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Feature Based Domain Adaptation for Neural Network Language
Models with Factorised Hidden Layers

Michael HENTSCHEL†∗a), Marc DELCROIX††, Nonmembers, Atsunori OGAWA††, Tomoharu IWATA††,
and Tomohiro NAKATANI††, Members

SUMMARY Language models are a key technology in various tasks,
such as, speech recognition and machine translation. They are usually used
on texts covering various domains and as a result domain adaptation has
been a long ongoing challenge in language model research. With the rising
popularity of neural network based language models, many methods have
been proposed in recent years. These methods can be separated into two
categories: model based and feature based adaptation methods. Feature
based domain adaptation has compared to model based domain adaptation
the advantage that it does not require domain labels in the corpus. Most ex-
isting feature based adaptation methods are based on bias adaptation. We
propose a novel feature based domain adaptation technique using hidden
layer factorisation. This method is fundamentally different from existing
methods because we use the domain features to calculate a linear combi-
nation of linear layers. These linear layers can capture domain specific
information and information common to different domains. In the experi-
ments, we compare our proposed method with existing adaptation methods.
The compared adaptation techniques are based on two different ideas, that
is, bias based adaptation and gating of hidden units. All language mod-
els in our comparison use state-of-the-art long short-term memory based
recurrent neural networks. We demonstrate the effectiveness of the pro-
posed method with perplexity results for the well-known Penn Treebank
and speech recognition results for a corpus of TED talks.
key words: language model, LSTM, domain adaptation, unsupervised, la-
tent Dirichlet allocation

1. Introduction

Language models (LMs) are usually trained on text data
covering a large variety of domains. Domain specific lan-
guage models, however, usually show a lower perplexity
(PPL) and better performance in automatic speech recog-
nition (ASR) tasks compared to general LMs at test time.
Therefore, adapting general LMs to specific topics or gen-
res has been an ongoing research interest. A comprehen-
sive overview of N-gram LM adaptation techniques was pro-
vided in [1] and [2]. N-gram adaptation with topic model
information was presented in [3]–[7]. N-gram LMs have
been the most popular LMs in speech processing but there
have also been several approaches of domain adaptation
proposed for other LM types, such as, maximum entropy
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LMs [8]–[12].
Since the introduction of neural network based LMs

(NN-LMs), these models have shown to perform consis-
tently better than N-grams. NN-LMs were first introduced
with feed-forward neural networks (FFWD-LMs) [13]. Sub-
sequently, vanilla recurrent neural network LMs (RNN-
LMs) [14], [15] further improved over FFWD-LMs, but suf-
fered from the vanishing gradient problem [16]. In order
to solve this problem, the vanilla RNN has been replaced
with long short-term memory (LSTM) [17] to create LSTM-
LM [18].

There exist two paradigms for domain adaptation of
NN-LMs: model based and feature based domain adapta-
tion. In model based adaptation, the parameters in the net-
work are adapted with in-domain data by re-training. In fea-
ture based adaptation, an adaptation feature, such as, topic
information from latent Dirichlet allocation (LDA) [19] is
used. The LM is trained with the adaptation feature to adapt
its activations in the network to the topic information. Com-
pared to model based domain adaptation, feature based do-
main adaptation has the advantage that it does not require
domain labels in the corpus. In addition, model based adap-
tation can have a problem with overfitting on little adapta-
tion data [20].

We propose a new approach for feature based LM do-
main adaptation. Feature based domain adaptation methods
usually add a bias to the network input or output. This bias
depends on the topic feature or a (given) domain label. Our
proposed factorised hidden layer based adaptation is funda-
mentally different from bias based approaches. The output
layer is factorised into multiple layers or factors, where each
factor is weighted by a factor weight. This can also be seen
as a linear combination of different subspaces. It is also
similar to a linear combination of multiple domain depen-
dent LMs, which share a common hidden state. The fac-
tor weights are calculated from an auxiliary network, which
is trained jointly with the main network by standard error
backpropagation. The input of this auxiliary network are
LDA features. Factorised hidden layer adaptation has been
successfully applied to acoustic model adaptation [21] and
speaker aware beamforming [22].

RNN-LMs have been the main target of domain adap-
tation techniques presented in the literature, but LSTM-LMs
are currently the state-of-the-art. For this reason we will use
LSTM as recurrent unit in all our NN-LMs. In addition, all
adaptation methods we compare work in an unsupervised
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manner, that means, these methods do not require any do-
main label in the training data. This setting is more relevant
in practice because LMs can be trained on large text corpora
of many million words. It would be costly and time inten-
sive to annotate such large corpora by humans.

For our comparison, we use two different corpora. The
first one is the well-known Penn Treebank (PTB) [23]. De-
spite its small size, PTB is one of the de-facto benchmarks
in language modelling. As second corpus, we use a corpus
based on TED talks. In order to provide ASR results, we
use the TED-LIUM dataset [24], [25]. For language model
training, we use our own enhanced training set, based on
subtitles from more TED talks than used in TED-LIUM.

2. Overview of Domain Adaptation for Neural Net-
work based Language Models

2.1 Model Based Domain Adaptation

Model based adaptation is a two-step process. First, a gen-
eral language model is trained, where often an adaptation
layer is inserted into the network. In the second step, the
weights in this adaptation layer are updated using in-domain
data. Model based adaptation has been used for FFWD-
LMs [26], [27] and RNN-LMs [28]. Recently, model based
adaptation with a linear hidden network (LHN) [29], [30]
was proposed. An LHN adds a linear hidden layer in the
network without a subsequent non-linearity. As input to this
linear layer, the authors used the output of the RNN and a
one-hot label which encodes the domain. The weights in
this linear layer are learned during re-training.

A slightly different approach for model based adap-
tation uses a gating mechanism. In acoustic model adap-
tation, a concept called learning hidden unit contributions
(LHUC) [31], [32] has previously been introduced. In this
case, the speaker adaptation data is used to apply a gating
mechanism on the hidden units in a neural network based
acoustic model. In [20], the application of LHUC to RNN-
LMs was investigated. The authors applied the concept of
LHUC to the output of the hidden layer and the adapta-
tion weights were learned from in-domain data. The authors
showed improvements for PPL and N-best rescoring.

However, with little adaptation data, model based adap-
tation can be a problem because the adapted models are
prone to overfitting [20]. In addition, model based adapta-
tion requires domain labels throughout the whole corpus.
Creating this annotation is expensive.

2.2 Feature Based Domain Adaptation

In feature based adaptation, usually the input of the network
is extended by additional domain specific features. Many
methods have been proposed, where these features act as a
domain dependent bias. For RNN-LMs, the first proposed
approach was a context dependent RNN-LM [33], which
used LDA features to allow the network to exploit infor-
mation from a context window of the current word. This

Fig. 1 A simple LSTM-LM.

method has also shown to be successful for RNN-LMs [34]
on multi-domain broadcast data in the MGB Challenge [30].
The authors showed that feature based domain adaptation
outperforms model based adaptation in the context of the
MGB Challenge. Domain adaptation has mainly been pro-
posed using vanilla RNN-LMs. To the best of our knowl-
edge, the only other prior research on LSTM-LM adapta-
tion was presented in [35], which uses the same adapta-
tion mechanism as [33]. A feature based adaptation mech-
anism using a gating on the word vectors was proposed in
[36]. The authors combined information from in-domain
and general-domain word vectors.

3. LSTM Language Model

Before explaining more details about the adaptation tech-
niques, we briefly review a baseline LSTM-LM as shown in
Fig. 1. The vector encoding the current word ID by a one-
hot vector is denoted by w(t). Using the embedding matrix
U(w), the input to the LSTM x(t) is calculated as follows,

x(t) = U(w)w(t). (1)

To calculate its output h(t) and its state c(t), the following
set of equations are used in an LSTM cell [37].

i(t) = σ(W(i,w)x(t) +W(i,h)h(t − 1) + b(i)), (2)

f (t) = σ(W(f,w)x(t) +W(f,h)h(t − 1) + b(f)), (3)

o(t) = σ(W(o,w)x(t) +W(o,h)h(t − 1) + b(o)), (4)

g(t) = tanh(W(g,w)x(t) +W(g,h)h(t − 1) + b(g)), (5)

c(t) = f (t) � c(t − 1) + i(t) � g(t), (6)

h(t) = o(t) � tanh(c(t)), (7)

where i(t), f (t) and o(t) are usually named the input, forget
and output gates, respectively. The weight matrices for gate
j for the word input and the previous hidden layer are de-
noted by W( j,w) and W( j,h), respectively. The bias vector for
each respective gate j is denoted as b( j). Since we use vec-
tor notation in the above equations, σ(·) is the element-wise
sigmoid, tanh(·) is the element-wise hyperbolic tangent and
� denotes an element-wise multiplication.

A simple LSTM-LM calculates the probability for the
next word ŵ(t + 1) from h(t) as

ŵ(t + 1) = softmax(V(w)h(t) + b(V,w)), (8)

where V(w) and b(V,w) are the weight matrix and the bias vec-
tor of the output layer and softmax is the softmax function.

4. Feature Based Language Model Adaptation for
LSTM-LMs

After reviewing the basic LSTM-LM, we introduce common
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Fig. 2 LSTM-LM feature based model adaptation with (a) context dependent LSTM-LM
(contLSTM), (b) LHN (fLHN-LSTM), (c) LHUC (fLHUC-LSTM) and (d) factorised hidden layer
(factLSTM).

approaches for NN-LM domain adaptation. Although many
of these approaches were introduced with vanilla RNN-
LMs, we investigate their extension to LSTM-LMs. In addi-
tion, some of the approaches have been proposed for model
based adaptation, however, we investigate their application
to feature based adaptation. The features commonly used in
prior research for domain adaptation were derived from an
LDA topic model.

4.1 Context Dependent LSTM-LM

The first adaptation technique, as shown in Fig. 2 (a), has
been originally proposed for RNN-LMs [33], [34] and has
also been used with LSTM-LMs [35]. The input and output
in a context dependent LSTM-LM (contLSTM) are depen-
dent on the adaptation feature. The input is extended by
an additional adaptation feature vector a(t). Equation (1) is
modified as follows,

x(t) = U(w)w(t) + U(a)a(t) + b(U,a), (9)

where U(a) and b(U,a) are the weight matrix and bias vec-
tor for the adaptation features, respectively. There is also a
direct connection introduced to the output layer which mod-
ifies Eq. (8) as follows,

ŵ(t + 1)

= softmax(V(w)h(t) + b(V,w) + V(a)a(t) + b(V,a)), (10)

where V(a) and b(V,a) are the weight matrix and bias vector
of the linear layer connecting the adaptation feature vector
to the output.

For RNN-LMs, the PPL reduction achieved with this
adaptation scheme was significant compared to a vanilla

RNN-LM. This can be explained to some extent by the van-
ishing gradient problem that RNNs suffer from [16]. The
long context information provided by the adaptation features
can circumvent this problem. In combination with LSTM-
LMs, however, the relative PPL reduction achieved by this
method was not as large as with vanilla RNN-LMs [35].

4.2 LHN Based LSTM-LM Adaptation

LM adaptation with a linear hidden network (LHN) has re-
cently been proposed for model based adaptation of vanilla
RNN-LMs [38]. Since we focus on feature based domain
adaptation, we decided to use the LDA topic feature instead
of a domain label as input to the LHN. In the experiments,
we denote this method by fLHN-LSTM. Figure 2 (b) shows
an fLHN-LSTM. The LHN introduces an additional linear
layer between the LSTM and the output layer. Since the
output d(t) of this intermediate linear layer is not followed
by a non-linearity, it is called a linear hidden network.

The LDA features a(t) are transformed by a linear layer
with weight matrix V(a) and bias vector b(V,a) and inserted
into the LHN. The output of the LSTM h(t) is also trans-
formed by a linear layer with weight matrix V(w) and bias
b(V,w) and added at the input of the LHN

d(t) = V(w)h(t) + b(V,w) + V(a)a(t) + b(V,a). (11)

As shown in Eq. (11), LHN introduces a topic dependent
bias term (V(a)a(t) + b(V,a)). The output of the LHN d(t)
is followed by a linear layer V and the softmax function to
calculate the probability for the next word ŵ(t + 1)

ŵ(t + 1) = softmax(V d(t) + b(V)). (12)
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The LDA features are input to the LHN during network
training and evaluation.

4.3 LHUC Based Domain Adaptation

Model adaptation with LHUC has first been introduced for
acoustic model adaptation in ASR. Recently, it has also been
applied to vanilla RNN-LMs [20] and it showed to reduce
PPL and WER compared to a vanilla RNN-LM. In [20]
the adaptation was applied as a model based adaptation of
the RNN. We will, however, use LHUC based adaptation
as a feature based adaptation method, where the adaptation
weights are calculated from auxiliary features in a similar
way to [32]. We use LHUC in a similar scheme to fLHN-
LSTM, as shown in Fig. 2 (c). We will denote LHUC based
model adaptation as fLHUC-LSTM.

The LDA features are multiplied with a linear layer,
followed by a sigmoid non-linearity and a weighting by two
(as proposed by [31], [32])

h(a)(t) = 2σ(U(a)a(t) + b(U,a)), (13)

where U(a) and b(U,a) are the weight matrix and bias vector
of the linear layer for the LDA features. The sigmoid non-
linearity will set some of the activations to zero. In order to
compensate for it, the amplitude of the remaining activations
is multiplied by two, in order to keep the activation in the
subsequent layer on the same level. h(a)(t) is used as a gate
for the output of the LSTM

d(t) = (V(w)h(t) + b(V,w)) � h(a)(t), (14)

where � denotes an element-wise multiplication of two vec-
tors. h(a)(t) has values between [0, 2] and it can be inter-
preted as a context dependent gating of the units in the adap-
tation layer. Another linear layer and the softmax function
then follow the output of this adaptation layer

ŵ(t + 1) = softmax(V d(t) + b(V)). (15)

We use this adaptation scheme, because in our experiments
it showed to be more effective than an adaptation of the di-
rect output of LSTM.

5. Proposed Factorised Hidden Layer Based LSTM-
LM Adaptation

In this section, we introduce our proposed method for fea-
ture based domain adaptation using factorised hidden layers,
as shown in Fig. 2 (d). We denote it hereafter as factLSTM.
In our method, we use the output of the LSTM as an input to
N linear layers (factors) with corresponding weight matrix
L(w)

n and bias b(L,w)
n . The size of each linear layer is the num-

ber of hidden units times the vocabulary size, that means the
size of the output layer. After weighting each of the linear
layers by a factor weight γn, they are summed up before the
softmax function

ŵ(t + 1) = softmax

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
N∑

n=1

γn(L(w)
n h(t) + b(L,w)

n )︸��������������������︷︷��������������������︸
=zn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (16)

As with the LHN, there is no non-linearity after the factors.
There is only a multiplication with a factor weight before
calculating the probability for the next word ŵ(t + 1).

In order to calculate each factor weight γn, we use an
auxiliary network. The input to the auxiliary network are
the topic features calculated from an LDA topic model. This
auxiliary network can be of arbitrary depth. In this work, we
use a single linear layer followed by a sigmoid non-linearity

γ = [γ1, γ2, . . . γn, . . . , γN] = σ(U(a)a(t) + b(U,a)), (17)

where U(a) and b(U,a) are the weight matrix and bias vector
for the linear layer. The parameters of the auxiliary network
can be trained jointly with the main network by error back-
propagation, as shown in [39]. This means we do not have to
train the auxiliary network and the main network in separate
training steps.

factLSTM is related to fLHUC-LSTM. In fLHUC-
LSTM, one weight is multiplied with one node, whereas in
factLSTM one weight is multiplied with one hidden layer.
Comparing both methods, fLHUC-LSTM has the advantage
that it needs less parameters, because it does not require
multiple output layers. However, our proposed method has
the advantage that individual factors can cover more domain
specific information or information specific to certain do-
mains.

6. Auxiliary Features for Feature Based Domain Adap-
tation

There exist many possible features for domain adaptation.
The simplest one would be a one hot encoding of the do-
main. In prior research, topic information from an LDA
topic model was the dominant feature for feature based do-
main adaptation. LDA provides a topic distribution over
multiple topics contained in a document. That means, com-
pared to a domain label, LDA provides a mixture of multiple
topics and it is a continuous feature. Because LDA is such a
common feature, we also use it in our experiments.

An important parameter to address for LDA is the spec-
ification of what should be regarded as a document. In case
the training corpus consists of a single file, we regard a
chunk of sentences as a single document for LDA training in
the experiments. If the corpus can be separated into different
talks, we regard one talk as a single document. In order to
generate LDA features for each word, we estimate the topic
distribution for a fixed size window of past words.

The LSTM itself captures some kind of context infor-
mation, however, the cell state in the LSTM (which we re-
late to the context stored in an LSTM) is processed by an
exponentially decaying function. That means, context fur-
ther in the past has less influence on the current state than
the more recent context. On the other hand side, LDA ne-
glects word order and therefore all words in a document will
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contribute equally when calculating a topic distribution.

7. Experiments

7.1 Dataset

7.1.1 Penn Treebank

For the experiments, we used two different datasets. First
is the well-known PTB [23], which has roughly 0.9M words
in the training set and a vocabulary size of 10K. The dataset
consists of articles from the Wall Street Journal covering
different topics, such as, politics and finance. We used the
standard pre-processing, that is, sections 0-20 as training,
21-22 as validation and 23-24 as test set.

7.1.2 TED Talks

Our second corpus consists of TED talks and the TED-
LIUM corpus [24] for our ASR experiments. For our ASR
system, we used the standard Kaldi [40] recipe. The data
provided in TED-LIUM is very small to train an LM. In or-
der to have a larger training set, we crawled subtitles from
other TED talks. Our final LM training set consisted of 2494
talks and had a size of 5.1M tokens with a vocabulary size of
73K words. We replaced every word which appeared only
once in the training data by an unknown token. This resulted
in an effective vocabulary size of 43K words.

We generated our own validation and test sets from the
original subtitles in the same way as our 5.1M word training
set. Our validation and test sets used the same data as in
the IWSLT 2011 evaluation campaign [41]. We will report
results for our subtitle test set and TED-LIUM’s test set in
the experimental result section.

The TED-LIUM validation and test set were re-
transcribed from the original lectures in order to have verba-
tim transcriptions. This introduced a mismatch with the sub-
title based sets. We summarised some key-figures about our
subtitle-based and the TED-LIUM test set in Table 1. We
further provide a histogram of the different sentence lengths
in Fig. 3. As seen from Fig. 3, the sentence length for both
evaluation sets is very different. As a result, the unigram
probability of the end of sentence symbol is different in the
subtitle based test set (P(EoS) = 0.1) and in the TED-LIUM
test set (P(EoS) = 0.04).

7.2 LDA Training and Topic Estimation

For training our LDA model we applied two different
schemes depending on the dataset. For PTB, we used the
same processing scheme as in [15]. That means, we divided
the training set in chunks of 10 utterances and each of these
chunks was regarded as a single document. For the TED
talks it was not necessary to make this segmentation because
the dataset consists of different talks and we could use each
talk as a separate document.

Before training the LDA, we removed a list of common

Table 1 Comparison of subtitle and TED-LIUM test sets.

sentence length (words) Voc size length
min max mean var (words)

subtitle 2 19 9 8.88 3638 30168
TED-LIUM 2 122 25 209.39 3568 28655

Fig. 3 Histogram of sentence lengths in subtitle and TED-LIUM evalu-
ation sets.

stop words, as well as, high and low frequency words. This
pre-processing has only been applied in order to train the
LDA and to compute the LDA features. We did not apply
this processing to the text corpora when training our LMs.
The LDA implementation for our experiments was the one
provided in scikit-learn [42].

In order to calculate the LDA features for each word
in the datasets, we used LDA features extracted from a slid-
ing window covering the previous 50 words in case of PTB
and 200 words in case of TED. The LDA features represent
the topic distribution over this sliding window. For N-best
rescoring, we calculated the LDA features from the recog-
nition result. In case the sliding window extended over the
current utterance, it kept the content of the one-best result.
Similarly, the state of the LSTM for the one-best hypothesis
is kept across sentences.

7.3 Training Parameters for NN-LMs

As common part to all NN-LMs in the experiments, we used
a single layer LSTM with 300 units. The LHN also had
300 units. For PTB, we trained all networks for 20 epochs
and for TED we optimised the number of epochs for each
model on the validation set WER. The mini-batchsize and
backpropagation through time (BPTT) length were tuned on
PTB to give a good compromise of training time and model
PPL. We chose a mini-batchsize of 128 and BPTT length
of 20 words. We set the initial learning rate to 0.1 and we
used the AdaGrad [43] as optimiser. Gradients were clipped
to an L2-norm of five. If the validation PPL improvement
was less than 0.1% within one epoch, the learning rate was
halved. In all our models, we applied dropout [44] with a
dropout ratio of 50%. As for [38], in fLHN-LSTM, we
initialised the weight matrix of the linear layer connect-
ing the LSTM and the LHN (V(w)) with the identity ma-
trix. We implemented all NN-LMs with the open source
toolkit Chainer [45]. We used Nvidia GTX 1080Ti GPUs
with CUDA v8 and CUDNN v6 to train all NN-LMs.
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Table 2 PPL on the validation set of PTB for different numbers of
factorised hidden layers versus different LDA dimensions (LSTM-LM
105.66). The number in brackets with factLSTM gives the number of fac-
tors used.

Model

LDA
topics 30 40 50 60

contLSTM 118.72 117.83 122.72 121.74
fLHN-LSTM 103.99 105.59 107.16 105.76
fLHUC-LSTM 103.35 104.01 104.76 104.80
factLSTM (5) 105.06 105.55 105.93 106.08
factLSTM (10) 102.15 102.11 102.81 101.02
factLSTM (20) 102.92 102.80 101.54 101.06
factLSTM (30) 101.36 102.64 102.24 100.91
factLSTM (40) 103.75 102.69 101.75 100.69

Table 3 PPLs for baseline, best fLHN-LSTM and factLSTM model on
the validation and test set of PTB.

Model LDA topics val test
trigram — 182.16 171.68
LSTM — 105.66 98.94
contLSTM 40 117.83 109.00
fLHN-LSTM 30 103.99 97.42
fLHUC-LSTM 30 103.35 95.90
factLSTM (40) 60 100.69 94.99

7.4 Penn Treebank Results

At first, we show PPL results for PTB. For the domain adap-
tation methods, we analysed the behaviour with different
numbers of LDA topics. Table 2 shows the results for LDA
topic numbers from 30 to 60 for contLSTM, fLHN-LSTM,
fLHUC-LSTM and factLSTM. contLSTM did not show any
improvement over an LSTM-LM (validation PPL LSTM-
LM: 105.66). This result is contrary to the one in [35],
but the authors used only 20 LSTM units and we used 300
LSTM units in our experiments. In the case of a small num-
ber of hidden units, the LDA features might act as a context
memory that the network can use. Another reason could be
that it takes more epochs for this model to reach a lower
PPL. fLHN-LSTM and fLHUC-LSTM were able to reduce
the PPL compared to the LSTM-LM baseline in some cases.

The performance of factLSTM, depends on the number
of LDA topics as well as the number of factors. Keeping the
number of factors constant, in general the PPL decreased
when the LDA size was increased. When the LDA size is
kept constant and the number of factors is increased, the PPL
was also reduced. However, with a small number of factors,
the PPL is not much reduced compared to the LSTM-LM
baseline. Also, choosing a large number of factors (larger
than 10) did not yield much further PPL reduction on the
PTB dataset. This might be due to the small size of PTB.

In Table 3 we show the best PPL results for each model.
We estimated a baseline trigram LM with Kneser-Ney [46]
smoothing using the SRILM toolkit [47]. The PPLs we
show for the neural network LMs are, however, the val-
ues obtained using only the NN-LM without trigram in-
terpolation. We used 40 LDA topics with contLSTM, 30
LDA topics with fLHN-LSTM and fLHUC-LSTM and 60

Fig. 4 Convergence on the validation set over 80 epochs for different
models on TED dataset.

topics for factLSTM with 40 factors. The number of pa-
rameters were around 6.7M for contLSTM, around 6.5M
for fLHN-LSTM and fLHUC-LSTM, and around 123M
for factLSTM. The baseline LSTM-LM had around 6.4M
parameters. The training time of LSTM-LM, contLSTM,
fLHN-LSTM and fLHUC-LSTM was about 1h. factLSTM
took 12h to train. contLSTM again had the overall high-
est PPL among the NN-LMs. fLHN-LSTM had a 1% lower
PPL compared to the LSTM-LM baseline (relative improve-
ment). fLHUC-LSTM reduced the PPL by 2% and 3% rela-
tive to the LSTM-LM baseline on the validation and test set,
respectively. Overall, out of all domain adaptation meth-
ods, our proposed factLSTM had the highest relative PPL
reduction compared to the LSTM-LM baseline. factLSTM
improved 5% on the validation and 4% on the test set.

7.5 TED Talk Results

On the TED talks dataset, we trained each model until
convergence according to the training scheme described in
Sect. 7.3. The convergence of the validation PPL over 80
epochs is shown in Fig. 4. LSTM-LM reached its minimum
after roughly 40 epochs. contLSTM showed a slight PPL re-
duction compared to LSTM-LM. fLHUC-LSTM had almost
the same convergence as contLSTM. Both reached the min-
imum validation PPL around 50 epochs. fLHN-LSTM con-
verged after around 40 epochs and convergence appeared to
be faster than for LSTM-LM. factLSTM had the lowest PPL
of all models after 20 epochs and reached the lowest PPL of
all models at 80 epochs. The converged models had the low-
est PPLs on the subtitle validation and test sets. However,
PPL is not directly related with WER. In order to find the
model with the lowest WER on TED-LIUM, we performed
100-best rescoring every five epochs around the point where
the PPL converged. Subsequently, we chose for each adap-
tation method the model with the lowest WER on the vali-
dation set results and provide PPL and WER results for this
model.

Table 4 shows our results for the TED-LIUM dataset.
For the TED talks, we show PPL results for the trigram
which is distributed with the Kaldi recipe [25]. The PPLs
are, as for the PTB results, without any N-gram interpola-
tion. We used the trigram to interpolate LM scores in 100-
best rescoring. The corresponding interpolation weights for
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each LM and the trigram were optimised on the TED-LIUM
validation set. The interpolation weight of N-gram and NN-
LMs was mainly between [0.9, 1] for the NN-LM. There-
fore, the WER after rescoring was for the main part deter-
mined by the NN-LM. All NN-LMs with domain adaptation
used LDA features from 50 topics and a window size of 200
words.

The PPL for the trigram is considerably higher than for
the NN-LMs on the subtitle and TED-LIUM test sets. This
can be explained by the fact that the trigram is trained on
out-of-domain data. A trigram trained on our own training
set had a considerably lower PPL of 106.58 on the subtitle
test set. The baseline LSTM-LM reduced PPL by 67% com-
pared to the trigram for the subtitle test set and 30% for the
TED-LIUM test set. In 100-best rescoring, we decreased the
WER by 20%. The baseline LSTM-LM had approximately
26M parameters and training for 40 epochs took approxi-
mately 4.5h.

contLSTM improved over LSTM-LM on the subtitle
test set. On the TED-LIUM evaluation set, however, the
PPL was slightly higher than the LSTM-LM. In 100-best
rescoring, the WER was also slightly higher than the base-
line. The number of model parameters increased by 2M to
28M and the training time increased by around 2h. With
fLHN-LSTM PPL reduced by 14% and 18% compared to
an LSTM-LM for the subtitle based and TED-LIUM test
sets, respectively. In 100-best rescoring, the WER showed
slight improvement over the LSTM-LM baseline for the val-
idation set, but it was equal on the test set. fLHUC-LSTM
had a slightly higher PPL than fLHN-LSTM on the subtitle
based test set and TED-LIUM test set. The WER showed a
slight but not significant reduction on the baseline. fLHN-
LSTM and fLHUC-LSTM had 105K more parameters than
an LSTM-LM, but the training time was about the same.

For factLSTM we used 15 factors due to the limitation
of our GPU memory size. factLSTM had 207M parameters
and the training time was 67h for 70 epochs. Our proposed
method did increase the number of model parameters as well
as the training time compared with the other methods, how-
ever, we did not perform any particular optimisation of the
implementation to speed up the computation on GPUs. On
the TED-LIUM test set, this method showed significantly
lower PPL compared to all other methods, that is, 39% lower
than LSTM-LM and 21% lower than fLHN-LSTM. In 100-
best rescoring, the WER was 3% lower (relative reduction)

Table 4 PPL and WER for our own subtitle based test set and TED-
LIUM with 50 LDA topics, a 200-word window size and factLSTM with
15 factors. The trigram result represents the 1-best result and the results for
the neural network LMs are for 100-best rescoring.

Model Training Test PPL WER [%]
Epochs subtitle TED-LIUM val test

trigram — 156.41 222.05 16.3 15.1
LSTM 40 51.98 156.29 14.2 12.1
contLSTM 45 47.34 165.69 14.5 12.3
fLHN-LSTM 40 44.72 127.99 14.1 12.1
fLHUC-LSTM 40 47.69 144.70 14.0 11.9
factLSTM 70 31.74 101.04 13.8 11.6

compared to an LSTM-LM on the test set.
We performed a matched-pair significance test of all

methods and it showed a significant difference of factLSTM
compared with the LSTM-LM baseline at a significance
level of 0.1%. All other methods did not show a signifi-
cant improvement on the baseline. These results show that
feature based adaptation can improve both PPL and ASR
rescoring performance. Our proposed factLSTM achieved
superior performance in general compared to other ap-
proaches for exploiting auxiliary features. This is however
at the expense of using a larger amount of parameters.

8. Discussion

8.1 Impact of LDA Window Size

Following our main PPL and WER results on PTB and TED
talks, we provide some further discussion on how LDA fea-
tures can affect NN-LMs. At first, we discuss the features
themselves. As we mentioned in Sect. 6, the LSTM itself
captures context information and we believe that the LDA
can capture different context information. In order to inves-
tigate when the information provided by the LDA can have
a beneficial effect on the model performance, we modified
the window length to calculate the LDA features.

Figures 5 and 6 show the validation set PPL for PTB
and TED, respectively, where we modified the LDA win-
dow size. For PTB we chose window sizes from 50 to 500

Fig. 5 Comparison of different context window sizes versus validation
PPL for PTB with LDA features from 30 topics.

Fig. 6 Comparison of different context window sizes versus PPL for the
Ted talks subtitle validation set with features from 50 LDA topics.
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words. For TED we chose 50 to 1000 words because of the
larger training data. For the ASR results in Sect. 7.5 we op-
timised the training time for each model to obtain the lowest
possible WER. However, here we are only interested in PPL
and consequently all NN-LMs in Fig. 6 were trained for 40
epochs.

For PTB the trend is that all models reached a mini-
mum PPL with a window size between 100 and 200 words.
Using a smaller or a longer window the PPL of domain-
adapted models usually increased. This result indicates that
shorter windows are well covered by the LSTM itself and
longer windows contain too imprecise information. For
TED also a context window size around 200 words gave
a good result. In general, the LMs using domain adap-
tation improved on both corpora over a baseline LSTM-
LM. This result suggests that there is information contained
in the LDA features, which is not extracted by the LSTM
itself.

Regarding the topic features themselves, during the ex-
periments it showed that the adaptation performance is de-
pendent on the quality of the topic model and the features
estimated from it. Estimating a good LDA topic model will
improve the feature quality and this is important for model
performance. We believe that all models can benefit from
better topic features, which might be derived from different
topic models than LDA. Comparing the training set sizes
of TED talks and PTB, for TED talks we have roughly five
times more data. We think that this helped estimating bet-
ter LDA topics, which were more effective for the LM and
could lead to a larger PPL reduction.

8.2 Error Corrections after Rescoring

We conducted some more in-depth analysis of the recogni-
tion results before and after rescoring. Looking at the results
for different model architectures, the NN-LMs had less er-
rors with functional words. In the 1-best decoding result,
these words were often left out or misrecognised. In cases
with a large number of errors, rescoring with the NN-LMs
did not reduce the number of errors considerably. In this
case the output from the speech recogniser was the limiting
factor. In some cases we were able to make a relation be-
tween the corrected error and a topic. We show one such
example where we compare the ground truth utterance, the
result after 1-best decoding, rescoring with LSTM-LM, and
rescoring with factLSTM in Table 5.

We also investigated the probabilities each NN-LM as-
signed to the different hypothesises for one utterance more
closely. Our findings did not show a constant offset in the
probabilities between different models. We therefore con-
clude that each model architecture makes different use of
the information provided by the LDA features.

8.3 Analysis of Correlation Between LDA Features and
Factor Weights

For our proposed method factLSTM, we analysed what

Table 5 N-best hypothesis comparison for selected utterance from TED-
LIUM test set.
REF: this really solves the problem i’ve got a picture here of a

place in kentucky this is the left over the ninety nine percent
where they’ve taken out the PART THEY BURN NOW so
IT’S called depleted uranium that would power the U S

1-best: this really solves the problem i’ve got a picture here HAVE a
place in kentucky this is the left over the ninety nine percent
where they’ve taken out the **** **** PARTY BERNAU so
**** called depleted uranium that would power the * U.S.

LSTM-LM: this really solves the problem i’ve got a picture here of a
place in kentucky this is the left over the ninety nine percent
where they’ve taken out the **** **** PARTY BERNAU so
**** called depleted uranium that would power the * U.S.

factLSTM: this really solves the problem i’ve got a picture here of a
place in kentucky this is the left over the ninety nine percent
where they’ve taken out the part they burn now so it’s called
depleted uranium that would power the * U.S.

Fig. 7 PCA plots of LDA features (a) and factor weights (b) for the sub-
title based TED talks test set. Each color represents a different talk in the
test set.

factor weights the network learns from the LDA topic fea-
tures. Figure 7 (a) shows a PCA plot of the LDA features
for all talks in the TED subtitle based test set. Each colour
represents one talk and one dot corresponds to one feature
or factor weight, respectively. The plot reveals that the LDA
features are mainly distributed along three axes. The PCA
of the factor weights for the same talks is shown in Fig. 7 (b).
The distribution is very different from the LDA feature plot.
The network learns a mapping of the features, which helps
to improve the prediction for the next word. In particular,
some factor weights for different talks appear to be mapped
to similar regions in the PCA space.

In addition to the PCA plots, Fig. 8 (a) and (b) show
the LDA features and corresponding factor weights for part
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Fig. 8 Comparison of LDA features (a) and factor weights (b) for part of
the test set (x axis corresponds to word index).

Table 6 Test PPL on TED talks for fLHN-LSTM with different LHN
sizes after training for 70 epochs.

LHN size 300 600 1200
Parameters 26M 39M 65M
Training time 9h 11h 16h
subtitle PPL 45.25 41.98 42.79
TED-LIUM PPL 133.67 131.50 135.04

of the test set. As can be seen in the figures, there are dis-
tinct regions of high weights for the LDA features and high
factor weights which correspond to each other. Interesting
are the highlighted regions in Fig. 8 (a) and (b). In this in-
terval, there is no distinct LDA feature with high intensity
but factor one exhibits a high activation. The same factor
keeps a high activation after word index 16000 which can be
linked to one topic with high activation in this region. This
is a good illustration how the auxiliary network learns to
combine different topic features into a single factor weight.
The corresponding factor can then learn common informa-
tion among these different topics.

8.4 Parameter Size Comparison

Our proposed factLSTM has more parameters than the other
models. We investigated if increasing the number of pa-
rameters in fLHN-LSTM can lead to a similar PPL as our
proposed method. Table 6 shows PPL results for fLHN-
LSTMs with different LHN sizes after 70 epochs for the
subtitle based evaluation set of TED talks. We also give the
number of parameters and the training time for each model.
The PPL did not change considerably, even if we increased
the LHN size four fold. As comparison, our proposed
factLSTM had a PPL of 31.74 for the subtitle test set and
101.04 for the TED-LIUM test set. Our model had 207M
parameters and the training time for 70 epochs was 67h.
These numbers confirm that not only the increased number
of parameters may cause the performance improvement of

our proposed factLSTM.

9. Conclusion

We provided a comparison and discussion of different fea-
ture based domain adaptation techniques for NN-LMs and
our proposed factLSTM. Feature based methods have in
comparison to model based adaptation the advantage that
they can be applied in an unsupervised manner. In practice,
such methods are preferable because they do not require any
domain information in the training, validation and test data
which can only be made by experts. The LDA topic model
we used in our comparison can also be trained in an unsu-
pervised manner.

The methods we compared to our proposed one use two
different strategies, that is, domain adaptation via an addi-
tive bias and a multiplicative gating function. Bias based
adaptation with fLHN-LSTM was originally proposed for
model based adaptation but, as the experiments showed, it
can also be successfully applied in feature based adaptation.
The PPL and WER were higher than factLSTM but it im-
proved considerably over an LSTM-LM baseline. The ad-
vantage over factLSTM is that the number of parameters is
much smaller and the convergence speed was the same as
the LSTM-LM baseline on the TED talks dataset. Simple
bias adaptation with contLSTM did not show a clear ten-
dency to improve over an LSTM-LM in our experiments.
Model adaptation with LHUC improved over the baseline
LSTM, but achieved neither the same PPL as factLSTM nor
a similar WER. On the datasets used in our experiments, our
proposed approach factLSTM outperformed other methods
for feature based domain adaptation.
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