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PAPER

Latent Words Recurrent Neural Network Language Models for
Automatic Speech Recognition

Ryo MASUMURA†a), Taichi ASAMI†, Takanobu OBA†, Sumitaka SAKAUCHI†, and Akinori ITO††, Members

SUMMARY This paper demonstrates latent word recurrent neural net-
work language models (LW-RNN-LMs) for enhancing automatic speech
recognition (ASR). LW-RNN-LMs are constructed so as to pick up advan-
tages in both recurrent neural network language models (RNN-LMs) and
latent word language models (LW-LMs). The RNN-LMs can capture long-
range context information and offer strong performance, and the LW-LMs
are robust for out-of-domain tasks based on the latent word space mod-
eling. However, the RNN-LMs cannot explicitly capture hidden relation-
ships behind observed words since a concept of a latent variable space is
not present. In addition, the LW-LMs cannot take into account long-range
relationships between latent words. Our idea is to combine RNN-LM and
LW-LM so as to compensate individual disadvantages. The LW-RNN-LMs
can support both a latent variable space modeling as well as LW-LMs and
a long-range relationship modeling as well as RNN-LMs at the same time.
From the viewpoint of RNN-LMs, LW-RNN-LM can be considered as a
soft class RNN-LM with a vast latent variable space. In contrast, from
the viewpoint of LW-LMs, LW-RNN-LM can be considered as an LW-
LM that uses the RNN structure for latent variable modeling instead of
an n-gram structure. This paper also details a parameter inference method
and two kinds of implementation methods, an n-gram approximation and
a Viterbi approximation, for introducing the LW-LM to ASR. Our experi-
ments show effectiveness of LW-RNN-LMs on a perplexity evaluation for
the Penn Treebank corpus and an ASR evaluation for Japanese spontaneous
speech tasks.
key words: latent words recurrent neural network language models, n-
gram approximation, Viterbi approximation, automatic speech recognition

1. Overview

Language models (LMs) are essential for many natural lan-
guage processing tasks including automatic speech recog-
nition (ASR) and statistical machine translation. The most
common problems faced by LMs are data sparseness and
context constraints. In most ASR systems, target domain
training data sets are often limited since the data sets must
be obtained by manually transcribing speech samples. In
addition, ASR systems consider only short context informa-
tion when calculating the generative probabilities of words
because they often use a traditional n-gram language model-
ing. In order to mitigate these problems, several techniques
have been proposed [1]–[3]. In particular, approaches in-
tended to improve LM structure have been aggressively pur-
sued. LM structure can be split into two main types; dis-
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criminative models and generative models.
The former include intelligent models such as max-

imum entropy model [4], decision tree [5], random for-
est [6], and neural networks [7], [8] including deep neural
networks [9]. Recurrent neural network LMs (RNN-LMs)
have, in particular, demonstrated significant improvements
in recent years [10], [11]. RNN-LMs can capture long-range
context information via their recurrent structure and can effi-
ciently represent context information as a continuous vector.
Therefore, RNN-LMs are known to be one of the most pow-
erful LMs. On the other hand, among the generative models,
latent variable space modeling with Bayesian approach is
attracting attention. Soft class-based LMs that have a latent
variable space have demonstrated better performance than
traditional class n-gram models [12], [13]. In addition, la-
tent words LMs (LW-LMs) offer a more flexible form of the
soft class-based LMs [14]. LW-LMs have a vast latent vari-
able space whose size is equivalent to the vocabulary size of
the training data. This flexible attributes helps to mitigate
data sparseness efficiently. In fact, LW-LMs are robust for
not only in-domain tasks but also out-of-domain tasks [15]–
[17].

This paper focuses on two successful LMs, RNN-LMs
and LW-LMs. Although both models have their own ad-
vantages, each also has problems at the same time. RNN-
LMs can capture long-range context information and offer
strong performance. However, RNN-LMs cannot explicitly
capture the hidden relationship behind observed words since
they ignore the concept of the latent variable space. While
LW-LMs have a latent variable space based on Bayesian in-
ference, the space is modeled as a simple n-gram structure.
Therefore, LW-LMs cannot take into account the long-range
relationships among latent variables.

To overcome the problems of both RNN-LMs and LW-
LMs, this paper presents a novel modeling method called
the latent word recurrent neural network language model
(LW-RNN-LM). Our idea is to combine RNN-LM and LW-
LM so as to ameliorate their individual disadvantages. Thus,
LW-RNN-LM can support both latent variable space mod-
eling and LW-LM while providing long-range relationship
modeling as well as RNN-LMs at the same time. From the
viewpoint of RNN-LMs, LW-RNN-LM can be considered
as a soft class RNN-LM with a latent word space. In con-
trast, from the viewpoint of LW-LMs, LW-RNN-LM can be
considered as an LW-LM whose latent word space modeling
is based on an RNN structure instead of an n-gram struc-
ture. Consequently, it can be expected that LW-RNN-LM
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has different attributes from standard RNN-LMs and stan-
dard LW-LMs and will yield further improvement through
their combination.

Our idea parallels studies that expand RNN-LMs us-
ing other models. Latent Dirichlet allocation has been used
to exploit the topic representation from complete speech in-
put [18]. In addition, paraphrase LMs have been combined
with RNN-LMs to create paraphrase RNN-LMs [19]. To the
best of our knowledge, LW-RNN-LM is the first proposal to
combine RNN-LM with latent variable space models.

There are two issues posed by LW-RNN-LM. The first
is which training method should be used. It is impossible
to estimate an LW-RNN-LM directly from a training data
set since the RNN structure is not suitable for latent vari-
able space modeling. To this end, an alternative training
procedure is presented that uses a standard LW-LM. In the
procedure, latent word sequences of the training data set are
first decoded using the LW-LM, and then model parameters
of the LW-RNN-LM are estimated using the latent word se-
quences. The second issue is ASR implementation. As is
true for LW-LMs, LW-RNN-LM cannot be applied to ASR
directly because its latent word space is vast. To this end,
this paper presents two approximation methods, an n-gram
approximation that converts a complex model structure into
a back-off n-gram structure [15], [17], and a Viterbi approx-
imation that uses a joint probability between an observed
word sequence and an optimal latent word sequence [16].
While these two methods were originally applied to LW-
LMs, this paper customizes them to suit LW-RNN-LM.

This paper is an extended study of our previous
work [20]. It provides details of LW-RNN-LM, omitted
from the previous work, that allow better understanding of
its position relative to RNN-LM and LW-LM. Furthermore,
we provide an additional evaluation that more fully reveals
the properties of LW-RNN-LM.

This paper is organized as follows. In Sect. 2, we de-
scribe the model structures of RNN-LM and LW-LM. Sec-
tion 3 provides a definition of LW-RNN-LM. In addition,
a training method and two ASR implementation methods
for LW-RNN-LM are introduced in detail. Sections 4 and
5 describe a perplexity evaluation and an ASR evaluation.
Section 6 concludes this paper.

2. Previous Work

2.1 Recurrent Neural Network Language Models

Recurrent neural network LMs (RNN-LMs) have attracted
significant attention in recent years [10]. RNN-LMs have
two characteristics: one is that the word space can be rep-
resented as a continuous space vector based on neural net-
works, and the other is that long-range information can be
flexibly taken into consideration based on its recurrent struc-
ture.

A graphical rendering of RNN-LM is shown in Fig. 1.
The gray circle denotes a word that can be observed as a lin-
guistic phenomenon. The gray square denotes a continuous

Fig. 1 Model structure of RNN-LMs.

representation that can be uniquely calculated. As shown in
Fig. 1, previous word wt−1 is converted into a hidden repre-
sentation st that depends on previous context representation
st−1, which includes long-range context information. Cur-
rent word wt is generated depending on context information
st.

In word-based RNN-LMs, the generative probability of
word sequence w = {w1, · · · , wT } is given as:

P(w) =
T∏

t=1

P(wt |wt−1, st−1,Θrnn), (1)

=

T∏
t=1

P(wt |st,Θrnn), (2)

where Θrnn is a model parameter of RNN-LM and st is the
context information of the RNN structure. In the RNN struc-
ture, context information st and P(wt |st,Θrnn) are calculated
as:

st = σ(Urnnst−1 + Vrnnφ(wt−1) + brnn), (3)

pt = [pt1, · · · , ptk, · · · , pt|V|]�, (4)

= G(Ornnst + ornn), (5)

P(wt = k|st,Θrnn) = ptk, (6)

where Urnn, Vrnn, and brnn are model parameters of a hid-
den layer of the RNN structure. Ornn and ornn are model
parameters of an output layer of the RNN structure. pt is an
output vector in the output layer of the RNN structure, ptk

is the k-th value in pt, and |V| is vocabulary size. φ(wt−1)
denotes 1-of-K coding of wt−1. σ is a sigmoid function, and
G is a softmax function.

Since the cost of computing the probability estimation
is proportional to vocabulary size |V| in word-based mod-
eling, class-based RNN-LMs are used most often [11]. The
idea was proposed for maximum entropy models and feed
forward neural networks [21], [22]. The resulting probabil-
ity estimation is defined as:

P(wt |st,Θrnn) = P(wt |st, ct,Θrnn)P(ct |st,Θrnn), (7)

where st is context information that includes the previous
word and previous output in the hidden layer, and ct ∈ C is
a word class where C represents the sets of classes and the
class size is |C|.

Note that the mixing of several RNNs trained with dif-
ferent random initialization values is reported in [11]. The
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Fig. 2 Model structure of LW-LMs.

probability estimation of the ensemble of RNN-LMs is de-
fined as:

P(w) =
1
M

M∑
m=1

T∏
t=1

P(wt |sm
t ,Θ

m
rnn). (8)

The generative probability can be calculated using M in-
stances of RNN-LMs. Θm

rnn indicates the m-th model param-
eter and sm

t is the context information of the m-th instance.

2.2 Latent Words Language Models

Latent words LMs (LW-LMs) are generative models that set
a latent variable for each observed word. A graphic render-
ing of LW-LM is shown in Fig. 2. The gray circles denote
observed words and the white circles denote latent variables.

In the generative process of LW-LM, a latent vari-
able, called latent word ht, is generated depending on
the transition probability distribution given context lt =
{ht−n+1, . . . , ht−1}, where n is n-gram order. Next, observed
word wt is generated depending on the emission probability
distribution given latent word ht, i.e.,

ht ∼ P(ht |lt,Θlw), (9)

wt ∼ P(wt |ht,Θlw), (10)

where Θlw is a model parameter of LW-LM. Here,
P(ht |lt,Θlw) is expressed as an n-gram model for latent
words, and P(wt |ht,Θlw) models the dependency between
the observed word and the latent word.

An important property of LW-LMs is that the latent
word is expressed as a specific word that can be selected
from complete vocabulary V. Thus, the number of latent
words is the same as vocabulary size |V|. For this reason,
the latent variable is called a latent word.

LW-LM is generally modeled using the Bayesian ap-
proach. LW-LM produces the following generative proba-
bility for observed words w = {w1, · · · , wT }:

P(w) =
∫ ∑

h

P(w|h,Θlw)P(h|Θlw)P(Θlw)dΘlw, (11)

� 1
M

M∑
m=1

∑
h

P(w|h,Θm
lw)P(h|Θm

lw), (12)

=
1
M

M∑
m=1

∑
h

T∏
t=1

P(wt |ht,Θ
m
lw)P(ht |lt,Θm

lw), (13)

where h = {h1, · · · , hT } is a latent word assignment. Θm
lw

means the m-th instance of the point estimated model pa-
rameter. Thus, the generative probability can be approxi-
mated using M instances of Θm

lw
.

LWLMs are trained from a training data set W. In
LWLM training, the latent word assignment H behind W
have to be inferred. In fact, multiple latent word assign-
ments H1, · · · ,HM are estimated for the Bayesian mod-
eling. Once a latent word assignment Hm is defined,
P(wt |ht,Θ

m
lw

) and P(ht |lt,Θm
lw

) can be calculated.
To estimate the latent word assignments, Gibbs sam-

pling can be utilized. Gibbs sampling samples a new value
for the latent word in accordance with its distribution and
places it at position t inH . The conditional probability dis-
tribution of possible values for latent word ht is given by:

P(ht |W,H−t) ∝ P(wt |ht,Θlw,−t)
t+n−1∏

j=t

P(h j|l j,Θlw,−t),

(14)

where H−t represents all latent words except for ht and n
is the n-gram order for the latent word modeling. In the
sampling procedure, P(ht |lt,Θlw,−t) and P(wt |ht,Θlw,−t) can
be calculated fromW andH−t.

The transition probability distribution and the emis-
sion probability distribution are calculated on the basis of
their prior distributions. For the transition probability dis-
tribution, this paper uses a prior hierarchical Pitman-Yor.
P(ht |lt,Θlw) is given as:

P(ht |lt,Θlw) = P(ht |lt,H), (15)

P(ht |lt,H) =
c(ht, lt) − d|lt |s(ht, lt)

θ|lt | + c(lt)

+
θ|lt | + d|lt |s(lt)
θ|lt | + c(lt)

P(ht |π(lt),H), (16)

where π(lt) is the shortened context obtained by removing
the earliest word from lt. c(ht, lt) and c(lt) are counts calcu-
lated from a latent word assignmentH . s(ht, lt) and s(lt) are
calculated from a seating arrangement defined by the Chi-
nese restaurant franchise representation of the Pitman-Yor
process [23]. d|lt | and θ|lt | are discount and strength param-
eters of the Pitman-Yor process, respectively. Moreover, a
Dirichlet prior is used for the emission probability distribu-
tion [24]. P(wt |ht,Θlw) is given as:

P(wt |ht,Θlw) = P(wt |ht,W,H), (17)

P(wt |ht,W,H) =
c(wt, ht) + αP(wt)

c(ht) + α
, (18)

where P(wt) is the maximum likelihood estimation value of
unigram probability in the training data setW. c(wt, ht) and
c(ht) are counts calculated fromW and latent word assign-
ment H . A hyper parameter α can be optimized via a vali-
dation data set.
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3. Latent Words Recurrent Neural Network Language
Models

3.1 Definition

Latent words recurrent neural network LMs (LW-RNN-
LMs) are generative models that combine RNN-LM and
LW-LM. The models have a soft class structure based on a
latent word space as does LW-LM and the latent word space
is modeled using an RNN-LM.

A graphic rendering of LW-RNN-LM is shown in
Fig. 3. Gray circles denote words and white circles denote
latent words. White squares denote a hidden representation
of latent words. As shown in Fig. 3, previous latent word
ht−1 is converted into hidden representation st depending on
previous context representation st−1, which includes long-
range context information. Current latent word ht is gener-
ated depending on context information st. Finally, observed
word wt is generated depending on latent word ht. The gen-
erative process is formulated as:

ht ∼ P(ht |st,Θlr), (19)

wt ∼ P(wt |ht,Θlr), (20)

whereΘlr is a model parameter of LW-RNN-LM. The tran-
sition probability distribution P(ht |st,Θlr) is expressed as
an RNN-LM for latent words. The emission probability dis-
tribution P(wt |ht,Θlr) models the dependency between the
observed word and the latent word as does LW-LM.

In the Bayesian approach, LW-RNN-LM defines the
following generative probability for observed words w =
{w1, · · · , wT }:

P(w) =
∫ ∑

h

P(w|h,Θlr)P(h|Θlr)P(Θlr)dΘlr, (21)

� 1
M

M∑
m=1

∑
h

P(w|h,Θm
lr)P(h|Θm

lr), (22)

=
1
M

M∑
m=1

∑
h

T∏
t=1

P(wt |ht,Θ
m
lr)P(ht |sm

t ,Θ
m
lr), (23)

Fig. 3 Model structure of LW-RNN-LM.

where Θm
lr

is the m-th model parameter and sm
t is the con-

text information of the m-th instance for the RNN structure.
Thus, the generative probability can be approximated using
M instances of Θm

lr
. In the m-th RNN structure, context

information sm
t and transition probability P(ht |sm

t ,Θ
m
lr

) are
calculated as:

sm
t = σ(Um

lrs
m
t−1 + Vm

lrφ(ht−1) + bm
lr), (24)

pm
t = [pm

t1, · · · , pm
tk, · · · , pm

t|W|]
�, (25)

= G(Om
lrs

m
t + om

lr), (26)

P(ht = k|sm
t ,Θ

m
lr) = pm

tk, (27)

where Um
lr

, Vm
lr

, and bm
lr

are model parameters in a hidden
layer of the m-th RNN structure. Om

lr
and om

lr
are model

parameters in an output layer of the m-th RNN structure.
pm

t is an output vector in the output layer of the m-th RNN
structure. φ(ht−1) denotes 1-of-K coding of ht−1.

In addition, class-based RNN structure described in
Sect. 2 is also utilized for LW-RNN-LM. In this case, latent
words are additionally map into classes. When the class-
based RNN structure is used in LW-RNN-LM, the genera-
tive probability of ht is defined as:

P(ht |st,Θ
m
lr) = P(ht |sm

t , ct,Θ
m
lr)P(ct |sm

t ,Θ
m
lr), (28)

where ct ∈ C represents the class where C represents the sets
of classes and the class size is |C|.

LW-RNN-LM is closely related to conventional RNN-
LMs and LW-LMs. LW-RNN-LM can be regarded as an
RNN-LM with a soft class structure based on a latent word
space. In addition, LW-RNN-LM can be regarded as an LW-
LM whose transition probability distribution is based on an
RNN structure instead of an n-gram structure.

3.2 Training

LW-RNN-LM is trained using an observed word sequence
of a training data set W = {w1, · · · , wT }. It is impossible
to estimate an LW-RNN-LM directly because it is founded
on latent word space and RNN structure. Therefore, this
paper presents a method that preliminarily trains an LW-LM
to decode the latent word assignment of the observed word
sequence. The latent word assignment is used in estimating
model parameters of an LW-RNN-LM.

In fact, the optimal latent word assignment of an ob-
served word sequence can be estimated for each LW-LM
instance. The optimal latent word assignment for the m-th
LW-LM instance,Hm = {hm

1 , · · · , hm
T }, is given by:

Hm = arg max
H

P(W|H ,Θm
lw)P(H|Θm

lw). (29)

For the estimation required, Gibbs sampling is suitable. The
conditional probability distribution of possible values for la-
tent word ht is given by:

P(ht |W,H−t) ∝ P(wt |ht,Θ
m
lw)

t+n−1∏
j=t

P(h j|l j,Θ
m
lw), (30)
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where H−t is a latent word assignment except for ht. This
procedure is applied to not only the training data set but also
the validation data set.

The m-th model parameterΘm
lr

can be determined from
the m-th optimal latent word assignments Hm. The tran-
sition probability distribution P(ht |sm

t ,Θ
m
lr

), i.e., Um
lr

, Vm
lr

,
bm
lr

, Om
lr

and om
lr

, is estimated from the m-th latent vari-
able assignment of the training data set as in usual RNN-LM
training. The m-th model parameter Θ̂m

lr
is optimized by:

Θ̂m
lr = arg max

Θlr

T∏
t=1

P(hm
t |sm

t ,Θlr). (31)

Note that the m-th latent variable assignment of the valida-
tion data set is used for early stopping.

Emission probability distribution P(wt |ht,Θ
m
lr

) can be
determined from the LW-LM:

P(wt |ht,Θ
m
lr) = P(wt |ht,Θ

m
lw), (32)

= P(wt |ht,W,Hm), (33)

P(wt |ht,W,Hm) =
c(wt, hm

t ) + αP(wt)

c(hm
t ) + α

, (34)

where P(wt) is the estimated maximum likelihood value of
unigram probability in training data set W. c(wt, hm

t ) and
c(hm

t ) are counts calculated fromW and latent word assign-
mentHm. Hyper parameter α can be optimized via the val-
idation data set.

3.3 N-Gram Approximation

An n-gram approximation can be used to apply LW-RNN-
LM to ASR. The n-gram approximation is a technique that
can convert an LM with complex model structure into a
back-off n-gram structure. The n-gram approximation of
LW-RNN-LM is the same as that for the LW-LM [15], [17];
an LM with a back-off n-gram structure is trained from
observed words randomly sampled on LW-RNN-LM. The
approximated LW-RNN-LM P(w|Θlrng) has the following
properties:

wlr ∼ P(w|Θ1
lr, · · · ,ΘM

lr), (35)

wlrng ∼ P(w|Θlrng), (36)

wlr � wlrng, (37)

where wlr is an observed word sequence generated from the
LW-RNN-LM, and wlrng is an observed word sequence gen-
erated from the approximated LW-RNN-LM with back-off
n-gram structure. The approximated LW-LM can be con-
structed from words generated from LW-RNN-LM.

The random sampling is based on Algorithm 1. As
shown in the algorithm, context information of each RNN
structure is updated in advance. After that, instance index
mt ∈ {1, · · · ,M} for model parameters, a latent word ht ∈ V,
and an observed word wt ∈ V are recursively generated.

This iterative approach yields a large number of word
sequences. T iterations can generate T latent words, and T

Algorithm 1 Random sampling based on LW-RNN-LM.
Input: Model parameters Θ1

lr
, · · · ,ΘM

lr
,

number of sampled words T
Output: Sampled words w
1: l1 = <s>
2: for t = 1 to T do
3: for m = 1 to M do
4: sm

t = σ(sm
t−1, ht−1,Θ

m
lr

)
5: end for
6: mt ∼ P(mt) = 1

M
7: ht ∼ P(ht |smt

t ,Θ
mt
lr

)
8: wt ∼ P(wt |ht ,Θ

mt
lr

)
9: end for

10: return w = w1, · · · , wT

observed words. The T observed words are used only for
back-off n-gram model estimation.

3.4 Viterbi Approximation

The other applicable method is the Viterbi approximation
that simultaneously decodes a recognition hypothesis and
its latent word sequence using the joint probability between
the two sequences. The joint probability is called the Viterbi
probability. Viterbi probability P(w, h̄) is defined as:

P(w, h̄) = max
h

P(w, h), (38)

= max
h

1
M

M∑
m=1

P(w|h,Θm
lr)P(h|Θm

lr). (39)

The Viterbi approximation of LW-RNN-LM is not the same
as is true for LW-LMs. LW-RNN-LM makes it impossible
to efficiently compute a Viterbi probability because neither
the Viterbi algorithm nor Gibbs sampling can be introduced
directly due to the RNN structure. In order to tackle this
issue, a standard LW-LM is used for the Viterbi approxi-
mation. First, several latent word assignments are decoded
using an LW-LM, and the candidates are re-evaluated using
a LW-RNN-LM.

The latent word assignments can be decoded via Gibbs
sampling. A conditional probability distribution of the pos-
sible values for latent word ht is defined as:

P(ht |w, h−t) ∝
M∑

m=1

{P(wt |ht,Θ
m
lw)

t+n−1∏
j=t

P(h j|l j,Θ
m
lw)},

(40)

where h−t represents latent word assignment except for ht.
This sampling yields I samples of latent words assignments
{h1, · · · , hI}. Viterbi probability P(w, h̄) is based on LW-
RNN-LM and is calculated as:

P(w, h̄)

= max
h∈{h1,··· ,hI }

1
M

M∑
m=1

T∏
t=1

P(wt |ht,Θ
m
lr)P(ht |sm

t ,Θ
m
lr).

(41)
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In addition, the Viterbi probability can be computed by com-
bining LW-RNN-LM with LW-LM. That is, LW-RNN-LM
and LW-LM are interpolated in the latent word space. The
Viterbi probability is defined as:

P(w, h̄) = max
h∈{h1,··· ,hI }

1
M

M∑
m=1

T∏
t=1

P(wt |ht,Θ
m
lr)

{λP(ht |sm
t ,Θ

m
lr) + (1 − λ)P(ht |lt,Θm

lw)}, (42)

where λ is a mixture weight for latent word space modeling.
As described above, the emission probabilities of both LW-
RNN-LM and LW-LM are shared, so the transition proba-
bilities are simply interpolated.

4. Experiment 1: Perplexity Evaluation

4.1 Setups

The first experiments used the Penn Treebank corpus in [25].
Sections 0–20 were used as a training data set (Train), sec-
tions 21 and 22 were used as a validation data set (Valid),
and sections 23 and 24 were used as a test data set (Test A).
In addition, a human-human discussion text data set (Test
B) was prepared for evaluations in a domain different from
the training data set. Each vocabulary was limited to 10K
words and there were no out-of-vocabulary (OOV) words.
Actually, the OOV words were map into a specific word, i.e,
“UNK”. The setups match those of many previous studies
and allow us to evaluate perplexity of all words in a unified
manner. Table 1 shows details.

In this evaluation, the following LMs were prepared.

• MKN5: A word-based 5-gram LM with modified
Kneser-Ney smoothing constructed from the training
data set [26].
• HPY5: A word-based 5-gram hierarchical Pitman-Yor

LM (HPYLM) constructed from the training data set.
For the training, 200 iterations were used for burn-in,
and 10 instances were collected [27].
• RNN: Word-based RNN-LM [11]. The hidden layer size

was set to 200 by referring to a preliminary experiment.
The number of instances (M) was set to 1 since RNN-
LMs with one instance were often used in most previ-
ous studies.
• RNN-NA: A word-based 5-gram HPYLM constructed

from data generated on the basis of RNN. The generated
data size was one billion words, which was determined
in consideration of previous work [17]. We used en-
tropy based pruning to n-gram entries that match the
computation complexity of HPY5 [28].

Table 1 Data sets for perplexity evaluation.

Domain Number of words

Train Penn Treebank 929,589
Valid Penn Treebank 70,390
Test A Penn Treebank 78,669
Test B Human-Human Discussion 50,507

• LW-NA: A word-based 5-gram HPYLM constructed
from data generated on the basis of 5-gram LW-LM
(LW) constructed from the training data set. For train-
ing LW, 500 iterations were used for burn-in, and 10
instances were collected (M = 10). The generated data
size, one billion words, was determined in considera-
tion of previous work [17]. We pruned n-gram entries
as to be comparable computation complexity to HPY5
using entropy based pruning.
• LW-VA: Viterbi approximation of LW [16]. To calculate

the Viterbi probability, 100 samples of latent words
assignments were obtained via Gibbs sampling (I =
100).
• LR-NA: A word-based 5-gram HPYLM constructed

from data generated on the basis of LW-RNN-LM (LR)
constructed from the training data set. Latent word
space was modeled by an RNN structure. The hidden
unit size and the class size |C| in the RNN structure
were varied in the evaluation. The generated data size
was one billion words, which was determined in con-
sideration of previous work [17].
• LR-VA: Viterbi approximation of LR. To calculate the

Viterbi probability, 100 samples of latent words assign-
ments were sampled using LW (I = 100).

In addition, several mixed models constructed by linearly
interpolating the above LMs were employed. Note that M
and I were constant in our experiments. Hyper parameters
including α in Eq. (28) and λ in Eq. (36) and the interpola-
tion weights were optimized using a validation data set.

4.2 Results

First, perplexity (PPL) results of LR-NA and LR-VA were
investigated; hidden unit size and class size |C| were var-
ied. When the class size was set to 1,000, LW-RNN-LM
is a class-based model. On the other hand, when the class
size was set to 10,000, LW-RNN-LM is exactly a word-
based model. We compared LR-NA and LR-VA with LW-NA
and LW-VA. The results are shown in Table 2. The results
show that PPL was improved when hidden unit size and
class size were increased. The results indicate that rich pa-
rameters are necessary to construct precise LW-RNN-LMs.
In the n-gram approximation results, LR-NA was inferior

Table 2 PPL results of LW-NA, LW-VA, LR-NA and LR-VA; hidden unit
size and class size |C| of RNN structure were varied for LW-RNN-LMs.

Unit size Class size Valid Test A Test B

LW-NA - - 138.7 131.7 205.5
LR-NA 200 1,000 153.7 146.1 221.8
LR-NA 400 1,000 151.6 143.6 217.4
LR-NA 200 10,000 149.5 141.2 214.1
LR-NA 400 10,000 148.6 140.6 212.4

LW-VA - - 148.4 142.9 224.7
LR-VA 200 1,000 155.1 147.5 226.4
LR-VA 400 1,000 151.2 144.5 221.9
LR-VA 200 10,000 149.5 142.2 221.1
LR-VA 400 10,000 147.1 139.89 216.6
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to LW-NA. On the other hand, in the Viterbi approximation
results, LR-VA outperformed LW-VA in both the in-domain
tasks and the out-of-domain tasks. It can be considered that
the Viterbi approximation is an implementation method suit-
able for LW-RNN-LMs because it can directly utilize the
RNN structure for computing the generative probabilities of
words.

Next, combinations of LR-VA (400 hidden units and
10,000 classes) and LW-VA were examined. The PPL results
in which the mixture weight was varied are shown in Fig. 4.
When the mixture weight was set to 0, the PPL result corre-
sponds to LW-VA. When the mixture weight is set to 1, the
PPL result corresponds to LR-VA. The results show that the
combination of LR-VA and LW-VA based on linear interpo-
lation can improve the PPL for all data sets. This suggests
that a combination of n-gram structure and RNN structure
in a latent word space is effective as well as in an observed
word space.

PPL results including those for other LMs and their
combinations are summarized in Table 3. First, the model
combination was examined under the restriction of the back-
off n-gram structure. Lines 1–9 show the results for LMs
with the back-off n-gram structure. LR-NA was superior

Fig. 4 PPL results of combining LR-VA and LW-VA.

Table 3 PPL results including those for other LMs and combined LMs.

Valid Test A Test B

1. MKN5 148.0 141.2 238.6
2. HPY5 145.1 139.3 232.7
3. RNN-NA 160.4 150.4 286.4
4. LW-NA 138.7 131.7 205.5
5. LR-NA 148.6 140.6 212.4
6. LW-NA+LR-NA 136.5 129.3 197.3
7. RNN-NA+LR-NA 136.5 129.3 197.3
8. HPY5+LW-NA 144.3 137.2 205.7
9. HPY5+LW-NA+LR-NA (ALL5) 125.4 120.2 196.5

10 LW-VA 148.4 142.9 224.7
11 LR-VA 147.1 139.8 216.6
12 LW-VA+LR-VA 138.0 132.3 211.3
13 RNN 134.4 128.9 212.9
14. ALL5+LR-VA 105.0 102.4 165.6
15. ALL5+LW-VA+LR-VA 103.9 101.6 164.2
16. ALL5+RNN 108.7 103.2 172.7
17. ALL5+RNN+LW-VA+LR-VA 97.0 94.7 152.4

to RNN-NA and slightly weaker than LW-NA in in-domain
tasks and out-of-domain tasks. By combining LR-NA with
RNN-NA or LW-NA, the PPL was improved compared to
their individual use. These results show that LR-NA pos-
sesses properties different from RNN-NA and LW-NA and
that their combination is effective. In each data set,
HPY5+LW-NA+LR-NA outperformed HPY5+LW-NA. These re-
sults show the n-gram approximation of LW-RNN-LM is
beneficial for constructing an LM with a back-off n-gram
structure.

Lines 10–17 show the results for RNN, LW-VA, LR-VA
and their combination with ALL5 (HPY5+LW-NA+LR-NA).
We only used ALL5 as an n-gram LM when combining with
LW-VA, LR-VA and RNN. RNN performed strongly compared
to LW-VA and LR-VA. Combining LR-VA with ALL5 yielded
improved PPL results. This indicates that the Viterbi ap-
proximation of LW-RNN-LM is useful for improving back-
off n-gram language modeling. The highest performance
was attained by ALL5+LW-VA+LR-VA+RNN for all data sets.
It seems that RNN, LW-VA and LR-VA complement each other,
and each model yields characteristics different from their n-
gram approximation methods. These results confirm that
LW-RNN-LM is beneficial for improving word prediction
performance.

5. Experiment 2: ASR Evaluation

5.1 Setups

The second experiment used the Corpus of Spontaneous
Japanese (CSJ) [29]. CSJ was divided into a training data
set (Train), a small validation data set (Valid), and a test data
set (Test A). For evaluation in out-of-domain environments,
a contact center dialog task (Test B) and a voice mail task
(Test C) were prepared. The vocabulary size of the training
data set was 83,536. For each data set, the number of words
and OOV rate are detailed in Table 4.

For speech recognition evaluation, an acoustic model
based on hidden Markov models with deep neural networks
(DNN-HMM) was prepared [30]. The DNN-HMM had 8
hidden layers with 2048 nodes.

In this evaluation, the following LMs were prepared.

• MKN3: A word-based 3-gram LM with modified
Kneser-Ney smoothing constructed from training data
set [26].
• HPY3: A word-based 3-gram HPYLM constructed

from the training data set [27].
• RNN: A class-based RNN-LM with 500 hidden nodes

Table 4 Data sets for ASR evaluation.

Domain Number of words OOV rate (%)

Train Lecture 7,317,392 -
Valid Lecture 28,046 0.72
Test A Lecture 27,907 0.51
Test B Contact center 24,665 3.66
Test C Voice mail 21,044 4.41
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Table 5 PPL results of LW-NA, LW-VA, LR-NA and LR-VA; hidden layer size and class size |C| were
varied for LW-RNN-LMs.

Unit size Class size Valid Test A Test B Test C

LW-NA - - 79.64 66.93 141.34 147.87
LR-NA 200 200 90.69 75.85 142.40 146.55
LR-NA 200 500 89.95 75.38 140.81 145.88
LR-NA 200 1,000 92.22 76.51 141.47 146.37
LR-NA 500 500 90.17 75.17 140.72 145.09

LW-VA - - 86.84 74.50 142.49 133.97
LR-VA 200 200 87.95 74.41 156.49 163.55
LR-VA 200 500 86.49 73.53 154.15 162.16
LR-VA 200 1,000 86.49 73.23 152.31 162.54
LR-VA 500 500 81.55 69.64 146.35 158.38

and 500 classes by referring to a preliminary experi-
ment [11]. Actually, we did not construct word-based
RNN-LM because it is difficult to construct the word-
based model from training data sets due to the compu-
tation complexity. The number of instances (M) was
set to 1 since RNN-LMs with one instance were often
used in most previous studies.
• RNN-NA: A word-based 3-gram HPYLM constructed

from data generated on the basis of RNN. The generated
data size was one billion words, which was determined
in consideration of previous work [17]. We applied en-
tropy based pruning to the n-gram entries to match the
computation complexity of HPY3 [28].
• LW-NA: A word-based 3-gram HPYLM constructed

from data generated on the basis of 3-gram LW-LM
(LW) constructed from the training data set. For train-
ing LW, 500 iterations were used for burn-in, and 10
instances were collected (M = 10). The generated data
size, one billion words, was determined in considera-
tion of previous work [17]. We applied entropy based
pruning as well as RNN-NA.
• LW-VA: Viterbi approximation of LW. To calculate the

Viterbi probability, 100 samples of latent words assign-
ments were obtained using Gibbs sampling (I = 100).
• LR-NA: A word-based 3-gram HPYLM constructed

from data generated on the basis of LW-RNN-LM (LR)
constructed from the training data set. Its latent word
space was modeled by an RNN structure. The hidden
unit size and the class size |C| in the RNN structure
were varied in the evaluation. The generated data size,
one billion words, was determined in consideration of
previous work [17]. We applied entropy based pruning
as well as RNN-NA.
• LW-VA: Viterbi approximation of LR. To calculate the

Viterbi probability, 100 samples of latent words assign-
ments were sampled using LW (I = 100).

For implementing RNN, LW-VA, and LR-VA to ASR, 1,000-
best hypotheses were generated in the first pass. Note that
M and I were constant in our experiments. Hyper param-
eters including α in Eq. (28) and λ in Eq. (36) and the in-
terpolation weights were optimized using a validation data
set.

5.2 Results

First, PPL results of LR-NA and LR-VA were investigated;
hidden unit size and class size |C| were varied. The results,
including LW-NA and LW-VA, are shown in Table 5.

Among the LW-RNN-LMs, the best results were at-
tained with 500 hidden units and 500 classes for both the
n-gram approximation and the Viterbi approximation. In
in-domain tasks, LR-NA was inferior to LW-NA, and LR-VA
was superior to LW-VA. On the other hand, in out-of-domain
tasks, LR-NA was superior to LW-NA, and LR-VA was in-
ferior to LW-VA. The results indicate that LW-RNN-LM is
compatible with the Viterbi approximation while LW-LM is
compatible with the n-gram approximation. This is because
the Viterbi approximation directly utilizes the RNN struc-
ture for computing generative probabilities of words.

Table 6 shows the PPL and word error rate (WER) re-
sults for each condition. The results show that in-domain
data sets were showed lower PPL and WER than out-of-
domain data sets. This is because OOV rate in the in-domain
data sets were lower than the in the out-of-domain data sets.
First, one-pass decoding results gained from LMs with the
back-off n-gram structure are examined. Lines 1–9 show
the results for the back-off n-gram structure. The results
show LR-NA outperformed LW-NA in out-of-domain tasks al-
though the WER differences between LW-NA and LW-NA in
out-of-domain tasks were not statistically significant (p >
0.05). On the other hand, LR-NA was weaker than LW-NA in
in-domain tasks. LR-NA also outperformed RNN-NA in both
in-domain tasks and out-of-domain tasks. The WER dif-
ferences between LR-NA and RNN-NA in each test sets were
statistically significant (p < 0.01). These results indicate
that the n-gram approximation of LW-RNN-LM can yield
ASR performance improvements although it is comparable
to LW-LM. In addition, RNN-NA+LR-NA and LW-NA+LR-NA
attained better ASR performance than RNN-NA or LW-NA.
These results show the effectiveness of LW-RNN-LM com-
pared with the conventional methods. It is thought that
these improvements were attained because LW-RNN-LM
has different attributes from standard RNN-LMs and stan-
dard LW-LMs. The highest ASR performance was attained
by HPY3+LW-NA+LR-NA in each condition. In particular,
in out-of-domain tasks, HPY3+LW-NA+LR-NA strongly out-
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Table 6 PPL results and WER results [%] for in-domain tasks and out-of-domain tasks.

Setup Valid Test A Test B Test C
(In-domain) (In-domain) (Out-of-domain) (Out-of-domain)
PPL WER PPL WER PPL WER PPL WER

1. MKN3 81.38 19.98 69.36 24.79 167.61 38.67 189.93 32.00
2. HPY3 79.32 19.74 67.50 24.67 158.13 38.29 175.63 31.69
3. RNN-NA 98.65 21.63 82.23 26.24 153.89 39.32 163.99 31.96
4. LW-NA 79.57 19.61 66.93 24.54 141.34 36.93 147.87 30.42
5. LR-NA 90.17 19.89 75.17 25.30 140.72 36.64 145.09 29.75
6. LW-NA+LR-NA 83.66 19.50 70.32 24.46 138.04 36.31 143.83 29.63
7. RNN-NA+LR-NA 89.24 19.98 74.12 25.04 139.03 36.56 142.31 28.99
8. HPY3+LW-NA 72.86 18.65 62.05 23.58 134.65 35.99 141.23 28.74
9. HPY3+LW-NA+LR-NA (ALL3) 73.56 18.60 62.97 23.42 132.87 35.76 139.51 28.62

10 LW-VA 86.84 - 74.50 - 142.49 - 133.97 -
11 LR-VA 81.55 - 69.64 - 146.35 - 158.38 -
12 LW-VA+LR-VA 77.56 - 67.36 - 134.21 - 132.59 -
13 RNN 69.49 - 60.78 - 145.05 - 158.57 -
14. ALL3+LR-VA 63.40 18.52 55.76 23.28 100.11 35.48 101.75 28.44
15. ALL3+LW-VA+LR-VA 63.24 18.54 55.24 23.24 99.27 35.42 98.56 28.32
16. ALL3+RNN 64.23 18.42 56.06 23.20 115.04 35.22 130.27 28.02
17. ALL3+RNN+LW-VA+LR-VA 57.58 18.32 51.20 23.02 93.25 35.07 96.39 27.92

performed MKN3 and HPY3. In terms of WER, statistically
significant performance improvements (p < 0.01) were
achieved by HPY3+LW-NA+LR-NA compared to MKN3 and
HPY3 in each test set.

Next, n-best rescoring results are investigated; they
are shown in lines 10–17 in Table 6. We only used ALL3
as a first-pass decoding pass when combining an n-gram
LM with rescoring LMs, i.e., LW-VA, LR-VA and RNN.
Note that only PPL was evaluated for RNN, LW-VA, LR-VA,
LW-VA+LR-VA since they cannot be applied to ASR directly.
ALL3+RNN outperformed ALL3 in both the in-domain tasks
and the out-of-domain tasks. This indicates that n-best
rescoring approach can yield ASR performance improve-
ments. Only slight ASR performance improvements were
attained by adding LR-VA to ALL3 although PPL was re-
markably improved. It is thought that the PPL improve-
ments attained by the Viterbi approximation are not related
to the ASR performance improvement. The highest perfor-
mance was attained by ALL3+RNN+LW-VA+LR-VA in each
test set although the WER differences between ALL3+RNN
were not statistically significant (p > 0.05).

6. Conclusions

This paper presented the latent word recurrent neural net-
work language model (LW-RNN-LM); it employs a latent
word space as well as LW-LMs in which the latent word
space is modeled using RNN-LMs. LW-RNN-LM can cap-
ture long range relationships in the latent word space unlike
standard LW-LMs which can take only very little context in-
formation into consideration. For LW-RNN-LM, we intro-
duced a training method and two implementation methods,
n-gram approximation and Viterbi approximation, for ASR.
Experiments showed that LW-RNN-LM, RNN-LM and LW-
LM complement each other and their combinations attain
performance improvements in the both n-gram approxima-
tion and Viterbi approximation forms. In future work, we

will introduce long short-term memory structures [31], [32]
instead of using RNN structure for improving LW-RNN-LM
performance. Furthermore, we will examine domain adap-
tation for LW-RNN-LM by using latent word space mixture
modeling [33], [34].
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