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PAPER

Parametric Models for Mutual Kernel Matrix Completion

Rachelle RIVERO†,††a), Nonmember and Tsuyoshi KATO†,†††,††††, Member

SUMMARY Recent studies utilize multiple kernel learning to deal with
incomplete-data problem. In this study, we introduce new methods that
do not only complete multiple incomplete kernel matrices simultaneously,
but also allow control of the flexibility of the model by parameterizing the
model matrix. By imposing restrictions on the model covariance, overfit-
ting of the data is avoided. A limitation of kernel matrix estimations done
via optimization of an objective function is that the positive definiteness
of the result is not guaranteed. In view of this limitation, our proposed
methods employ the LogDet divergence, which ensures the positive defi-
niteness of the resulting inferred kernel matrix. We empirically show that
our proposed restricted covariance models, employed with LogDet diver-
gence, yield significant improvements in the generalization performance of
previous completion methods.
key words: multiview learning, incomplete-data problem, probabilistic
PCA, factor analysis, kernel matrix completion

1. Introduction

Since the seminal work of Lanckriet et al. [1], data fusion
has become an integral part of data analysis especially in
the field of computational biology and bioinformatics. For
instance, they showed that a set of proteins can be described
by a number of relevant data sources, such as protein-
protein interaction, gene expression, and amino-acid se-
quences. This is because relevant data sources provide com-
plementary perspectives or “views” of the objects and, to-
gether, these pieces of information present a bigger picture
of the relations the objects have with each other. This no-
tion of exploiting the multiple views of the data for bet-
ter learning is more commonly known as multi-view learn-
ing. The data sources, however, may come in various forms
(e. g. strings, trees, or graphs), and kernel methods [2], [3]
provide a way of integrating such heterogeneous data by
transforming them into a common format: as kernel ma-
trices. A Bayesian formulation for efficient multiple kernel
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learning was presented by Gönen [4], while early works in
computational biology utilized multi-view learning to clas-
sify protein functions [1], [5]–[7].

A shortcoming of multi-view learning, however, is in-
complete data. Incomplete data is relatively common in al-
most all researches, no matter how well-designed the exper-
iments or the data gathering methods are. A few examples
of incomplete data occurrences are: a sensor may suddenly
fail and go off in a remote sensing experiment; participants
may not have answered some questions in a questionnaire;
and inevitable data acquisition error, among others. Analy-
sis of incomplete data may lead to invalid conclusions, since
they only give minimal insights about the objects at hand.

Thus, in addition to dealing with the heterogeneity of
the data, kernel methods are utilized in several studies to
handle missing information. A data source with some miss-
ing information leads to an incomplete kernel matrix (i. e., a
matrix with missing entries); however, complete kernel ma-
trices derived from complete data sources can be exploited
to provide solutions to the incomplete-data problem. Studies
addressing this problem via kernel methods have progressed
over time—from completion of a kernel matrix through
a single complete kernel matrix [8], and through multiple
complete kernel matrices [9]—to simultaneous completion
of multiple incomplete kernel matrices [10], [11]. The ker-
nel completion technique in [10] associates the kernel ma-
trices to the covariance of a zero-mean Gaussian distribu-
tion, and employs the expectation-maximization (EM) algo-
rithm [12] to minimize the objective function. On the other
hand, the technique in [11] learns reconstruction weights to
express a particular incomplete kernel matrix as a convex
combination of the other kernel matrices. Although these
two methods tackle a similar setting, the main difference
between them is that [11] employ Euclidean metric to assess
the distance between kernel matrices, which requires addi-
tional constraints to keep all kernel matrices positive def-
inite. In [10], LogDet divergence [13], [14] is employed,
and this not only keeps the positive definiteness automati-
cally but also brings a strong connection to the classical ap-
proach of estimating missing values in vectorial data. With
the missing entries inferred, the completed kernel matrices
can now be fused and utilized for tasks such as multi-view
clustering and classification.

In the previous solution to the task of multiple kernel
matrix completion [10], a model matrix is introduced as a
representative kernel matrix of the given multiple kernel ma-
trices. The model matrix is allowed to move to any point in
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the positive definite cone which is a very broad manifold in
the set of symmetric matrices. Like the classical model fit-
ting task, a too flexible model tends to overfit to the given
empirical data. The flexibility of the model should be ad-
justed to make the model generalize well, but is impossible
to do in the previous model.

In view of this, we present alternative approaches to
the previous method for multiple kernel matrix completion
by defining parametric models that can move only on a sub-
manifold in the positive definite cone. Both the previous and
the new methods can be related to a statistical framework.
The previous method can be explained with maximum like-
lihood estimation of a full covariance Gaussian, which often
tends to overfit the data due to large degrees of freedom. On
the other hand, the proposed methods can be associated to
a parametric model that imposes a restriction to the covari-
ance matrix parameter. The number of degrees of freedom
in the new models can be adjusted, thereby improving the
generalization performance.

2. Problem Setting

Suppose that we have � objects, x1, . . . , x�, and K data
sources. For example, if we want to analyze a set of pro-
teins, then the number of proteins is �, and the data sources
may be amino-acid sequences, gene expressions, protein cu-
bic structures, and so on. Let κk(·, ·) be a kernel function
between two proteins for k-th data source. For amino-acid
sequence, the corresponding kernel function κk(·, ·) can be a
positive definite sequence similarity. For gene expressions,
the corresponding kernel function κk(·, ·) can be the RBF
kernel between gene expression data. Let Q(k) be the � × �
kernel matrix for k-th data source where its (i, j)-th entry is
given by Q(k)

i, j = κk(xi, x j).
The problem setting discussed in this paper is the par-

ticular setting where some or all of the data sources have
missing information. For example, the cubic structures of
some proteins have not been determined. Gene expressions
are observed for only a subset of the � genes on the micro-
array chip. Given these, the rows and columns in the kernel
matrix corresponding to the objects with missing data have
missing entries (Fig. 1). Now, suppose that for the k-th data
source, only the data for the nk objects are available. We de-
note by Q(k)

vh,vh the k-th kernel matrix Q(k) in which the order
of rows and columns are rearranged so that the first nk avail-
able objects are followed by the remaining (� − nk) objects
with unavailable data. This rearrangement of the rows and
the columns results in the following symmetric partitioned
matrix:

Q(k)
vh,vh =

⎛⎜⎜⎜⎜⎜⎜⎝
Q(k)
v,v Q(k)

v,h

Q(k)
h,v Q(k)

h,h

⎞⎟⎟⎟⎟⎟⎟⎠ , (1)

where Q(k)
v,v ∈ Snk

++, with Snk
++ denoting the set of nk × nk

strictly positive definite symmetric matrices. The algorithm
then mutually infers the (missing) entries for the submatri-

ces Q(k)
v,h ∈ Rnk×(�−nk), Q(k)

h,v =
(
Q(k)
v,h

)�
, and Q(k)

h,h ∈ S(�−nk)
++ , for

Fig. 1 Overview of mutual kernel matrix completion methods. In this
figure, four incomplete empirical kernel matrices, Q(1), . . . , Q(4), are as-
sumed to be given. Here, the shaded areas in the empirical kernel matrices
pertain to the objects with available data, whereas the white areas pertain to
the objects with unavailable data. A model matrix M is introduced, and the
proposed method repeats two steps: model update step and imputation step.
In model update step, the model matrix M is fitted to the set of the current
empirical kernel matrices (Q(k))4

k=1. In imputation step, the missing entries
in each of the empirical kernel matrices are estimated using the current M.

k = 1, . . . ,K.

3. FC-MKMC: Existing Model

In the previous study [10], an algorithm for mutual kernel
matrix completion had already been developed. Henceforth,
we will refer to the previous method as the full covariance
mutual kernel matrix completion (FC-MKMC), and review
the method in this section. To infer the missing values in the
incomplete kernel matrices, FC-MKMC introduces an � × �
model matrix M, and finds the set of kernel matrices Q(k)

that are as close to each other as possible through the model
matrix M. The objective function of FC-MKMC is the sum
of LogDet divergences [13], [14]:

JFC (H , M) �
K∑

k=1

LogDet
(
Q(k), M

)
, (2)

whereH �
{
Q(k)
v,h,Q

(k)
h,h

}K
k=1

is the set of submatrices contain-
ing the missing entries, and M is the model matrix. The
LogDet divergence is defined as

LogDet
(
Q(k), M

)
�

1
2

(
logdet M − logdet Q(k)

+
〈
M−1,Q(k) − M

〉)
.

(3)

An advantage of using LogDet divergence is that a necessary
property for valid kernel matrices, the positive definiteness,
is ensured for the resultant completed kernel matrices. The
approach of FC-MKMC is essentially similar to the well-
known probabilistic approach for classical incomplete data
completion [15], where missing values in incomplete vecto-
rial data are to be inferred. In the approach for the classical
task, a probabilistic model is introduced to be fitted to the
temporarily completed data, and the missing values are im-
puted with the most probable values using the current infer-
ence of the probabilistic model. The number of degrees of
freedom of a probabilistic model provides an important per-
spective for the success or for the failure of data completion:
too rigid models cannot capture the underlying data distri-
bution, while too flexible models are often overfitted to the
data set. In FC-MKMC, the model matrix can take any val-
ues without restriction, with (� + 1)�/2 degrees of freedom.
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This model may be too flexible. In the next section, we shall
present two new models in which the number of degrees of
freedom can be adjusted.

4. Parametric Models

The model matrix in FC-MKMC is too flexible and is not
tunable. Hence, we introduce two types of the model matrix:
the PCA model and the FA model.

4.1 PCA-MKMC

In the PCA model, the form of the model matrix is restricted
to

M :=WW� + σ2I, (4)

where the matrix W ∈ R�×q and scalar σ2 ∈ R are the adap-
tive parameters of the PCA model. The number of columns
in W, which is q, is arbitrary. Larger q yields a more flexible
model, and vice-versa. In this model, the number of degrees
of freedom is �q+1− (q−1)q/2. The difference between the
PCA model and the full-covariance model is the restriction
on q and the additional term σ2I. It can be observed that
when q = � and σ = 0, PCA-MKMC model is reduced to
FC-MKMC model.

Meanwhile, the objective function of PCA model is ex-
pressed as

JPCA(H ,W, σ2) �
K∑

k=1

LogDet(Q(k),WW� + σ2I). (5)

Since the objective function is not jointly convex of the three
arguments, H , W, and σ2, the optimal solution cannot be
given in closed form. Hence, we adopt the following block
coordinate descent method that repeats the following two
steps:

1. Imputation step:

H (t) � argmin
H

JPCA(H ,W(t−1), σ2
t−1); (6)

2. Model update step:

(W(t), σ2
t ) � argmin

(W,σ2)
JPCA(H (t),W, σ2). (7)

Therein, the iteration number t is the superscript of H and
W, and the subscript of σ2. By letting M � WW� + σ2I,
the imputation step can be performed in the same fashion as
that of FC-MKMC [10]. For each data source, the rows and
the columns in M are reordered as Q(k)

vh,vh, and partitioned to

obtain M(k)
v,v , M(k)

v,h, and M(k)
h,h. Using these submatrices in the

model matrix, and the known submatrix in the empirical ma-
trix Q(k)

v,v , the unknown submatrices in Q(k)
vh,vh are re-estimated

as

Q(k)
v,h � Q(k)

v,v

(
M(k)

v,v

)−1
M(k)

v,h
(8)

and

Q(k)
h,h � M(k)

h,h − M(k)
h,v

(
M(k)

v,v

)−1
M(k)

v,h+

M(k)
h,v

(
M(k)

v,v

)−1
Q(k)
v,v

(
M(k)

v,v

)−1
M(k)

v,h. (9)

Finally, the submatrices are reordered back to Q(k) to obtain
a new solution that minimizes JPCA(H ,W, σ2) over missing
values H , with the model parameters W and σ2 held fixed.
The new value of Q(k) at the t-th iteration is then denoted by
Q(t,k).

In the model update step, the K empirical kernel matri-
ces are fixed, and the two model parameters, W and σ2, are
optimized. We here denote by ‘const’ the terms independent
of (W, σ2), and so the objective function can be rewritten as

JPCA(H (t),W, σ2) �
K
2

logdet(WW� + σ2I)

+
K
2

〈
(WW� + σ2I)−1,S(t)

〉
+ const (10)

where we have defined

S(t) �
1
K

K∑
k=1

Q(t,k). (11)

Even though the missing values H are fixed to H (t), the
function (W, σ2) �→ JPCA(H (t),W, σ2) is still not convex on
the space of the model parameters (W, σ2). Nevertheless,
surprisingly enough, the optimal solutions of the model pa-
rameters W and σ2 are given in closed forms [16]. Let λ1,
. . . , λ� be the eigenvalues of S(t). Assume that λ1 ≥ · · · ≥ λ�,
and denote by u1, . . . ,u� their corresponding eigenvectors.
It can be shown that the optimal σ2, denoted by σ2

t , is ex-
pressed as

σ2
t =

1
� − q

�∑
j=q+1

λ j. (12)

Now, let Uq �
[
u1, . . . ,uq

]
and Λq � diag(λ1, . . . , λq).

Here, for vector x ∈ Rn, we denote the diagonal matrix with
diagonal entries x by diag(x). Meanwhile, diag(X) denotes
an n-dimensional vector containing the diagonal entries in a
square matrix X ∈ Rn×n. And so, the optimal value of W,
denoted by W(t), is given by

W(t) = Uq(Λq − σ2
t I)1/2R, (13)

where R is an arbitrary orthonormal matrix (i. e., R�R = I).

4.2 FA-MKMC

In this section, we introduce the FA model, which is a vari-
ant of the PCA model. The FA model uses the following
parametric model as the model matrix:

M =WW� + diag(ψ). (14)

The difference of this from the PCA model is the second
term. In the PCA model, the second term is σ2I, whereas in
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Algorithm 1 PCA-MKMC Algorithm.

Input: Kernel matrices
(
Q(k)
)K
k=1

.

Output: Completed kernel matrices
(
Q(k)
)K
k=1

.
1: begin

2: Initialize
(
Q(k)
)K
k=1

by imputing zeros in the missing entries;

3: Initialize the model matrix as M =
∑K

k=1 Q(k)/K;
4: repeat
5: for all k ∈ {1, . . . ,K} do
6: Use (8) and (9) to update Q(k)

v,h and Q(k)
h,h;

7: end for
8: Use (12) and (13) to update W and σ2;
9: M :=WW� + σ2 I;

10: until convergence
11: end.

the FA model, the term can take any diagonal matrix. The
number of degrees of freedom of the FA model is �q + � −
(q − 1)q/2, and the objective function is expressed as

JFA(H ,W,ψ)

�
K∑

k=1

LogDet
(
Q(k),WW� + diag(ψ)

)
.

(15)

Similar to the fitting algorithm of the PCA model, we adopt
the block coordinate descent method to fit the FA model to
the empirical kernel matrices. The imputation step is the
same as in the PCA model. In the PCA model, when fix-
ing H , the optimal parameters (W, σ2) can be expressed in
closed form. However, in FA model, the optimal parameters
(W,ψ) cannot be given in closed forms, even when H is
fixed. In the FA model, we just improve (W,ψ) in the model
update step.

The two steps in t-th iteration are summarized as fol-
lows:

1. Imputation step. Use (8) and (9) to infer the missing
entriesH (t) such that

H (t) � argmin
H

JFA(H ,W(t−1),ψ(t−1)); (16)

2. Model update step. Update the model parameters
(W(t),ψ(t)) such that

JFA(H (t),W(t),ψ(t))

≤ JFA(H (t),W(t−1),ψ(t−1)).
(17)

A new value (W(t),ψ(t)) that satisfies (17) can be found as
follows: Update the factor loading matrix W(t) and the noise
variance vector ψ(t), by

W(t) � S(t)
xz

(
S(t)

zz

)−1
, and

ψ(t) � diag
(
S(t) − S(t)

xz (S(t)
zz )−1(S(t)

xz )�
)
,

(18)

respectively, where

Algorithm 2 FA-MKMC Algorithm.

Input: Kernel matrices
(
Q(k)
)K
k=1

.

Output: Completed kernel matrices
(
Q(k)
)K
k=1

.
1: begin

2: Initialize
(
Q(k)
)K
k=1

by imputing zeros in the missing entries;

3: Initialize the model matrix as M =
∑K

k=1 Q(k)/K;
4: repeat
5: for all k ∈ {1, . . . ,K} do
6: Use (8) and (9) to update Q(k)

v,h and Q(k)
h,h;

7: end for
8: Use (18) to update W and ψ;
9: M :=WW� + diag (ψ);

10: until convergence
11: end.

F(t) �
(
W(t−1)

)�
diag
(
ψ(t−1)

)−1
,

C(t) � I + F(t)W(t−1),

(M(t))−1 � diag(ψ(t−1))−1 −
(
F(t)
)� (

C(t)
)−1

F(t),

B(t) �
(
W(t−1)

)� (
M(t)
)−1

,

S(t)
xz � S(t)

(
B(t)
)�
,

S(t)
zz � I − B(t)W(t−1) + B(t)S(t)

xz .

(19)

Proposition 4.1: The inequality (17) always holds at every
iteration in Algorithm 2.

(The proof of Proposition 4.1 can be seen in the
longer version of our work [17].) This proposition guar-
antees the monotonic decrease of the objective value
JFA(H (t),W(t),ψ(t)) during optimization.

5. Statistical Interpretation

As described in [10], FC-MKMC falls in a statistical frame-
work. Concretely, FC-MKMC is an algorithm that performs
the maximum likelihood estimation of a model parameter M
of a probabilistic model pFC(x |M) � N(x ; 0, M), where x
is an �-dimensional random variate. In the statistical frame-
work for FC-MKMC, maximum likelihood estimation is
performed by finding the maximizer of the log-likelihood
function

LFC(M) �
K∑

k=1

Eqk(uk)

[
logN

(
uk ; 0, M(k)

v,v

)]
(20)

over the model parameter M(k)
v,v ∈ Snk

++. Therein, uk ∈ Rnk

is the sub-vectorial variate in xk associated with the visible
objects in k-th data source; M(k)

v,v is the submatrix of M asso-
ciated with uk; and qk(·) is the empirical distribution associ-
ated with the k-th data source such that the second moments
satisfy

Eqk(uk)

[
uku
�
k

]
= Q(k)

v,v . (21)

From the log-likelihood function defined in (20), it is possi-
ble to derive an EM algorithm in which the E-step computes
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the expected value E
[
xk x�k
]

through (8) and (9), based on
the current model parameter. In the EM algorithm, the M-
step updates the model parameter M through the maximizer
of the expected complete-data log-likelihood function [15]
over M. However, the model matrix here is too flexible, and
might overfit to the given empirical data.

5.1 EM Algorithm for PCA Model

Here, we present a connection between FC-MKMC algo-
rithm and the classical statistical approach for missing value
estimation. Let us discuss the case of replacing the full co-
variance model with the probabilistic principal component
analysis (PPCA) model introduced in [16]. When employ-
ing PPCA model with the mean parameter fixed to zero, the
probabilistic density of the nk-dimensional random variate
uk is defined as

pPCA

(
uk |W, σ2

)

�
∫
N
(
xk ; 0,WW� + σ2I�

)
dhk

= N
(
uk ; 0,W(k)

v

(
W(k)

v

)�
+ σ2Ink

)
,

(22)

where W(k)
v ∈ Rnk×q is the submatrix of W containing the

rows associated with the visible objects. The log-likelihood
function of this model is given by

LPCA

(
W, σ2

)
�

K∑
k=1

Eqk(uk)

[
log pPCA

(
uk |W, σ2

)]
,

(23)

which is used in finding the maximum likelihood estimate
(MLE) of the model parameters W and σ2 of the PPCA
model. The expected complete-data log-likelihood function,
also known as the Q-function, can be written as

QPCA
t (W, σ2) �

K∑
k=1

E

[
log pPCA(xk |W, σ2)

]

= −K
2

logdet
(
WW� + σ2I

)

− 1
2

〈(
WW� + σ2I

)−1
,

K∑
k=1

E

[
xk x�k
]〉
,

(24)

where we have dropped the terms that do not depend on
the model parameters. Therein, the operator E takes the
mathematical expectation under the joint posterior densities
q(hk |uk)q(uk) defined from the current value of W and σ2.
By letting Q(k) � E

[
xk x�k
]
, the negative Q-function is equal

to JPCA up to constants, implying that the M-step of the EM
algorithm is given by (12) and (13). Hence, we can say that
the PCA-MKMC algorithm presented in the previous sec-
tion is an EM algorithm.

5.2 EM Algorithm for FA Model

This section is concluded by showing that FA-MKMC is

an EM algorithm for fitting the probabilistic factor analysis
(PFA) model [18]. In the PFA model, a latent variable vector
zk ∈ Rq, drawn from the spherical Gaussian N(0, Iq), is in-
troduced for each data source. Then, xk is generated by the
process xk = W zk + εk, where εk is a Gaussian noise drawn
from N(0, diag(ψ)). For this FA model, we treat (xk, zk) as
the complete data for k-th data source to develop an EM
algorithm for maximum likelihood estimation. The proba-
bilistic density of the nk-dimensional random variate uk is
obtained by marginalizing hk and zk out from the joint den-
sity of the complete data:

pFA(xk, zk |W,ψ)

� N (xk ; W zk, diag(ψ)
)N (zk ; 0, Iq

)
. (25)

The Q-function is written as

QFA
t (W,ψ) �

K∑
k=1

E
[
log pFA(xk, zk |W,ψ)

]

= −
〈 K∑

k=1

E

[
zk x�k
]
, diag(ψ)−1W

〉

− 1
2

〈 K∑
k=1

E

[
zk z�k
]
,W� diag(ψ)−1W

〉

− 1
2

〈 K∑
k=1

E

[
xk x�k
]
, diag(ψ)−1

〉

− K�
2

log(2π) − K
2

�∑
i=1

logψi, (26)

where E here is the mathematical expectation that operates
under the joint posterior densities qt(zk, hk |uk)q(uk) depend-
ing on the current value of W and ψ obtained at the (t − 1)
iteration. It can be shown that, by letting Q(k) = E

[
xk x�k
]
,

the expected values computed in the t-th iteration in the EM
algorithm are expressed as

K∑
k=1

E

[
zk z�k
]
= KS(t)

zz and
K∑

k=1

E

[
zk x�k
]
= K(S(t)

xz )�.

(27)

In the M-step of EM algorithm, the model parameters (W,ψ)
that maximize the Q-function are found. By setting the
derivative of the Q-function with respect to the model pa-
rameters to zero, it turns out that the optimal factor loading
matrix W and the noise variance vector ψ are given by (18).
Hence, FA-MKMC is an EM algorithm. (The derivations of
E-step and M-step can be seen in the longer version of our
work [17].)

6. Experimental Settings

To test how much information the kernel matrices will re-
tain after the completion processes, we subject the com-
pleted kernel matrices to a classification task: the functional
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Table 1 Classification performance of the completion methods for 20% missed kernel data. The table
entries are the ROC scores for a given functional class, averaged over ten trials. Here, the SVM classifier
is trained on 20% of the combined completed kernel matrices. The boldfaced values correspond to the
largest ROC score in each row, while the underlined values correspond to the ROC scores with no
significant difference from the highest ROC score in each class.

Class zero-SVM mean-SVM FC-MKMC PCA-GK PCA-K FA-GK FA-K
1 0.7914 0.7915 0.7995 0.8015 0.8022 0.8010 0.8006
2 0.7918 0.7925 0.7975 0.8025 0.8032 0.8014 0.8021
3 0.7941 0.7933 0.8000 0.8045 0.8052 0.8029 0.8032
4 0.8418 0.8431 0.8497 0.8529 0.8534 0.8516 0.8519
5 0.8839 0.8844 0.8956 0.8972 0.8979 0.8961 0.8967
6 0.7665 0.7669 0.7745 0.7780 0.7783 0.7770 0.7770
7 0.8321 0.8328 0.8414 0.8437 0.8444 0.8429 0.8440
8 0.7336 0.7336 0.7354 0.7407 0.7418 0.7391 0.7386
9 0.7621 0.7630 0.7651 0.7706 0.7714 0.7694 0.7695
10 0.7441 0.7445 0.7485 0.7551 0.7570 0.7525 0.7556
11 0.5766 0.5757 0.5825 0.5791 0.5807 0.5793 0.5772
12 0.9357 0.9347 0.9435 0.9448 0.9453 0.9443 0.9444
13 0.6818 0.6845 0.6794 0.6913 0.6911 0.6840 0.6838

classification prediction of yeast proteins. For this task, a
collection of six kernel matrices representing different data
types is used: the enriched kernel matrix KPfam; the three in-
teraction kernel matrices KGen, KPhys, and KTAP; a Gaussian
kernel defined directly on gene expression profiles KExp; and
the Smith-Waterman matrix KSW; as described in [6]. While
each kernel representation contains partial information on
the similarities among yeast proteins, the combination of
these kernel matrices is known to provide a bigger picture
of the relationships among these proteins through the dif-
ferent views of the data [1], [6], [7]—making the combined
form more suitable in the overall predictions for the func-
tional classification task.

Meanwhile, the 13 functional classes considered are
listed in [6], which include metabolism, transcription, and
protein synthesis, among others. If, for example, a certain
protein is known to carry out metabolism and protein syn-
thesis, then this protein is labeled as +1 in these categories
and −1 elsewhere. This setting can then be viewed as 13
binary classification tasks.

In this study we utilized K = 6 related data sources for
functional classification prediction of � = 3, 588 yeast pro-
teins. Initially, the kernel matrices may have missing rows
and columns, which correspond to some missing informa-
tion about the relationships among yeast proteins in the data
sources. Our goal is to infer the missing entries in the ker-
nel matrices, whilst retaining as much valuable information
about the protein relationships as possible.

Our experiments consist of two stages: the kernel ma-
trix completion (or missing data inference) stage, and the
classification stage—the details of which are given in the
subsequent sections.

6.1 Data Inference Stage

In this stage, mutual completion of the kernel matrices is
performed. Since our data set has no missing entries, we
generated incomplete kernel matrices by artificially remov-
ing some entries, following the process in [10]. Here,

rows and (corresponding) columns were randomly picked,
and undetermined values (zeros for zero-imputation method,
and unconditional mean for mean-imputation method) were
imputed; the details of which are referred to in [10]. For nu-
merical stability of the two EM-based methods, S is trans-
formed to (KS + 10−3I)/(K + 10−3) at each iteration, a
trick that is often used in Gaussian fitting. In our exper-
iments, different percentages of missing entries were con-
sidered, and the incomplete kernel matrices were initialized
by zero-imputation before proceeding with the completion
processes, as specified in Alg. 1.

6.2 Classification Stage

After the completion process, a support vector machine
(SVM) [2], [19] is used to predict whether a yeast pro-
tein belongs to a certain functional class or not. Since a
yeast protein is not limited to a single functional class, the
prediction problem is structured as 13 binary classification
tasks, where an SVM classifier is trained on 20% randomly-
picked data points on the combined kernel matrices. We
then assess, in each functional class, the classification per-
formance of the algorithms via receiver operator character-
istic (ROC)—a widely-used performance measure for im-
balanced data sets. Higher ROC score means better classi-
fication performance. The experiments were performed ten
times, and the averages of ROC scores across the ten trials
were recorded.

7. Experimental Results

In this section we present experimental comparisons among
the five multiple kernel completion techniques: zero-SVM,
mean-SVM, FC-MKMC, PCA-MKMC, and FA-MKMC.
We refer to the completion methods zero-imputation and
mean-imputation as zero-SVM and mean-SVM, respec-
tively, after an SVM classifier has been trained. In our
experiments, we used two criteria in choosing the num-
ber q of principal components for PCA and FA models:
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the Guttman-Kaiser and the Kaiser criterion, where q is
the number of all eigenvalues greater than the mean of the
eigenvalues, and greater than one, respectively [20]. Hence-
forth, we will use PCA-GK and PCA-K to refer to PCA-
MKMC, and FA-GK and FA-K to refer to FA-MKMC,
with principal components via Guttman-Kaiser criterion and
Kaiser criterion, respectively.

In the case of completion of 20% missed data, the ROC
scores of the completion methods are summarized in Ta-
ble 1. Here, the proposed method of restricting the model
covariance achieves the highest ROC score in all classes,
except at the 11th functional class where FC-MKMC ob-
tains the highest ROC score; however, in this case, PCA-GK
and PCA-K has no statistical difference from FC-MKMC
according to a one-sample t-test. It can also be noted that in
most cases, the classification performances of the restricted
covariance models are not significantly lower than the high-
est ROC scores.

8. Concluding Remarks

In this study we present new methods, called PCA-MKMC
and FA-MKMC, to solve the problem of mutually inferring
the missing entries of kernel matrices, while controlling the
flexibility of the model. In contrast to the full-covariance
model parameter in the existing method, our algorithm im-
poses a restriction to the model covariance, capturing only
the most relevant information in the data set through the
principal components or factors of the combined kernel ma-
trices. Our proposed method of restricting the model co-
variance matrix via probabilistic PCA and factor analysis
resulted to significant improvements in the generalization
performance, as shown in our empirical results for the func-
tional classification prediction task in yeast proteins.

Besides kernel matrix completion, general matrix com-
pletion algorithms were developed by several studies [21]–
[23]. The major difference of these studies from our work is
that our algorithm infers the missing entries from multiple
incomplete kernel matrices, whereas the existing methods
complete a single incomplete matrix without any other aux-
iliary data. Many of these studies attempt to minimize the
rank of the completed matrix, based on the justification of
the low-rank assumption that has been discussed in many
literature (e.g. [24]). Our new models, PCA-MKMC and
FA-MKMC, are also derived from the low-rank assumption;
this observation suggests that the reason why our new mod-
els performed better than the full-covariance model is due to
the low-rank restriction incorporated in the new models.

It is also noteworthy that the goal of this study is the
development of completion algorithms for general purposes
that are not limited to classification, although it is possible
to consider specializing the kernel completion algorithm to
a particular purpose (such as classification) by adding some
new loss functions. For such modified models, other opti-
mization algorithms must be developed newly since the de-
veloped optimization algorithms work only for the current
formulation.

Multiple model matrices may also be considered when
there are many incomplete kernel matrices that differ highly
from each other. In such scenario, we may employ a
mixture-of-Gaussian model to generate multiple model ma-
trices, allowing us to develop another EM algorithm for
model fitting and matrix completion. We leave the devel-
opment of such variants in future work.
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