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PAPER

A New DY Conjugate Gradient Method and Applications to Image
Denoising

Wei XUE†a), Junhong REN††b), Xiao ZHENG†c), Nonmembers, Zhi LIU†††d), Member,
and Yueyong LIANG††††e), Nonmember

SUMMARY Dai-Yuan (DY) conjugate gradient method is an effective
method for solving large-scale unconstrained optimization problems. In
this paper, a new DY method, possessing a spectral conjugate parameter
βk, is presented. An attractive property of the proposed method is that the
search direction generated at each iteration is descent, which is indepen-
dent of the line search. Global convergence of the proposed method is also
established when strong Wolfe conditions are employed. Finally, compari-
son experiments on impulse noise removal are reported to demonstrate the
effectiveness of the proposed method.
key words: unconstrained optimization, conjugate gradient method, line
search, image denoising

1. Introduction

We consider the unconstrained optimization problem

min { f (x) | x ∈ Rn}, (1)

where f : Rn → R is continuously differentiable, and its
gradient ∇ f is denoted by g. Usually, iterative methods de-
signed for solving (1) are of the form

xk+1 = xk + αkdk, (2)

where αk is a positive stepsize, and dk ∈ Rn is a search di-
rection. Numerous methods have been proposed to solve
(1) in the past decades. Due to the simplicity of iteration
and the low memory requirements, conjugate gradient (CG)
methods are very popular [19], [29], [32], [33]. The search
direction dk is usually defined as

dk =

{ −gk for k = 0,
−gk + βkdk−1 for k ≥ 1,

(3)
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where gk is the gradient of f at xk, and βk ∈ R is the
conjugate parameter that characterizes the method. Differ-
ent βk results in different numerical performance. In [17],
Hestenes and Stiefel first proposed a CG method for min-
imizing a convex quadratic function. Later on, Fletcher
and Reeves [14] applied the CG method to general un-
constrained optimization problems. Well-known formulas
for βk are the Hestenes-Stiefel (HS) [17], Fletcher-Reeves
(FR) [14], Polak-Ribière-Polyak (PRP) [27], Conjugate De-
scent (CD) [6], Liu-Storey (LS) [22], and DY [13]. In the
six methods mentioned above, FR, CD, and DY methods
usually have global convergence, but their numerical per-
formance is unattractive. The methods of HS, PR, and LS
are very practical, but may not globally converge. In this
paper, we mainly focus on the DY method with βDY

k =

‖gk‖2/(dT
k−1yk−1), where yk−1 is defined as yk−1 = gk − gk−1,

and ‖ · ‖ denotes the Euclidean norm.
DY method has been studied by many researchers over

the past decade. In 2008, Andrei [1] proposed a modified
DY method which satisfies both sufficient descent and con-
jugacy conditions, independently of the line search, and in
[2], Andrei proposed a hybrid conjugate gradient algorithm
in which the conjugate parameter βk is computed as a convex
combination of βHS

k and βDY
k . In 2009, Zhang [36] proposed

two modified versions of the DY formula. One is based
on the modified BFGS method [21] with the other on the
ideas of [31], [37]. In 2013, Babaie-Kafaki [3] suggested
a hybridization of HS and DY using a quadratic relaxation.
In 2016, Sato [28] presented a generalization of DY’s Eu-
clidean CG method to a Riemannian algorithm that requires
only the weak Wolfe conditions. Other related work can be
found in [4], [23], [24], etc.

Recently, there has been growing interest in the descent
CG method. Motivated by the work of [16], Yu et al. [33]
proposed a descent DY (DDY) CG method, which is given
by

βDDY
k = βDY

k −
C‖gk‖2

(yT
k−1dk−1)2

gT
k dk−1, (4)

where C is a positive parameter. If C ≥ 1/4, then the search
direction generated by the DDY method can always sat-
isfy the (sufficient) descent condition, i.e., gT

k dk ≤ −(1 −
1

4C )‖gk‖2 < 0. Furthermore, the authors presented a spectral
DDY (SDDY) method, in which, the conjugate parameter
takes the following form
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βS DDY
k = βS DY

k − C‖gk‖2
δk(yT

k−1dk−1)2
gT

k dk−1, (5)

where βS DY
k = βDY

k /δk, and δk = yT
k−1sk−1/‖sk−1‖2. Further

details of δk can be found in [5]. Similarly, if C ≥ 1/4,
then (5) satisfies the (sufficient) descent condition. In [12],
Cheng proposed two-term PRP-based CG method, where
the search direction is defined as

dk =

⎧⎪⎪⎨⎪⎪⎩
−gk for k = 0,

−gk + β
PRP
k (I − gkg

T
k

gT
k gk

)dk−1 for k ≥ 1.
(6)

The search directions generated by (6) always satisfy gT
k dk =

−‖gk‖2 < 0, which implies the sufficient descent condi-
tion. Simulation results show the potential advantages of
this method.

In this paper, we give a new formula for βS DDY
k and fo-

cus on the dk defined in (6). The resulting search direction is
a descent direction, and the proposed CG method is globally
convergent.

The remainder of this paper is organized as follows. In
Sect. 2, we present a modification of spectral DDY formula,
which possesses the sufficient descent property independent
of line search conditions. Global convergence analysis is
given in Sect. 3. In Sect. 4, we apply the proposed method to
image denoising. Experimental results are given in Sect. 5.

2. New Formula for βk

In this paper, we focus on the direction dk defined in (6) with
the conjugate parameter βS DDY

k defined in (5). In order to
establish the global convergence result for general objective
functions, we reformulate βS DDY

k as

βS DDY
k = βS DY

k −min{βS DY
k ,

C‖gk‖2gT
k dk−1

δk(yT
k−1dk−1)2

}, (7)

which implies that βS DDY
k ≥ 0 for all k. By substituting (7)

into (6), we obtain the following search direction

dk =

⎧⎪⎪⎨⎪⎪⎩
−gk for k = 0,

−gk + β
S DDY
k (I − gkg

T
k

gT
k gk

)dk−1 for k ≥ 1.
(8)

It follows from (8) that this dk is a descent direction.
In the following, we call our method the new spectral

descent DY (hereinafter referred as NsdDY) conjugate gra-
dient method. We state the steps of NsdDY in Algorithm 1.

3. Convergence Analysis

In this section, we establish a convergence theorem for Al-
gorithm 1. We assume that gk � 0 for all k; otherwise, a
stationary point has been found.

To analyse the global convergence of Algorithm 1, we
first make the following assumptions on the objective func-
tion f .

Assumption 1: The level set L = {x ∈ Rn : f (x) ≤ f (x0)}

Algorithm 1: NsdDY
Data. Given the parameters 0 < σ1 ≤ σ2 < 1, C > 1/4, relaxation factor
τ > 0 and x0 ∈ Rn. Set k := 0.
While “not converged”, Do
Compute dk by (8), where βS DDY

k is determined by (7).
Find αk > 0 such that the following Wolfe conditions hold

f (xk + αkdk) − f (xk) ≤ σ1αkg
T
k dk,

|g(xk + αkdk)T dk | ≤ −σ2g
T
k dk .

(9)

Compute x̃k = xk + αkdk .
Compute xk+1 = (1 − τ)xk + τx̃k .
Set k := k + 1.
End Do

is bounded, namely, there exists a positive constant B, such
that ‖x‖ ≤ B,∀x ∈ L.

Assumption 2: In some neighborhood LN of L, f is con-
tinuously differentiable, and its gradient g is Lipschitz con-
tinuous with Lipschitz constant L > 0, that is, ‖g(x)−g(y)‖ ≤
L‖x − y‖, ∀ x, y ∈ LN .

Under Assumptions 1 and 2, we have the follow-
ing lemma called Zoutendijk condition [26] without proof,
which is often used to prove global convergence results of
conjugate gradient-based methods.

Lemma 1: [Zoutendijk condition] Suppose Assumptions 1
and 2 hold. Consider any iterative method of the form (2),
where dk is a descent direction and αk satisfies (9), then∑∞

k=0
(gT

k dk)2

‖dk‖2 < +∞.

The next theorem establishes the global convergence
of the Algorithm 1 when f is strongly convex, that is, there
exists constant ξ > 0 such that ξ‖x−y‖2 ≤ (g(x)−g(y))T (x−
y) for all x, y ∈ LN .

Theorem 1: Let {xk} be the sequence generated by Algo-
rithm 1. If Assumptions 1 and 2 hold and f is strongly con-
vex, then lim infk→∞ ‖gk‖ = 0.

Proof 1: Suppose that lim infk→∞ ‖gk‖ > 0, and define γ =
inf{‖gk‖ : k > 0}. Since gk � 0, it follows that γ > 0. By the
second equation of (9), we have

yT
k−1dk−1 = (gk − gk−1)T dk−1 ≥ (σ2 − 1)gT

k−1dk−1.

Combining this with gT
k−1dk−1 = −‖gk−1‖2, we have

yT
k−1dk−1 ≥ (1 − σ2)γ2.

By the second equation in (9), it holds that

gT
k dk−1 ≥ σ2g

T
k−1dk−1 = σ2(gk − yk−1)T dk−1.

Since σ2 < 1, we have gT
k dk−1 ≥ ( −σ2

1−σ2
)yT

k−1dk−1, i.e.,

| g
T
k dk−1

yT
k−1dk−1

| ≤ max{1, σ2

1 − σ2
}.

By the strong convexity assumption of f , it holds that ξ ≤
δk ≤ L. From all above derivations, we obtain
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|βS DDY
k | = |βS DY

k −min{βS DY
k , C‖gk‖2

δk(yT
k−1dk−1)2 g

T
k dk−1}|

≤ |βS DY
k | + C‖gk‖2

δk |yT
k−1dk−1 |

|gT
k dk−1 |

|yT
k−1dk−1 |

= 1
δk

1
|yT

k−1dk−1 | (‖gk‖2 +C‖gk‖2 |g
T
k dk−1 |

|yT
k−1dk−1 | )

≤ Γ2

ξγ2(1−σ2) (1 +C max{1, σ2
1−σ2
}) � ΦΨ,

where Φ = Γ2

ξγ2(1−σ2) , Ψ = 1 + C max{1, σ2
1−σ2
}, Γ =

maxx∈LN‖g(x)‖. Therefore,

‖dk‖ = ‖ − gk + β
S DDY
k (I − gkg

T
k

gT
k gk

)dk−1‖
= ‖ − (1 + βS DDY

k
gT

k dk−1

‖gk‖2 )gk + β
S DDY
k dk−1‖

≤ ‖gk‖ + 2|βS DDY
k |‖dk−1‖

≤ Γ + 2ΦΨ‖dk−1‖
≤ · · ·
≤ Γ + Γ(2ΦΨ) + Γ(2ΦΨ)2 + · · · + Γ(2ΦΨ)k

= Γ
(2ΦΨ)k−1

2ΦΨ−1 .

Let Θ = maxk{Γ (2ΦΨ)k−1
2ΦΨ−1 }, then we have ‖gk‖4

‖dk‖2 ≥
γ4

Θ2 . Further,

∞∑
k=0

(gT
k dk)2

‖dk‖2 =
∞∑

k=0

‖gk‖4
‖dk‖2 = +∞,

which contradicts to the Zoutendijk condition. This com-
pletes the proof.

4. Applications to Image Denoising

Based on the analysis above, the proposed algorithm NsdDY
can be used to handle unconstrained optimization problems.
Here, we apply it to impulse noise denoising. There are
two main kinds of impulse noise: salt-and-pepper noise
and random-valued noise. For images corrupted by salt-
and-pepper noise, the noisy pixels only take the maximum
number and the minimum in a dynamic range, while for
random-valued noise, the noisy pixels can be any random
numbers. The goal of image denoising is to remove the

Fig. 1 Flow chart of our experiments.

Fig. 2 Original test images 512 × 512: Lena, Barbara, Cameraman, Boat

noise while preserving image details. The median-based fil-
ter was once the most popular method for removing impulse
noise [11], [18], [20]. The filter first locates possible noisy
pixels, and then replaces them with the median values or
their variants. However, the main drawback is that this re-
placement technique can blur the details of image features
such as the possible presence of edges, especially when the
noise ratio is high.

In order to overcome the drawback, Chan et al. [9], [10]
proposed a two-phase scheme which combines the advan-
tages of adaptive median filter and variational method. For
salt-and-pepper noise, the first phase is to identify the noisy
pixels by using the adaptive median filter [18], while for
random-valued noise, it is accomplished by using the adap-
tive center-weighted median filter [11]. Let X be the true im-
age of size M-by-N, and A = {1, 2, · · · ,M} × {1, 2, · · · ,N}
be the index set of X. Let the set of indices of the noisy pix-
els detected in the first phase denote by N , where N ⊂ A.
Let u = [ui, j](i, j)∈N be a column vector of length l ordered
lexicographically (l is the number of elements of N), and
yi, j denote the observed pixel value at position (i, j). Then,
the second phase it to recover the noisy pixels by minimiz-
ing the following edge-preserving regularization function

Fα(u) =
∑

(i, j)∈N
|ui, j − yi, j| + μ2

∑
(i, j)∈N

(2 · S i, j + Ti, j), (10)

where S i, j =
∑

(m,n)∈Vi, j\N ϕα(ui, j − ym,n), Ti, j =∑
(m,n)∈Vi, j

⋂N ϕα(ui, j − um,n), and Vi, j denotes the set of the
four closest neighbors of the pixel at position (i, j) ∈ A. ϕ
is an edge-preserving function, and α > 0 is a parameter.
Examples of ϕα are

√
α + u2 and |u|α.

The function Fα(u) only applies to the selected noisy
pixels, i.e., the uncorrupted pixels are unchanged. The func-
tion Fα(u) in (10) is nonsmooth because of the 1-norm data-
fitting term |ui, j−yi, j|, it is expensive to get the minimizer. To
improve the computational efficiency, Cai et. al suggested to
remove the data-fitting term in [7]. This operation can trans-
form Fα(u) into a smooth function which can be minimized
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Table 1 Summary of restoration results for PRPCG/DSCG/NsdDY methods (the bold font represents the optimal value).

Test Noise PRPCG DSCG NsdDY
Images Level NI CPU Time SNR SSIM NI CPU Time SNR SSIM NI CPU Time SNR SSIM

10% 296 28.01 55.9018 0.9978 141 13.15 55.9312 0.9978 79 6.07 55.9805 0.9978
30% 360 56.83 49.7132 0.9912 256 40.25 49.7144 0.9912 107 14.13 49.7270 0.9912

Lena 50% 323 74.11 45.2247 0.9794 236 56.29 45.2249 0.9794 132 26.55 45.2268 0.9794
70% 308 72.58 40.9010 0.9515 255 60.00 40.9018 0.9515 110 23.25 40.9014 0.9515
90% 349 81.14 34.0608 0.8527 368 94.41 34.0774 0.8528 203 48.16 34.1207 0.8528

10% 328 31.03 46.2025 0.9914 248 23.90 46.1898 0.9914 107 8.61 46.1042 0.9914
30% 291 45.61 39.4577 0.9648 256 40.12 39.4551 0.9648 110 14.66 39.4213 0.9647

Barbara 50% 255 57.96 36.3925 0.9290 215 49.71 36.3963 0.9289 117 23.55 36.4037 0.9289
70% 184 42.72 33.8104 0.8764 162 38.76 33.8103 0.8764 104 22.42 33.8101 0.8764
90% 320 69.77 31.5994 0.7643 303 69.34 31.6026 0.7644 191 42.62 31.6074 0.7645

10% 222 21.00 52.4619 0.9993 176 16.57 52.4758 0.9993 55 4.18 52.5340 0.9993
30% 283 45.81 49.2107 0.9962 158 25.59 49.2068 0.9962 161 22.87 49.2061 0.9962

Cameraman 50% 311 73.27 43.7880 0.9872 253 59.76 43.7758 0.9872 138 29.28 43.7412 0.9872
70% 301 70.85 38.1212 0.9609 235 56.20 38.1201 0.9609 133 30.01 38.0989 0.9610
90% 398 88.28 29.8083 0.8483 343 77.84 29.8122 0.8483 231 50.85 29.8179 0.8483

10% 357 34.84 53.2215 0.9955 247 24.02 53.2218 0.9955 60 4.82 53.2564 0.9955
30% 376 60.73 46.9295 0.9836 254 43.76 46.9234 0.9836 95 14.24 46.9032 0.9835

Boat 50% 344 79.26 42.7586 0.9615 259 59.94 42.7619 0.9614 122 24.60 42.7607 0.9614
70% 288 66.36 38.3880 0.9141 234 54.67 38.3896 0.9141 116 24.13 38.3865 0.9141
90% 313 67.42 31.9907 0.7535 317 70.90 31.9961 0.7536 162 35.48 32.0405 0.7538

Fig. 3 Restoration results when noise level = 30%.
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Fig. 4 Restoration results when noise level = 70%.

efficiently. Therefore, the objective function that we are go-
ing to minimize in this paper takes the following form

Fα(u) =
∑

(i, j)∈N
(2 · S i, j + Ti, j). (11)

From the results in [7], we see that by minimizing Fα(u)
instead of Fα(u) in the second phase, the denoising qual-
ity is not affected. And according to the numerical results,
the PRP conjugate gradient (PRPCG) method is the most
efficient method among the given methods. Later on, Yu
et al. [34] proposed a descent spectral conjugate gradient
(DSCG) method for solving (11). Compared to PRPCG,
the DSCG method can reduce the computing time while
obtaining the same restored image quality. Total variation
regularization-based image denoising methods are also pop-
ular, interested readers may refer to [8], [25], [35]. This is
not the point of this paper, we do not elaborate here.

5. Numerical Results

In this section, we report some numerical results to demon-
strate the performance of NsdDY algorithm for salt-and-
pepper impulse noise removal by minimizing (11). Our line
search subroutine chooses the initial guess for step size such
as αk = (gT

k dk)/‖dk‖2, and further computes it such that the
Wolfe conditions (9) hold. The parameters in the NsdDY
method are specified as follows: σ1 = 10−4, σ2 = 0.1,
C = 0.5, τ = 1.8. Figure 1 shows the flow chart of our
experiments. Figure 2 displays the original test images. All
simulations are implemented by MATLAB 2015a on a PC.

To show the performance of NsdDY method, we com-
pare it with the PRPCG method and the DSCG method. It
should be emphasized in this paper that we are mainly con-
cerned with the speed of solving the minimization of (11),
in which the potential function is ϕα(u) =

√
α + u2 with
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α = 100. We use Signal-to-Noise Ratio (SNR)† and Struc-
tural Similarity (SSIM)†† to measure the quality of the re-
stored images. Stopping criterions of both methods are

| f (uk) − f (uk−1)|
| f (uk)| ≤ 10−6 and

‖uk − uk−1‖
‖uk‖ ≤ 10−6.

Experimental results are given in Table 1. We report the
number of iterations (NI), the computing time (CPU Time)
(in seconds) required for the whole denoising process, the
SNR (in dB) of the restored image, and the SSIM values.
From Table 1, we can see that the NsdDY method is the
fastest of the three methods, and it requires fewer iterations.
Moreover, we note that the SNR and SSIM values attained
by these three methods are very similar. Figures 3 and 4
show the restoration results obtained by the PRPCG, DSCG,
and NsdDY methods, respectively. These results show that
the proposed NsdDY method can restore corrupted image
quite well in an efficient manner.

In conclusion, we proposed a new modified Dai-Yuan
conjugate gradient formula and introduced a new conjugate
gradient method called NsdDY. We established its global
convergence under the strong Wolfe line search conditions.
Simulation experiments verified that NsdDY can signifi-
cantly reduce the computing time while obtaining the same
restored image quality.

It is worth mentioning that in this paper we mainly fo-
cus on the image denoising problem, the proposed approach
can also be applied to other fields, such as task assignment
and route planning [15], [38], which is our research direc-
tion in future.
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