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Optimizing Slot Utilization and Network Topology for
Communication Pattern on Circuit-Switched Parallel Computing
Systems

Yao HU†a), Nonmember and Michihiro KOIBUCHI†, Member

SUMMARY In parallel computing systems, the interconnection net-
work forms the critical infrastructure which enables robust and scalable
communication between hundreds of thousands of nodes. The traditional
packet-switched network tends to suffer from long communication time
when network congestion occurs. In this context, we explore the use of cir-
cuit switching (CS) to replace packet switches with custom hardware that
supports circuit-based switching efficiently with low latency. In our target
CS network, a certain amount of bandwidth is guaranteed for each commu-
nication pair so that the network latency can be predictable when a limited
number of node pairs exchange messages. The number of allocated time
slots in every switch is a direct factor to affect the end-to-end latency, we
thereby improve the slot utilization and develop a network topology gener-
ator to minimize the number of time slots optimized to target applications
whose communication patterns are predictable. By a quantitative discrete-
event simulation, we illustrate that the minimum necessary number of slots
can be reduced to a small number in a generated topology by our design
methodology while maintaining network cost 50% less than that in stan-
dard tori topologies.
key words: parallel computing, interconnection network, circuit switching,
time division multiplexing (TDM), end-to-end latency

1. Introduction

Existing parallel computers are predominantly connected by
packet-switched networks. The packet-based networks are
mature and their bandwidth can increase by active optical
cables, e.g., 100Gbps on InfiniBand EDR [1]. However, a
conventional packet switch has 40–100ns delay and is dif-
ficult to further reduce its processing latency [2]. Current
applications require a highly parallel processing that ex-
changes a large number of small data communications be-
tween processing cores. Such a way sometimes becomes a
performance bottleneck in terms of latency rather than band-
width due to congestion in traditional packet-switched net-
works. Therefore, there is a strong requirement for low-
latency communication on parallel computing, and its de-
mand continues to increase as the number of processing
cores becomes large.

In a radical departure from conventional practice, we
argue for the merits of circuit-switched (CS) networks in the
design of future parallel computers. Unlike packet-switched
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networks that carry traffic flows in packets, circuit-switched
networks establish connections that allocate network re-
sources along a specified path from source to destination.
After a connection is established, data is transferred without
interruption until the connection is torn down. Our goal in
this work is to optimize the circuit switching interconnec-
tion for parallel computers, which can simultaneously im-
prove performance and efficiency while drastically reducing
networking costs.

The prior works [3], [4] have shown that a circuit-
switched network offers isolated predictable performance.
First, data flows are transferred with guaranteed bandwidth,
bounded latency and low jitter, and no data can be dropped
due to congestion. Second, data flows do not interact with
one another. The actions of one user’s application can not be
allowed to interfere with performance received by another
user. Despite these benefits, a traditional circuit-switched
network falls out of favor due to several perceived disadvan-
tages relative to packet-switched networks: (1) High setup
overhead. A connection must be established before data is
transmitted. The time used for establishing the connection
punishes the whole network latency performance. This is
severe in a large-scale network. (2) Low link efficiency. Un-
used capacity guaranteed to a connection cannot be used by
other connections on the same network. Thus, it has low
link utilization due to its inability to perform statistical mul-
tiplexing.

For parallel computers, however, we argue that these
perceived disadvantages of circuit-switched networking can
be much restrained. In parallel computers, the interconnec-
tion networks are usually set up and maintained by one cen-
tral organization that has full knowledge of topology and
link capacities. For a circuit-switched network, this vastly
simplifies the complexity and task of rerouting traffic dur-
ing failures. Moreover, in parallel computers there are a
bounded number of cores and nodes. Therefore, the com-
munication paths are usually short and the round trip de-
lay is low. In this study, we adopt a CS network with time
division multiplexing (TDM) for improving link utilization
while not consuming extra time to establish the connection.

This paper is based on our previous work [5], which
has proposed a case for circuit switched (CS) networks re-
alizing fast circuit switching with little overhead. Our target
CS architecture provides the common benefits of a circuit-
switched network, e.g., a dedicated communication path
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with a certain amount of bandwidth for each communica-
tion pair, hence the network congestion never happens and
the end-to-end latency can be guaranteed or predicted. Fur-
thermore, in our target CS network, multiple time slots in
one switch can be exploited at the same time interval by
different communications in cycles to maximize bandwidth
utilization. On the other hand, to achieve optimum commu-
nication performance, the number of allocated time slots in
one switch should be as small as possible because it is a di-
rect factor to affect the end-to-end latency. To mitigate the
frequent high setup overhead of a circuit-switched network
relative to a packet-switched network, we perform statistical
multiplexing of concurrent circuit connections which can be
tunneled through just one circuit. To further mitigate the im-
pact of the path setup overhead, we can use the same flow
setup and tear down technique as that in [4], which is beyond
the scope of this work.

Our recommendation for target applications is that their
communication traffic patterns should be predictable and the
number of source-destination communication pairs should
not be large. This is because the bandwidth assigned to
each source-destination communication pair increases as
the maximum number of the communication pairs that go
through a link becomes small. Reversely, if their traffic pat-
terns are unknown, we have to prepare all-to-all communi-
cation circuit paths that are costly in terms of bandwidth.

Our work is not the first proposal to introduce circuit
switching to parallel computing networks. For example, two
recent proposals (Helios [6] and c-Through [7]) have em-
ployed hybrid electric/optical switch technologies to boost
the performance of datacenter networks. The AN3 net-
work by Microsoft [4] advocates the use of standalone cir-
cuit switching for datacenters in terms of advantages of cap-
ital cost and performance. Our approach is similar, but we
put focus on the optimization of slot utilization and inter-
connection network for CS rather than simply applying a
known hierarchical topology to have approximately equiva-
lent bisection bandwidth and delay.

Typical parallel scientific applications perform well on
k-ary n-cube topologies (e.g., numerical linear algebra ker-
nels on 2-D or 3-D tori). By contrast, parallel applications
that have irregular and/or dynamically evolving communi-
cation patterns require low average network latencies across
all switch pairs [8]. These applications can perform poorly
on k-ary n-cube topologies due to long shortest path lengths
between some switches, but they are well-suited to random
topologies [9]. It is thus reasonable to expect that future par-
allel computers will require different network topologies to
support both legacy and emerging applications [10]. Given
that different applications benefit from different topologies,
in this work we optimize the target CS architecture and pro-
pose a dynamic network topology generator according to a
given communication pattern and the maximum switch de-
gree. This approach helps to incrementally reduce the mini-
mum necessary number of slots in the network, and thus can
reduce the end-to-end latency for each communication pair.

Our main contributions in this paper are as follows:

• We make static analysis and optimization of time slot
utilization in our target CS network.
• We propose a CS topology generator to dynamically

generate a specific interconnection network according
to a given communication pattern and the maximum
switch degree.
• By performing a quantitative discrete-event simulation,

we present the advantages of the generated network
topologies by our design methodology in terms of cost
and efficiency.

The rest of this paper is organized as follows. Back-
ground information and related work are discussed in
Sect. 2. Section 3 describes the static analysis of slot utiliza-
tion and its optimization in our target CS network. Section 4
proposes an efficient CS network topology generator. Sec-
tion 5 shows simulation results. Section 6 concludes with a
summary of our findings in this paper.

2. Background and Related Work

2.1 Hybrid Packet-Optical Circuit Switch (OCS) Network

To overcome the limitations of traditional packet-based net-
work architectures for huge traffic loads and variable traffic
patterns, the hybrid packet-optical circuit switch (OCS) net-
work [11]–[13] was first envisioned by researchers a decade
ago and is now being realized in commercial datacenters.
In the hybrid packet-OCS network, optical circuit switches
are installed to augment packet-based switching to create a
hybrid solution and offer the capability to handle large per-
sistent data flows with high bandwidth. It also offers low
latency (less than 60ns), which is very important to modern
latency-sensitive applications.

The link setup time of an optical circuit switch (e.g., by
using micro electro-mechanical systems (MEMS) [17] tech-
nologies) is typically 25ms [14], [16] (e.g., commercially
available products [15]), which is required for electrostatic
repositioning of micro-mirrors to achieve path switching.
In the packet world, 25ms seems rather high. To reduce
the large switching time from the aspect of software, re-
cently several works [18], [19] have designed multiport mi-
crosecond control panels for optical circuit switching in dat-
acenter networks. Besides, network management scripts
or software-defined network (SDN) is used to redirect data
flows from one network to another [16]. This would result
in high network design cost for hardware and software man-
agement, since currently the OCS technology is not mature.

In this context, we attempt circuit switching to set up
per-flow circuits, which are much more fine-grained than
the circuits that are shared among many flows in hybrid
switches. Surprisingly, we found out that the number of
source-destination communication pairs is small in some
parallel applications. The circuit switching can assign them
to each time slot at the middle size of parallel computers.
This provides ideal low-latency and guaranteed bandwidth
communication only by circuit switching. Reversely, we do
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not have to employ an electric packet network in addition to
circuit switching under such an environment. Consequently,
we challenge to make an interconnection network only us-
ing circuit switching for parallel computers in this paper.

2.2 Arrayed Waveguide Grating Router (AWGR)

Arrayed waveguide grating router (AWGR) [20]–[23] has
been researched for all-to-all connections [24], in which ev-
ery processor sends a unique message to any other processor
at any time. All-to-all is the densest communication pat-
tern that can be imposed on a computing network. AWGR
uses wavelength division multiplexing (WDM) technology
for frequency domain parallelism and allows for the multi-
plexed wavelengths in the waveguides which are separated
and cross-connected.

For an AWGR, m nodes respectively connected to m
input ports can use m wavelengths to reach different out-
put ports simultaneously without interfering with each other.
However, despite the intrinsic merit of dense interconnec-
tion, its port count is usually restricted by size, fabrica-
tion constraints and inter-channel crosstalk. Therefore, the
need arises for an all-to-all interconnection architecture us-
ing AWGRs with reduced or limited number of wavelengths.

In our work, the need of reducing the number of time
slots for every switch seems similar to that of reducing the
number of wavelengths for every AWGR. However, they
differ in two main aspects. First, AWGR assumes non-
blocking all-to-all switching, while our work applies to
various communication patterns in the network. Second,
AWGR reduces the number of wavelengths by deploying
one or more AWGRs, while in our work the proposed net-
work topology generator reduces the number of time slots
by decentralizing traffic over the whole network.

2.3 Non-Blocking Network

Contention in the network increases latency and decreases
bandwidth substantially, especially for long messages [25].
Some applications have large payload sizes for point-to-
point communications and are highly susceptible to network
contention. If not well controlled, contention could have a
large negative impact on the performance of parallel pro-
grams even if it occurs only within a small portion of the
network. This is because a stalled process may slow down
others that are communicating with it in lock-step fashion. It
has been shown that this could account for as much as 30%
degradation in performance [25].

Conflict-free or non-blocking networks have been ex-
tensively researched for general-purpose processing and
specific communication patterns like multicast and all-to-all
broadcast. For example, a way of supporting all permuta-
tions by dividing a message into smaller fragments and dis-
tributing them according to a routing matrix in two passes
through the network is described in [26]. However, one
problem with this approach and others like it is scalability,
since the number of fragments grows with the size of the

network and extra passes are required. This may employ
excessive resources.

In this work, we propose a design methodology for
finding a specific network topology according to a given
communication pattern and the maximum switch degree.
The methodology addresses the problem of optimizing spa-
tial sharing of communication resources and spatial over-
lap of messages. As the first step, we construct a network
topology prototype based on a recursive bisection technique
via systematic partitioning. This method is similar to some
previous on-chip/off-chip interconnection works [27], [28].
For example, minimizing the number of time slots is like
pursuing contention-free communication. However, we do
not target totally conflict-free networks where the number of
time slots for each switch is only one. Also, we do not solve
the coloring problem [28] when counting the number of nec-
essary communications between two network partitions, but
measure how to balance network traffic to reduce the min-
imum necessary number of slots in the network. Besides,
in the study [27] it is required to check the design constraint
(i.e., the maximum switch degree) after each node move,
while in our work such procedure can be avoided and the
design constraint is constantly met, because the degree of
every switch keeps the same after each node move.

3. Slot Allocation on Circuit Switching

3.1 Target Circuit Switch

The target circuit switch [5] is depicted in Fig. 1. One port
of the switch is connected to a compute node or a neighbor-
ing switch. Each port consists of one or several links and
each link consists of several time slots (buffers). The vol-
ume of one time slot (buffer) is the size of the data received
and accommodated within one cycle. The connection be-
tween an input slot and an output slot is established before
the data transfer. Updating of the connection is supported
after circuit reconfiguration. The read or write operation on
the input or output side tours the time slots one by one in
cycles. On the same time slot, the read and write operations
are synchronized with the same frequency, thus no conflict
like write-after-read or read-after-write occurs.

Fig. 1 Switch design for target circuit-switched (CS) networks.
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If there are n time slots allocated to one link, and a
communication occupies m (m < n) slots, its bandwidth
is m/n link bandwidth. Therefore, the end-to-end latency
of any communication in the network can be guaranteed or
predictable. The most important thing for the switch design
is to get the minimum necessary number of slots installed in
one switch. On one hand, a large number of time slots can
cause large end-to-end latency because of iterative time slot
access. On the other hand, a small number of time slots may
result in long queuing or even conflict among multiple com-
munications at the same switch port. When a CS network is
composed of identical switches installing the same number
of time slots, the minimum necessary number of slots in any
switch is a direct factor to affect the whole network latency
performance. In this work, a main target for the CS network
design is to reduce the minimum necessary number of slots
and thus to decrease the communication latency.

We use the discrete-event simulation framework Sim-
Grid (v3.12) [32] to evaluate the benchmark performance on
conventional packet switched (PS) networks and our target
circuit switched (CS) networks. SimGrid implements vali-
dated simulation models, is scalable, and makes it possible
to simulate the execution of unmodified parallel applications
that use the message passing interface (MPI).

We assume two interconnection networks for conven-
tional all-packet transmission, i.e., 3-D torus and fully-
connected. For both the interconnection networks, the link
bandwidth is set to 400Gbps/1TGbps and the switch delay
is set to 200ns. In fully-connected CS networks, one slot is
assumed to occupy 1× bandwidth of 25Gbps and the switch
delay is assumed to be 10ns in an ideal case that no commu-
nication conflict occurs at any time slot so that the link band-
width can be maximumly utilized by all communications.
The computation power of each node is set to 1TFlops.

Figure 2 presents evaluation results of execution
time comparison between conventional 3-D torus/fully-
connected PS networks and target fully-connected CS net-
works. We show reciprocals of actual execution times, thus
higher values are better. We make the case of 400Gbps 3-
D torus PS as baseline. Because the average hop count of
communications over 3-D torus is larger than that over fully-

Fig. 2 Relative performance of execution times. Values are reciprocal
(higher is better).

connected networks, it performs the worst even with the link
bandwidth of 1TGbps. The fully-connected CS significantly
outperforms 3-D torus PS and even performs advantage over
fully-connected PS due to its fine-grained circuit switching
mechanism. For different benchmarks, the CS networks per-
form better when allocated more slots for one switch, be-
cause the link bandwidth is increased for communications
while only a bit of switch delay is imposed.

In our previous study [5], we showed a case of circuit
switched network for parallel computers and made a static
analysis of various communication patterns over 2-D mesh.
We extend the previous work mainly from three aspects in
this study using the target circuit switch. First, we improve
slot utilization by the proposed optimization methods, and
evaluate the efficiency over mesh, torus and fat-tree inter-
connection networks. Second, we investigate the tradeoff
between the number of time slots and the number of net-
work resources when designing our circuit switched topol-
ogy generator, and make a comparison with mesh and torus
in terms of resource utilization efficiency. Third, we evalu-
ate the performance of topology reconfiguration in our target
circuit switched network.

3.2 Static Analysis of Communication Patterns

We analyze the minimum necessary number of slots (N) of
all switches with various famous communication patterns
over the CS network.

The value of N is equal to the maximum number of
overlapped communications on the same link, if one com-
munication consumes one slot. In this work, we calculate
the maximum number of overlapped communications on the
same link by using a modified version of an on-chip data
transfer algorithm [29]. Firstly, we divide a parallel appli-
cation into a set of small parallel tasks, which are mapped
to respective node pairs as the communication pattern. Sec-
ondly, for all communication node pairs we calculate the
communication path from a source node to its destination
node. Finally, we get the maximum number of overlapped
communications going through the same switch port, which
is equal to the value of N for the switch and network design.

Figure 3 shows a 2-D mesh (4 × 4) network topology

Fig. 3 The minimum necessary number of slots (N) with an example
communication pattern (part) in a 2-D mesh network.
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Table 1 The minimum necessary number of slots (N) for different communication patterns.

# of end nodes uniform bit reversal matrix transpose neighbor perfect shuffle butterfly bit complement tornado

16 (2-D mesh, 4 × 4) 4 3 3 3 2 2 2 2
64 (2-D mesh, 8 × 8) 6 7 7 4 4 4 4 4

256 (2-D mesh, 16 × 16) 11 15 15 3 8 8 8 8
1024 (2-D mesh, 32 × 32) 14 31 31 4 16 16 16 16
4096 (2-D mesh, 64 × 64) 28 63 63 7 32 32 32 32

4096 (3-D mesh, 16 × 16 × 16) 13 15 48 8 8 8 8 8
4096 (4-D mesh, 8 × 8 × 8 × 8) 9 56 56 5 4 4 4 4

Table 2 The minimum necessary number of slots (N) for all-to-all com-
munications in 2-D mesh networks.

Routing 16-node 64-node 256-node

destination-based 16 128 1024
path-based (all scatter) 36 528 8256

path-based (all broadcast) 8 32 128
tree-based (all scatter) 12 56 240

tree-based (all broadcast) 12 56 240

with an example communication pattern. Let c(s, d) denote
the communication from switch s to switch d, and let l(u, v)
denote the link from switch u to switch v. Note that we as-
sume full-duplex links, that is, two communications going
along opposite directions do not interfere with each other
and they are treated separately. Therefore, the communica-
tion c(s, d) is not equal to the communication c(d, s) and the
link l(u, v) is not equal to the link l(v, u). In this network, the
maximum number of overlapped communications c(0, 12),
c(1, 8), c(2, 12), c(3, 8) and c(4, 8) on the same link l(4, 8) is
5, thus N = 5.

Table 1 shows the values of N in different networks
with various communication patterns [30], [31] including
uniform, bit reversal, matrix transpose, neighbor, perfect
shuffle, butterfly, bit complement and tornado. We assume
that one end node is connected to one switch. It can be seen
that, as the network size increases, the value of N becomes
large. For example, for the communication pattern of uni-
form, at least 4, 6, 11, 14 and 28 time slots are required
if a 2-D mesh network is composed of 16, 64, 256, 1024
and 4096 switches, respectively. If the network size is the
same, a higher-dimension network requires less number of
slots. For instance, in 4096-node networks with the uniform
communication pattern, a 2-D mesh topology, a 3-D mesh
topology and a 4-D mesh topology require at least 28, 13
and 9 slots, respectively.

To test full potential network communication perfor-
mance, we also make similar static analysis for all-to-all
communications in 2-D mesh networks, as shown in Table 2.
We use the following different routing methods to support
all-to-all communications.

• Destination-based: routing traffic only based on the
destination
• Path-based: routing traffic along a previously specified

path towards the destination
• Tree-based: routing traffic along a tree-like path to-

wards the destination, where the source is the root of
the tree

All scatter refers to the case that a source sends different

messages to different destinations individually, while all
broadcast refers to the case that a source sends the same
message to all destinations at once.

From the analysis results, it can be seen that the value
of N varies according to the used routing method in the net-
work. Therefore, the whole network has a great potential to
be optimized by a proper way so that the value of N can be
reduced to a small number.

3.3 Optimization of Slot Utilization

So far we have assumed that one communication uses only
one time slot for data transfer. As shown in Fig. 3, the five
communications c(0, 12), c(1, 8), c(2, 12), c(3, 8) and c(4, 8)
go through the same link l(4, 8), thus they have no improve-
ment room to be allocated more slots if not increasing the
value of N. However, for example, if any communication of
c(5, 11), c(6, 7) and c(13, 7) is allocated one more slot, the
number of required time slots on the local congested link
l(6, 7) becomes 3 + 1 = 4, which is still smaller than the
value of N (5). In this case, the slot utilization is improved
but not increasing the value of N over the network.

In order to improve slot utilization, we try to allocate
more than one slot to one communication while not increas-
ing the value of N in the network. We take two steps. The
first step is that we decide which communication is picked
to be allocated more slots in the network. We consider the
following three options to give priorities to selection among
communications that can be improved.

• src: in natural order of source node number
• hcLtoS: in descending order of hop count
• hcStoL: in ascending order of hop count

The second step is that for each communication we consider
how many slots are incrementally allocated. We consider
the following two ways with tradeoff between efficiency and
fairness for all communications.

• greedy: current communication is allocated as more
slots as possible
• polling: current communication is allocated one more

slot at a time

Therefore, we can compare six methods for improving
slot utilization in the network: src greedy, src polling,
hcLtoS greedy, hcLtoS polling, hcStoL greedy and hc-
StoL polling.

Figure 4 shows the six optimization methods within
a 9-switch subnetwork in the previous example. For each
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Fig. 4 Optimization of slot utilization (N = 5). A bold arrow represents
a communication that is allocated multiple slots. A number in a circle rep-
resents # of slots used by the link. Unrelated switches and their connections
are omitted.

switch, because the input and output ports are symmet-
ric, we only count the number of slots on the output side.
Since N = 5 over the network, the communications c(5, 11),
c(6, 7) and c(13, 7) have 2-slot improvement room. The
communications c(0, 12), c(1, 8), c(2, 12), c(3, 8) and c(4, 8)
are omitted because they have no improvement room. The
hop count of a communication is defined as the number
of switches that the communication goes through. From
the analysis results, it can be seen that the increased num-
ber of used slots after optimization varies according to the
optimization method. An exception is that the result for
src polling is the same as that for hcStoL polling because
they both happen to first pick c(5, 11) and then pick c(6, 7)
to allocate one more slot.

4. Network Topology Generator

Even though we have applied above optimization methods
to increase the number of used slots, the slot utilization is
still low because the communication traffic load is not bal-
anced and causes resource waste and inefficiency over the
network. To decentralize local heavy communication traf-
fic and further reduce the value of N, we propose a method
to automatically generate a network topology according to a
given communication pattern and the maximum switch de-
gree.

Our method is similar to a previous on-chip intercon-
nection work [27], which addresses the problem of optimiz-
ing spatial sharing of communication resources and spatial
overlap of messages. Our proposed network topology gen-
erator uses a recursive bisection technique to systematically
determine what topology with the minimal set of resources
is used to efficiently support a target communication pattern.

Algorithm 1 Generates network topology by comm. pattern
and max. switch degree.
1: procedure topoGen(CommPattern cp, MaxSwDegree sd)
2: Initiate topo with a single switch connecting all nodes
3: topo = partitionSwitches(sd, topo) //→ Sect. 4.1
4: topo = swapNodes(cp, topo) //→ Sect. 4.2
5: topo = optimizeLinks(cp, topo) //→ Sect. 4.3
6: return topo
7: end procedure

The design methodology makes use of static analysis of the
target communication pattern to reduce link conflicts among
communications while using as few network resources (e.g.,
switches and links) as possible. Generally, a number of dif-
ferent design constraints can be used. A simple one used in
this work is the maximum switch degree, which limits the
number of ports of each switch to be less than or equal to
a specified value. The design constraint on switch degree is
due to the limited number of switch ports. Although mini-
mizing the number of time slots is like pursuing contention-
free communication in the work [27], we do not target to-
tally conflict-free networks where the number of time slots
for each switch is only one.

Our topology generation algorithm begins with a sin-
gle giant switch connecting all end nodes like a crossbar.
Obviously, the degree of the giant switch is equal to the
total number of the end nodes. The essential idea of the
design methodology is to systematically partition the giant
switch into smaller ones which all meet the design con-
straint on switch degree. This is done by recursive bisec-
tion (Sect. 4.1). Afterwards, we try to swap the placement
of the end nodes attached to different switches to optimize
network partitions (Sect. 4.2). We also try to determine the
best routes for communications to meet the requirement of a
target communication pattern, e.g., by diverting part of con-
flict communications on the same link to different links, so
that the value of N in the network can be reduced (Sects. 4.3
and 4.5).

Algorithm 1 shows the procedures of generating a cus-
tom network topology according to a given communication
pattern and the maximum switch degree. For easy under-
standing, we explain the topology generation procedures
by the following example assuming that the number of end
nodes is 16 and the maximum switch degree is 5 in the net-
work.

4.1 Switch Partition

Figure 5 presents a step-by-step illustration of switch par-
tition processes. As described previously, the initial net-
work constructed by a single giant switch connecting all
end nodes is partitioned recursively until the specified de-
sign constraint, i.e., the maximum switch degree, is met by
all switches. The first step is to connect all 16 nodes to the
single switch 0, as shown in Fig. 5 (a). Obviously, switch
0 violates the design constraint, i.e., the switch degree is
larger than 5. The second step is to partition switch 0 into
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Fig. 5 Recursive switch partition (# of nodes = 16, maximum switch degree = 5). A rectangle with a
number represents a switch with its switch number. A circle represents an end node.

Algorithm 2 Partition switches.
1: procedure partitionSwitches(MaxSwDegree sd, Topology

topo)
2: while degree(topo) > sd do
3: switches = getSwitches(topo)
4: for sw in switches do
5: if degree(sw) > sd and nodes(sw) > 1 then
6: sw1, sw2 = partition(sw)
7: allocateNodes(sw, sw1, sw2)
8: createLink(sw1, sw2)
9: for sw n in neighbors(sw1) do

10: if sw n != sw2 and degree(sw n) < sd then
11: createLink(sw n, sw2)
12: end if
13: end for
14: end if
15: end for
16: topo = update(topo)
17: end while
18: return topo
19: end procedure

two new switches 0 and 1, and to automatically assign half
of nodes originally connected by switch 0 to connect switch
1. Switch 0 and switch 1 are then connected with each other,
as shown in Fig. 5 (b). Still, both switch 0 and switch 1 vio-
late the design constraint, as depicted in Fig. 5 (c), thus they
are partitioned again like in the previous step. Because the
degree of switch 1 is larger than 5, switch 2 is not connected
to switch 1; likewise, switch 3 is not connected to switch
0. Similarly, half of nodes previously connected by switch
0 are connected with switch 2, and half of nodes previously
connected by switch 1 are connected with switch 3. The
partition algorithm terminates when all switches satisfy the
design constraint, i.e., the degree of any switch in the net-
work is less than or equal to 5. Figure 5 (d) presents the final
topology prototype after switch partition, where the degree
of each switch is not larger than 5. Since the degrees of the
neighboring switches (except switch 4) of switch 0 are not
less than 5, switch 4 is only connected to switch 0; likewise,
switch 5 is only connected to switch 1. Algorithm 2 de-
scribes the switch partition processes according to the spec-
ified maximum switch degree in the network. It is worth
noting that the switch partition algorithm is independent of
the specified communication pattern.

4.2 Node Swap

The next procedure is to optimize the network topology ac-
cording to a given communication pattern. We consider to
swap end nodes that cause the most crowded or congested
link(s) in the network to reduce the value of N. Figure 6 (a)
depicts the topology formed by previous network partition
with an example communication pattern. In this network,
N = 3, which is consumed by link l(0, 1). Three commu-
nications 1©, 2© and 3© pass through l(0, 1), thus we try to
swap end nodes in one of the three communications. For in-
stance, we swap end nodes in communication 3©, as shown
in Fig. 6 (b), so that the communication direction becomes
opposite to the original one. Remember that two communi-
cations going along opposite directions do not interfere with
each other and they are treated separately, thus the value of
N is reduced to 2 in the network. If we swap end nodes in
any of other two communications 1© and 2©, it turns out to
be the same result, i.e., N = 2, we thus omit the illustration.
Algorithm 3 shows the procedures of swapping end nodes
that cause the most crowded link(s) in the network. Be-
cause the number of end nodes connecting a switch keeps
the same after node swap, the whole network still meets the
design constraint, i.e., the maximum switch degree does not
change.

One thing to be noted is the case that there are more
than one most crowded link in the network. In this case, we
try to find one or more communications that pass through
the union set of all these most crowded links and then swap
the corresponding end nodes. If such a communication does
not exist, we try to find communications that pass through
as a large subset of these most crowded links as possible.
Another thing to be noted is that the end nodes are swapped
only when the value of N becomes smaller after node swap.
If the value of N becomes larger, the corresponding end
nodes are not swapped; if the value of N does not change,
it is pending for the next procedure of link optimization
(Sect. 4.3).

4.3 Link Optimization

We already know that after switch partition (Sect. 4.1) and
node swap (Sect. 4.2), the degree of each switch in the net-
work is not larger than 5. For the switches of which the
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Fig. 6 An example of topology optimization for reducing the value of N in the network.

Algorithm 3 Swaps nodes that cause the most crowded link.
1: procedure swapNodes(CommPattern cp, Topology topo)
2: nodes = findNodesByCrowdedLinks(cp, topo)
3: for pair in nodes do
4: topoNew = swapNodes(topo, pair)
5: if getN(cp, topoNew) > getN(cp, topo) then
6: continue
7: else if getN(cp, topoNew) == getN(cp, topo) then
8: pend(topoNew)
9: else if getN(cp, topoNew) < getN(cp, topo) then

10: topo = topoNew
11: end if
12: end for
13: return topo
14: end procedure

degrees are smaller than 5, they may still have possibilities
to help further reduce the value of N. Figure 6 (c) shows
such a case. The degrees of switches 0, 1, 2 and 3 are 5,
while the degrees of switches 4 and 5 are 3. Then we con-
sider to create a connection between switch 4 and switch 5,
and to divert the most crowded traffic in the network to this
new connection. For instance, if communication 2© diverts
its traffic from the direct path (switch 0→ 1) to an indirect
path (switch 0→ 4→ 5→ 1), there is no overlapped com-
munication on any link in the network, i.e., N = 1.

In this work, we consider the following two cases for
link optimization to reduce the value of N in the network.

• indirect path: communication hop count is increased
after diverting traffic to a different path
• parallel path: communication hop count does not

change after diverting traffic to a different path

Note that, after links added, we use the Dijkstra algorithm to
recalculate the shortest path for every node pair, thus a short-
cut path does not exist for link optimization. If the value of
N is reduced after diverting traffic from the most crowded
path to an indirect path or parallel path, we take it as a new
route for the corresponding communication. Otherwise, we
still use the old path and erase the new connection.

As link optimization goes on, communication traffic
spreads over the whole network, and the maximum num-
ber of communications passing through the same link can
decrease. Note that, we search for the most crowded or con-
gested link(s) over the whole network, thus it is not a local

Algorithm 4 Optimizes links and routes.
1: procedure optimizeLinks(CommPattern cp, Topology topo)
2: sws = getSwitchesLessDegree(topo)
3: for pair in sws do
4: topoNew, linkNew = addLinks(topo, pair)
5: routes = calculateRoutesByDijkstra(cp, topoNew)
6: routesNew = routeViaNewLinks(cp, topoNew, linkNew)
7: if getN(topoNew, routesNew) < getN(topoNew, routes)

then
8: setRoutes(topoNew, routesNew)
9: topo = topoNew

10: else
11: setRoutes(topoNew, routes)
12: topo = eraseLink(topoNew, linkNew)
13: end if
14: end for
15: return topo
16: end procedure

optimal solution to reduce the value of N. In other words,
we make global optimization by identifying the largest num-
ber of occupied time slots on a switch port within the same
time interval in the network. The whole procedures of link
optimization are described in Algorithm 4.

4.4 Time Complexity

The initial switch partition algorithm runs in O(log V) time,
where V is the number of end nodes in the network. The
procedure of node swap only considers a constant or lim-
ited number of moves between the partitions that cause the
most crowded or congested link(s) in the network. After
that, links and routes are optimized by using the Dijkstra
algorithm to recalculate the shortest path for each node pair
when links are added, which takes O(E+V log V) time when
using Fibonacci Heap, where E is the number of links in the
network. At the finalization of the topology generation, we
find out the exact number of N and network resource cost
such as the number of switches and links. Therefore, the
overall complexity of the algorithm, dominated by the opti-
mization of links and routes, is O(E + V log V).

The evaluation on the running time of the topology
generator script for different network sizes written in Python
2.7 in a machine with Intel i7-6500U (2.50GHz) CPU and
16GiB Memory is shown in Table 3 (the evaluation condi-
tions will be shown in Sect. 5.2).
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Table 3 Running time of the topology generator script with different
network sizes.

16 nodes 64 nodes 256 nodes 1024 nodes
0.012s 0.137s 0.229s 0.857s

Fig. 7 The value of N can be reduced by increasing network resources
and taking a bypass route for a communication pair.

4.5 Tradeoff Between N and Network Cost

So far we have developed a minimal topology according to
a given communication pattern and the maximum switch
degree, where the amount of network resources including
switches and links can reach the smallest in our approach
and the value of N can be also reduced. In this section, we
discuss another possibility to reduce the value of N by in-
creasing a certain number of network resources.

Figure 7 illustrates such an example of diverting a com-
munication from a congested link to a newly added bypass
route. This helps to further reduce the value of N in the net-
work with a tradeoff between the value of N and network re-
source amount. For instance, end nodes si and di of commu-
nication c(si, di) are moved to attach newly added switches
(dashed boxes) to form a new communication c(s′i , d

′
i ). End

nodes s′i and d′i and switches are connected by newly added
links (dashed lines). Note that, in this way the added links
can continue to bear more communications on other con-
gested links (although not shown in Fig. 7), only if the added
switches observe the network design constraint, i.e., the
maximum switch degree. The degrees of the switches orig-
inally connected to nodes si and di can keep the same, be-
cause they respectively “lose” an end node while connecting
to a new switch.

After the above procedures, the network traffic be-
comes more balanced and the value of N can be further
reduced to a smaller number that we specify. Therefore,
besides a given communication pattern and the maximum
switch degree, we can also provide a value of N as an input
parameter into our topology generator. The procedures are
described in Algorithm 5.

Algorithm 5 Generates network topology based on mini-
mum necessary number of slots (N).
1: procedure topoGen Rev(CommPattern cp, SwitchDegree sd,

N n)
2: topo = topoGen(cp, sd)
3: sw1, sw2 = addSWs()
4: while getN(topo) > n do
5: if connected(topo, sw1, sw2) == false then
6: topo = createLinks(topo, sw1, sw2)
7: end if
8: nodes = findNodesByCrowdedLinks(cp, topo)
9: for pair in nodes do

10: topo = moveNodes(pair, sw1, sw2)
11: if degree(sw1, sw2) == sd then
12: sw1, sw2 = addSWs()
13: topo = createLinks(topo, sw1, sw2)
14: end if
15: end for
16: end while
17: return topo
18: end procedure

5. Evaluation

5.1 Slot Utilization

We take the case that one slot is allocated to one communi-
cation as baseline, and evaluate the slot utilization efficiency
for the optimization methods as mentioned in Sect. 3.3. For
each optimization method, the whole network will reach its
full potential in terms of slot utilization when any communi-
cation is allocated one more slot the value of N will increase
accordingly. The slot utilization efficiency is defined as the
ratio of the number of used slots to the number of all switch
slots in the network.

Figure 8 presents the slot utilization efficiency in
mesh/torus networks. Overall, hcLtoS greedy performs the
best and hcStoL greedy performs the worst among the six
optimization methods, because the increased number of
used slots for a communication at a time heavily depends on
the hop count of the communication. It can be also seen that,
for any communication pattern except all-to-all, the slot uti-
lization efficiency is far below 100% even after optimiza-
tion, thus it still has large improvement room to make the
maximum use of switch slots in the network. The slot uti-
lization efficiency for all-to-all can reach 100% with any op-
timization method, because any two nodes (switches) have
communications and thus can be used to saturate the link
utilization by occupying more time slots if required.

Except mesh and torus, we also evaluate the slot utiliza-
tion efficiency in fat-tree networks as shown in Fig. 9. Fig-
ure 10 presents the evaluation results. As seen in Fig. 10 (a),
compared to mesh/torus networks, the slot utilization ef-
ficiency is extremely low for all the communication pat-
terns except for neighbor and all-to-all. The reason can be
known from Fig. 10 (b), where the slot utilization efficiency
of the root (first-layer) switch approaches or already reaches
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Fig. 8 Slot utilization efficiency in 4096-node mesh/torus interconnection networks.

Fig. 9 Fat-tree topology with 4096 nodes.

100%. This means that most of the traffic for any communi-
cation pattern goes through the root switch, and if one more
slot is allocated to any communication it probably increases
the value of N. Therefore there is no improvement room
for the overall slot utilization efficiency when not increas-
ing the value of N. For this reason, the slot utilization effi-
ciency can not reach 100% for all-to-all by src greedy and
hcStoL greedy. Also, as shown in Fig. 10 (c) and Fig. 10 (d),
except all-to-all, the slot utilization efficiency of the second-
layer switches is low and that of the third-layer switches is
even lower. For neighbor, since one node only commu-
nicates with its neighboring node, most of the traffic does
not reach the root switch and it can be optimized much fur-
ther than other communication patterns except for all-to-all.
Therefore, the slot utilization efficiency for neighbor is ob-

viously larger than that for other communication patterns
except for all-to-all.

5.2 Network Cost Efficiency

In this section, we evaluate the usefulness and effectiveness
of the proposed CS topology design methodology using var-
ious well-behaved communication patterns, which are fed
into our network topology generator written in Python 2.7 in
a machine with Intel i7-6500U (2.50GHz) CPU and 16GiB
Memory. Figure 11 depicts an example of the inter-switch
topologies (nodes omitted) generated by our design method-
ology with different network sizes. In all cases of this ex-
ample, the communication patterns are all assumed to be
uniform and the maximum switch degrees are all set to 5.
The generated topologies are minimal in terms of resource
amount because we do not specify a value of N. As de-
scribed in Sect. 4.5, we can further reduce the value of N
for each generated topology by increasing a certain number
of switches and links. The larger amount of resources we
deploy, the smaller value of N we can obtain in the network.

In our evaluation, the performance of generated topolo-
gies is compared with that of other traditional standard net-
works such as tori in terms of resource usage. We as-
sume the same maximum switch degree in our generated
topologies as that in standard tori networks, so that we can
make straightforward comparison between them. The eval-
uation results are shown in Fig. 12. Overall, as shown from
Fig. 12 (a) to Fig. 12 (c), the generated topologies outper-
form the counterpart 2-D tori topologies in terms of resource
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Fig. 10 Slot utilization efficiency in 4096-node fat-tree interconnection networks.

Fig. 11 The inter-switch topologies generated with different network sizes (communication pattern =
uniform, maximum switch degree = 5). End nodes are omitted.

(switch and link) amount and average communication hop
count. In addition, as the network size increases, such ad-
vantages become more significant. For comparison with 3-
D/4-D tori topologies, we still specify the value of N in our
generated topologies to be the same as counterpart 3-D/4-D
tori topologies. From Fig. 12 (d) to Fig. 12 (f), we can see
that the generated topologies outperform counterpart 3-D/4-
D tori topologies for all communication patterns except for
complement in terms of resource amount. For average hop
count, the generated topologies obviously lead counterpart
3-D/4-D tori topologies in all cases. In other words, when
our generated topologies allocate the same number of time
slots as that in traditional tori networks, the number of oc-
cupied network resources including switches and links can
be largely saved and the average communication hop count
can be significantly reduced as well in any case.

Next, to investigate the tradeoff between N and net-

work cost in our topology generator, we make a comparison
with a standard mesh network. We use uniform as the com-
munication pattern in 1024-node mesh networks and our
generated 1024-node topologies.

Figure 13 shows the relative resource usage when set-
ting different values of N in our generated topologies with a
mesh network as baseline. We can see that a mesh network
requires at least 14 slots, and when our generated topol-
ogy consumes the same number of slots it only uses 54%
switches and 47% links. If we reduce the value of N in the
generated topologies, the relative resource usage increases
accordingly since it uses a greater number of network re-
sources. As depicted in Fig. 13, when N = 5, the number of
used switches and links are comparable to that in a mesh
network. In other words, if we use a equivalent number
of switches and links in our generated topology to that in
a mesh network, only 5 slots are required for each switch,
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Fig. 12 Simulation results for comparison between tori and generated topologies by our design
methodology.

Fig. 13 Tradeoff between N and network cost (comm. pattern = uniform,
# of nodes = 1024).

which is far less than 14 slots in a counterpart mesh network.

5.3 Topology Reconfiguration

We evaluate the performance of topology reconfiguration in
our target CS network. The communication pattern is set to
be uniform and the maximum switch degree is assumed to
be 5 in the network.

Generally, the average hop count increases after topol-
ogy reconfiguration because some node pairs could not take
the shortest routing path due to the failure of one or sev-
eral intermediate switches. A failed switch causes the per-
manent (hardware) failure of its directly connected links,
through which any communication cannot pass. Thus, a
failed switch can be seen as an equivalent to the failed links
that are directly connected. There are also cases that the
value of N increases after topology reconfiguration since the

Fig. 14 The average hop count and minimum extra cycles for topology
reconfiguration in the network.

number of used time slots may exceed the current value of
N. The minimum extra cycles for topology reconfiguration
due to switch failure are shown as well. It can be seen that
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more extra cycles are required for topology reconfiguration
when more failed switches exist in the network. Compar-
atively, a larger size of network can tolerate more failed
switches or links with no much performance degradation.
For example, in a 64-node network (Fig. 14 (a)) if only one
switch fails four extra cycles are required for topology re-
configuration, while in a 1024-node network (Fig. 14 (b)) if
ten switches fail no extra cycles are appended for topology
reconfiguration although the average communication hop
count increases.

6. Conclusion

A major challenge to a circuit-switched (CS) network is how
to support many concurrent flows efficiently to fully utilize
link bandwidth. In this paper, we adopted a CS network for
parallel computers applying statistical multiplexing of links
to obtain guaranteed bandwidth and achieve low latency
for each communication. The proposed circuit-switched
network is a radical departure from current practice. We
showed that it works efficiently for different types of com-
munication patterns. We made optimization for link utiliza-
tion and proposed a topology generator to dynamically gen-
erate a specific network according to a given communica-
tion pattern and the maximum switch degree in our target
CS network. By performing a quantitative discrete-event
simulation, we presented the advantages of performance and
efficiency of a CS network generated by our design method-
ology. Beside performance benefits, it also provides a sub-
stantial reduction in network deployment cost. We consider
that our target CS network can be a candidate design for next
generation parallel computer networks.
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