the proposed approach and state of the art results on different datasets. For
each case, the number of features used (#) are shown.

Dataset Profile
Previous Work Proposed

Accuracy # Method Accuracy # Signals Selector Classifier

Actitracker

Within-session [30] 92.0 15 ET 94.3 10 Invariant Kernel PCA ET
Personal [31] 98.7 43 MLP 94.0 5 Invariant Switching SVM
Interpersonal [31] 75.9 43 SVM 74.5 8 Invariant Switching ET
Other [32] 96.9 30 CNN

WISDM

Within-session [29] 96.6 540 KNN 94.8 66 Invariant Combined KNN
Personal 93.3 6 All Tree KNN
Interpersonal [3] 91.7 43 MLP 83.1 33 All L1SVM ET
Other [8] 98.23 303 BRM*

UCI HAR

Within-session [1] 96.8 561 SVM* 98.9 38 Invariant RLR ET
Personal 97.0 4 Invariant Tree KNN
Interpersonal 90.6 16 Invariant Switching ET

HAPT

Within-session [27] 89.59 561 SVM 93.9 16 Invariant Switching RF
Personal 95.5 10 All Combined ET
Interpersonal [27] 89.99 561 SVM 90.0 16 Invariant Switching SVM
Other [26] 96.7 561 SVM*

DSA
Within-session [10] 99.2 1170 SVM 99.5 33 Invariant Switching ET
Personal 97.6 4 All RLR ET
Interpersonal [33] 87.6 1170 SVM 90.9 16 Raw Combined ET

Opportunity
Within-session 90.1 4 Invariant Tree ET
Personal [4] 80.7 3 Clustering* 88.0 16 Invariant Combined KNN
Interpersonal [9] 76.8 64 CNN 76.3 32 Invariant Tree ET

* Systems that used aggregation or dynamic adaptation.
Bold entries in the accuracy field indicate the highest accuracy for the given dataset and methodology while bold entries in the
(#) field indicate the lowest number of features.
Underlined entries are systems that achieved accuracy within 2% of the maximum accuracy for this dataset and methodology.
Italicized items represent systems that did not clearly specify an evaluation methodology of the three considered in this paper.

Fig. 3 The effect of the signals used on the best accuracy obtained using the proposed system.

nals were better than PCA signals (t = 4.5, p < 0.05).

5.4 Feature Selection

One of the main premises of the proposed approach is that
greedy feature selection from an off-the-shelf feature selec-
tor is effective in reducing computational cost while achiev-
ing high accuracy on the final classifier. Figure 4 (a) shows
a plot of the mean accuracy of top hundred classifiers em-
ployed for every dataset as a function of the logarithm of
the number of features used. As the figure clearly shows,
the classification accuracy achieves a maximum between 10
and 31 features (which agrees with the findings in Table. 1)

when most confusing features are pruned away by the sys-
tem. Figure 4 (b) shows that the prediction time of the same
classifiers changes linearly – as expected – with the number
of features over the same range. This suggest that feature se-
lection is effective for this problem. For more details, Fig. 5
shows a breakdown of the results for each dataset studied
(results on the combined datasets is not reported due to lack
of space). The same insensitivity to the number of features
appears in all datasets.

5.4.1 Feature Extractors

Table 2 shows a summary of the best accuracy obtained us-
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Fig. 4 The effect of feature selection on classification accuracy and prediction time.

Fig. 5 The effect of the number of features selected on interpersonal accuracy.

Table 2 Effect of feature extraction.

Dataset Methodology Statistical TSFRESH
Within-session 90 95

WISDM Personal 93 94
Interpersonal 97 83

Within-session 96 89
HAPT Personal 97 90

Interpersonal 91 73
Within-session 97 90

UCI HAR Personal 99 81
Interpersonal 93 73

Within-session 95 94
Actitracker Personal 92 96

Interpersonal 66 75
Combined general 69 76

Interpersonal 71 75

ing the general-purpose TSFRESH library as compared with
statistical features designed specifically for each dataset.
The handcrafted features outperformed the TSFRESH ex-
tractor in the UCI HAR and HAPT datasets while hav-
ing roughly the same performance on WISDM dataset and
the TSFRESH suit outperformed the handcrafted features
in the interpersonal evaluation on the Actitracker dataset.
Three factors contribute to this finding. Firstly, the collec-
tion protocol was most rigid on the UCI HAR and HAPT
datasets followed by the WISDM dataset then the Acti-
tracker dataset. With more control over the data collection,
simpler handcrafted statistical features were effective. Sec-
ondly, the UCI HAR and HAPT features included both fre-
quency domain and time-domain features which enhanced
their performance. Finally the UCI HAR datasets used far
more features (386) compared with the WISDM datasets
(43).

Figure 2 shows that in the combined datasets, TS-
FRESH outperformed simple statistical features with a 75%
accuracy compared with 71% in general evaluation and 76%
compared to 69% for interpersonal evaluation. Statistical
analysis using t-test shows that this difference is statistically
significant (t = 11.7612812302, p < 0.001).

5.4.2 Feature Selectors

The performance of different approaches to feature selection
was evaluated by calculating the average performance of top
hundred classifiers from every type tested. The combined
selector — even though more computationally expensive –
does not outperform traditional tree-based classifiers. On
the other hand, the proposed switching selector outperforms
all other selectors consistently with between 1% (ET) and
4% (MLP) improvement in accuracy. The performance of
the switching selector is also most stable with a total accu-
racy range of 18% on the top 100 classifiers compared with
23% for the L1SVM selector, and 26% for the Tree selector.

Considering the results in Table 1, the proposed switch-
ing strategy appear 6 times compared with 4 times for the
second best performing selector (Combined and Tree). Ap-
plying t-tests to check the differences between selectors
with Bonferroni’s multiple-comparisons corrections, it was
found that the proposed switching selector achieved higher
performance compared with L1SVM (t = 11.83,p < 0.001),
Tree based selector (t = 4.46,p < 0.001), Kernel PCA
(t = 7.19, p < 0.001), and PCA (t = 10.14, p < 0.001). Its
performance was on bar with the more computationally in-
tensive combining selector (t = 2.64,p = 0.008 > 0.05∗42).
Figure 6 shows the instability of each selector measured as
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Fig. 6 Performance Instability (Accuracy range for the top 100 classi-
fiers) of different selectors.

the range of accuracies for the top 100 classifiers. It is clear
that the proposed switching classifier has the best stability
compared with all others.

6. Discussion

The results presented in the previous section can be summa-
rized as follows: Orientation invariant signals can achieve
better performance than relying on raw accelerometer data
for activity recognition in the more realistic general evalu-
ation strategy. Moreover, feature selection from an off-the-
shelf time-domain feature extractor is an effective strategy
for reducing the number of required feature evaluations at
real time while preserving the accuracy of final classifiers.
The proposed feature selection approaches based on com-
bining and switching selectors are effective in preserving the
overall accuracy of the system. The switching selector spe-
cially can achieve this overall system improvement with the
same number of feature selection calls as traditional selec-
tors.

Figure 2 (c) shows that general and interpersonal eval-
uations lead to the same performance even for databases
that have different collection procedure (e.g., WISDM and
UCI HRI) that is around the same performance of cross-
validation on the worst of the combined datasets. Moreover,
Fig. 2 shows that in all cases, personalization is useful as it
improves accuracy on all datasets (with up to 29% for the
Actitracker dataset using handcrafted features). These re-
sults agree with the findings of Weiss et al. [28] but extends
it to more databases and different feature extraction and se-
lection methods.

One limitation of the analysis conducted in this paper
is the reliance solely on accelerometer data. Using other
sensors like the magnetometer and gyroscopes can improve
accuracy as previous studies have shown [2], [10], [34] at the
expense of a larger energy footprint. We only analyzed data
from sensors that correspond to phones on the pocket or belt.
With the increased availability of smart watches a new venue
of research into activity recognition of hand and full body
motion is opened. Our initial analysis of the data in DSA
and Opportunity datasets show that the sensor on the right
hand (the location of a smart-watch) is even more accurate
in recognizing both locomotion related and low level hand

actions but not high level behaviors. Due to lack of space
these results will be omitted from this paper.

One obvious direction of future research for this work
is building a smart-phone application to assess the proposed
approach in the real world and compare its computational
and energy requirements on the target systems to other ap-
proaches. Another direction is to include more features in
the selection step from the frequency domain. Results from
[8] and [32] suggest deep architectures can be effective for
feature extraction. As discussed in Sect. 2 though, these
methods tend to employ thousands of neurons and/or pre-
calculation of time-frequency features (e.g., spectrogram)
which makes them computationally inefficient even at the
recognition stage. Network compression can alleviate this
problem but at the cost of reduced accuracy. To test this hy-
pothesis, we trained a CNN using the method of Zeng et al.
[9] and applied the network compression method proposed
by Han et al. [35] which proved effective for ImageNet and
other image sets. The final number of weights dropped from
43,188 to 22,105 weights on the top two layers but the ac-
curacy decreased to 91.36% on the Actitracker dataset and
72.9% on the Opportunity dataset (lower than the accuracies
reported in this paper). The proposed method shares the ad-
vantage of requiring no manual tinkering to design features
but lacks the ability of utilizing unlabeled data. Combining
these two approaches to feature engineering will be one of
our directions of future research.

7. Conclusion

This paper presented a systematic evaluation of different sig-
nal extraction and feature selection methods on a set of pub-
licly available smart phone and on-body activity recogni-
tion datasets with numbers of activities ranging from 4 to
19. The main findings of the paper are: (1) Invariant sig-
nals extracted from accelerometer data allow for more gen-
eralizable performance across different datasets. (2) Using
an off-the-shelf feature selector combined with aggressive
wrapper based feature selection can achieve state-of-the-art
performance on most datasets (with the single exception
of UCI HAR dataset) with fewer features. The proposed
approach provides an appealing alternative to deep learn-
ing methods for activity recognition on mobile devices as it
provides approximately the same accuracy using much less
computational resources. In the future, we will explore us-
ing the proposed feature selection approach in combination
with feature learning using deep methods.
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