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Consistency Checking between Java Equals and hashCode Methods
Using Software Analysis Workbench

Kozo OKANO™, Senior Member, Satoshi HARAUCHI™™, Toshifusa SEKIZAWA 7,
Shinpei OGATA Y, Members, and Shin NAKAJIMA 779 Nonmember

SUMMARY Java is one of important program language today. In Java,
in order to build sound software, we have to carefully implement two fun-
damental methods hashCode and equals. This requirement, however, is
not easy to follow in real software development. Some existing studies
for ensuring the correctness of these two methods rely on static analysis,
which are limited to loop-free programs. This paper proposes a new solu-
tion to this important problem, using software analysis workbench (SAW),
an open source tool. The efficiency is evaluated through experiments. We
also provide a useful situation where cost of regression testing is reduced
when program refactoring is conducted.

key words: software verification, Java, hash code, equivalence

1. Introduction

Java is one of the most frequently used programming
languages in constructing large and advanced software-
intensive systems[1]. Their dependability relies on correct
implementations of user-defined Java classes with respect
to commonly agreed functional specifications. In particular,
two of the basic methods, hashCode and equals are im-
portant methods for objects. Their implementations must
satisfy design constraints that Java language specification
defines [2]. The following is quoted from functional spec-
ification descriptions of class Object as defined in Java 8
API[3].
We can summarize these requirements as follows.

equals method:

1. EQ reflexivity: for any non-null reference value x,
x.equals(x) should return true.

2. EQ symmetry: for any non-null reference values x
and y, x.equals(y) should return true if and only if
y.equals(x) returns true.
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3. EQ transitivity: for any non-null reference values x, y,
and z, if x.equals(y) returns true and y.equals(z) returns
true, then x.equals(z) should return true.

4. EQ null: For any non-null reference value x,
x.equals(null) should return false.

both methods:

1. EQHC consistency on object: If two objects are equal
according to the equals(Object) method, then calling
the hashCode method on each of the two objects must
produce the same integer result.

2. EQHC consistency on time: Whenever it is invoked
on the same object more than once during an execu-
tion of a Java application, the hashCode method must
consistently return the same integer, provided no in-
formation used in equals comparisons on the object is
modified.

It is, however, not an easy task that programmers al-
ways observe those rules. There are many methods to re-
solve the problem. The related work and limitation is also
shown in Sect.2. This paper proposes a new approach for
checking whether a user-defined class satisfies the rules.
The proposed approach is based on the idea of [4] but uti-
lizes the feature, such as equivalence checking on functions,
of SAW (software analysis workbench) [5]. Though it has
some limitations (see Sect. 4.4), the approach is also effec-
tive for cost reduction on regression testing.

We summarize the idea and main limitations here. We
use SAW in order to resolve the problem automatically and
more reliable way. This approach has a major limitation that
the methods have fixed sized loop iterations due to SAW’s
capability. We also usually have to give a lemma to prove
the equivalence in a reasonable time. However, this lemma
is usually given easily.

The rest of this paper is organized as follows. Section 2
states our contribution and gives summary of related work.
Section 3 is preliminaries. Section 4 describes the proposed
method. Section 5 gives an application of our method for
regression testing. Sections 6 and 7 show experimental re-
sults and discussion, respectively. Finally, Sect.8 summa-
rizes this paper.
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2. Our Contribution and Related Work
2.1 Importance of the Approaches

In Java, hashCode method calculates a hash code of each
object. The hash code is unique to the object, and is used,
for example, for calculating locations in HashMap. Java also
relies on equals methods for ensuring that given two ob-
jects are equivalent. Any two objects, considered equivalent,
must have the same hash code value.

Listing 1 shows an actual implementation of
the hashCode method violating the rules in an
old revision of PDFBox of Apache[6]. PDFBox uses
java.util.Arrays.equals as the equals
method of the COSString class. The method
java.util.Arrays.equals returns true if and only if the
COSString arrays are the same size and have the same con-
tents. This behavior is desired one. This code, however,
implements hashCode method using array of Byte class.
The array of Byte class inherits Object class, and hashCode
method of Object class calculates a hash code differently as
much as possible. Concretely the hashCode method returns
the value based on the address of the object (the top address
of array). Hence, the same contents of the COSString class
will be stored at different locations in a HashSet because
hash codes are different (see Fig. 1).

Listing 1: A hashCode method violating the rules in PDF-
Box of Apache
public class COSString extends COSBase{

public byte[] getBytes (){

}
public boolean equals (Object obj){
return (obj instanceof COSString)&&
java.util . Arrays.equals
(((COSString)obj). getBytes (), getBytes ())
}

public int hashCode (){
return getBytes (). hashCode ();
}

}

This wrong implementation was corrected at the latter
revision of PDFBox of Apache. This story tells that sat-
isfying the requirements is not easy for developing of real
software.

In default, both equals and hashCode methods are in-
herited from its parent class or class Object when no such

E )
a [e[TelsTTelelo[ T T-T TeleTsT-Tw[-T T¢]
a.hashCode()=0x00000012
a.equals(b)=true

b.hashCode()=0x000ffe10
b LT el [T T Tele[=T-T+[=TT¢]

a and b are stored in the different slots due to
wrong implementation of hashCode, while
they have the same contents and thus,
a.equals(b) returns true.

Fig.1 Incorrect Hash Implementation
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parent class is explicitly specified. Each user-defined class,
however, sometimes requires to define its own these two
methods because the methods must be so defined to faith-
fully follow its application semantics.

2.2 Related Work

Two major approaches exist. One of the approaches is au-
tomatic generation of the methods [7]-[9], while the other
is verification of the methods. The first kind includes an
approach using apache commons library. The library au-
tomatically generates an equals method which uses field
variables programmers designate. The latter includes ap-
proaches presented in [10]-[12] and [4]. One of the advan-
tages of these is that programmers can freely implement the
methods.

Rupakheti et al. [10]-[12] have proposed a method for
verification for only equals method based on alloy ana-
lyzer [13]. Alloy analyzer is a model finder and it uses first
order logic with relation calculus. Okano et al. has pro-
posed a method [4] which translates constraints and imple-
mentations of equals and hashCode methods into an SMT-
lib2 [14] format, a common format for SAT/SMT solvers.
Okano et al. has an advantage that can verify “EQHC
consistency on object[4].” It, however, assumes that the
method does not contain loop structures. The assumption is
not applicable to most Java programs.

2.3 Contribution

Our contribution is that we propose a new, efficient veri-
fication based method. Our proposed method is based on
our previous work [15]. The previous work, however, has
some drawback in efficiency of checking. It also uses a com-
plicated strategy to verify equivalence relation between the
original method and its corresponding pure function. The
verification is performed through their specifications, which
does not always establish equivalence relation if the specifi-
cations are weak. Our new approach proposed in this paper
overcomes this disadvantage under a moderate assumption.
The efficient method proposed in this paper is the procedure
improvement in Sect. 4. Furthermore, we apply the method
to regression testing.

3. Preliminaries
3.1 Overview of SAW

Some recent formal verification techniques [16], [17] use
JVM (Java Virtual Machine) and LLVM as their targets.
An LLVM file is compiled from a C, C++, or Objective-
C source file. LLVM is a virtual machine instruction set
(Intermediate Representation) and usually used for code op-
timization in compilers. It, therefore, supports three-address
code scheme and Static Single Assignment form, which fa-
cilitate static analysis for optimizing compiled code. LLVM
has pointer types as well, which is mandatory for compliers
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of C-family languages.

SAW (software analysis workbench)[5] is an open
source software for analyzing C programs using LLVM.
It needs an LLVM file as a part of its input. A user of
SAW can analyze the LLVM using symbolic execution.
The result of the execution is stored in AIG (And-Inverter
Graphs) [18]. AIG data can be verified by a theorem prover
called ABC[19]. ABC is especially good at equivalence
checking [20] between two functions represented in AIG.

SAW, therefore, supports equivalence checking be-
tween two C functions given in the LLVM format. Both
symbolic execution and equivalence checking functions are
provided as commands of a script language used in SAW.
SAW also supports property checking. SAW has been suc-
cessfully applied to security domains such as Cryptographic
Protocol Analysis.

SAW also uses SAT/SMT solvers [21]-[24] as its back-
end verification engines as well as ABC. Many SAT/SMT
solvers have been made public [25] and are used as back-
end verification engines for other verification tools as well.
The current version of SAW supports LLVM and JVM as
well. It, however, does not support variable types such as
references and arrays.

3.2 JML and OpenJML

JML [26] is an annotation language for Java using the no-
tion of Design by Contract (DbC)[27]. ESC/Java2[28] is
a static analysis tool for JML. Recently, OpenJML [29] is
expected to be a standard tool for JML. OpenJML sup-
ports simplify [30] which is used as a verification engine
for ESC/Java2, and several verification engines such as Z3
and boogie [31] as well. Although JML is a useful nota-
tion, it cannot represent equivalence relation on the equals
method [15]. It is because we must use multiple instances
of equals explicitly in order to express reflexitivity and
trasnsitivity, which is not allowed in the DbC style to use
the keyword “result” without arguments.

As a consequence, we can say that the current version
of Open JML tool is useful only for checking “EQ null” for
our purpose.

4. Proposed Method
4.1 Basic Idea

We assume that both equals and hashCode methods are
basically pure functions.

Pure functions produce no side effect on the environ-
ment. They do not modify their arguments nor field vari-
ables. Their return value solely depends on their arguments.
Hence, if we invoke pure functions with the same argu-
ments, we will always get the same return values. This as-
sumption enables us to use SAW verification functions.

As a running example, we use a hashCode method
with a loop structure in Listing 2.
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Listing 2: example
public class EqualsHashCode {
int x;
int y;

public boolean equals(EqualsHashCode obj) {
if (obj == null)
retun false;
if (this.x == obj.x)
return (this.y == obj.y);
return false;

}

public int hashCode () {

int r=17;

int N=2;

for (int i=0; i< N; i++) {
r = 31xr+x;

}
r = 3lsr+y;
return r;

The idea in our previous work [15] is that we prove that
“x.equals(y) implies x.hashCode()= y.hashCode(),” for any
objects x and y using SAW.

There are several issues using SAW.

1. SAW does not fully support Java code, especially ob-
ject reference variables.

2. Verification cost becomes high when the complexity of
the code grows.

In order to resolve these issues, our previous work [15]
decomposes the whole verification problem into a series
of sub-tasks for proving equivalence verification on Java
methods.

In this paper, we propose the following procedure,
which uses an intermediate lemma and makes use of pure
function presentation, first presenting a naive approach
(Sect.4.2) and later a new approach for performance im-
provement (Sect. 4.3).

4.2 Naive Approach

Here we propose our verification procedure.

First of all, like other approaches, we do not deal with
“EQHC consistency on time” because it is a hard problem.

As described in Sect. 3.2, because we can verify “EQ
null” with OpenJML, we use SAW for the others.

Recall the assumption we mentioned at the beginning
of this section. We call the assumption Pure function As-
sumption.

[Pure function Assumption]

Both equals and hashCode methods are basi-
cally pure functions.

Under Pure function Assumption, we can introduce
a pure function Pequals() corresponding to the target
equals() method.

Let us assume that the target class has field variables
named, Xg, Xi,...,X,. Then Pequals() has its arguments
as X, X1, ..., Xn, Y0sY1,--->Yn, Where x; and y; are corre-
sponding to field variables of the receiver object and an ar-
gument object of the original equals method, respectively.
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The body of Pequals() is almost the same as the original
equals method.

Similarly we can introduce a pure function
PhashCode() corresponding to the target hashCode()
method. PhashCode() has xg, x, .. ., x, as its arguments.

Listing 3 is the rewritten version of Listing 2 by using
pure function Pequals() and PhashCode().

Listing 3: example revised

public class EqualsHashCode {

int x;
int y;
public boolean equals(EqualsHashCode obj) {

if (obj == null)

retun false;

return Pequals(this.x, this.y, obj.x, obj.y);

}

public boolean Pequals(int x0, int y0, int x1, int yl) {
if (x0 == x1)
return (y0 == yl);
return false;

}

public int hashCode () {
return PhashCode (this.x, this.y);
}

public int PhashCode(int x, int y) {
int r=17;
int N=2;
for (int i=0; i< N; i++) {
r = 3lsr+x;

}
r = 3lxr+y;
return r;

In most cases, such transformation can be performed
automatically. Hereafter, we assume that Listing 3 is given.

We perform verification on “EQ reflexivity,” “EQ
symmetry,” “EQ transitivity,” and “EQHC consis-
tency on object,” using the pure functions Pequals and
PhashCode.

The verification procedure is summarized as follows.

1. We describe a property on “EQ null” in JML and verify
it using OpenJML.

2. We describe pure functions corresponding to the target
equals and hashCode methods, namely Pequals and
PhashCode.

3. We assume that equals and hashCode can be imple-
mented using Pequals and PhashCode.

4. We perform verification on “EQ reflexivity,” “EQ
symmetry,” and “EQ transitivity” for Pequals using
SAW (thmE).

5. Finally, we perform verification on “EQHC consis-
tency on object” for Pequals and PhashCode using
SAW (thmH).

Listing 4 shows an actual script.
Listing 4: verification script
jvm <- java_load_class "EqualsHashCode";
print "Extracting.equals.term";

x <— fresh_symbolic "x" {| [32] |};
y <— fresh_symbolic "y" {| [32] |};
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z <— fresh_symbolic "z" {| [32] |};

w <- fresh_symbolic "w" {| [32] |};

t <— java_symexec jvm "Pequals" [("x", x), ("y", y),
("z", z), ("w", w)] ["return"] true

t’ <— abstract_symbolic t;

x2 <- fresh_symbolic "xx" {| [32] |};

y2 <— fresh_symbolic "yy" {| [32] |};

print "Extracting.hashCode.term";

t2 <— java_symexec jvm "PhashCode"
[("x", x2), ("y", y2)] ["return"] true ;

t2° <— abstract_symbolic t2;

print "Proving";

let thmEl = {{ \z w —> (t’ zw z w)==1 }};

let thmE2 = {{ \z wu v —> ~((t> z wu v)==1)
[ (e uwvzw==1) }};

let thmE3 = {{ \zwuv i j—> ~(((t’ zwuv)==1)
& ((t7 uw v i j)==1)) || ((t7 zwi j)==1) }};

let thmH = {{ \zwu v —> (~((t” zwu v)==1)
[ (127 z w) == (127 u v))}};

r <— prove_print abc thmEl;

print r;

r <— prove_print abc thmE2;

print r;

r <— prove_print abc thmE3;

print r;

r <— prove_print abc thmH;

print r;

print "Done.";

The first line of the script loads JVM. Then the script
extracts a term representation for Pequals using the sym-
bolic execution. The obtained term is substituted for ¢. The
term ¢ is finally translated into a function representation in
SAW and substituted for #'.

Similarly a function representation of PhashCode is
also placed in 2.

The sentence let thmEl = {{ \z w ->
(t’ z w z w)==1 }}; defines “EQ reflexivity” which
follows definitions for the other theorems.

The command r <- prove_print abc thmEl; and
others verify the theorems using ABC.

The scheme works for methods with small fixed con-
stant iteration of loop structures, but when the constant be-
comes large, the verification time increases exponentially.
We call this procedure naive-basic. Because the method has
a severe efficiency problems, we will consider improvement
next.

4.3 Performance Improvement

A major factor for execution efficiencies is a verification
task of thmH.

The theorem thmH includes term representations of
two functions (Pequals and PhashCode), thus, the whole
size of the term representation (thmH) becomes large.
Moreover, as the number of loop iteration becomes large,
the size also becomes large. In order to reduce the complex-
ity, we introduce an intermediate lemma as in Fig. 2.

If we successfully verify the two theorems located at
the upper side of Fig.2, we can conclude that the goal

Pequals(x,y) - LEMMA LEMMA — PhashCode(x) = PhashCode(y)
Pequals(x,y) — PhashCode(x) = PhashCode(y)

Fig.2  Using Verification Lemma
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theorem located at the bottom also holds by Syllogism.
The lemma should be provided manually. In general,
the lemma is given as follows.
For Pequals(x, y),

/\(Xi =y;) N(X; € Z3p N y; € Z3),
€S

such that x = {x0,X1,X2,. .-, X} Y = {Y0,Y1:Y2> - > Ynhs
§c{0,1,...,n},and Z3, = {231,231 —1}.

Zz, is needed because JVM adopts 32-bit integers,
while SAW assumes 64-bit integers. Such a restriction can
be given by adding type [32] to the target variables in SAW.

The set S is also carefully determined because some of
x; (a field variable) is not used in equals for equivalence
checking.

The whole procedure is the same as the the verification
procedure descrived in Sect. 4.2 but Sth step is replaced by
the sub-procedure described in this section.

We call this whole procedure improvement, which is
an essential ingredient of the verification method proposed
in this paper.

Note that if method equals does not support equiva-
lence relation, then we can know it by failure of proof at the
fourth step of the procedure improvement.

4.4 Limitation of the Proposed Method

Since the proposed method depends on SAW, its major limi-
tation is also the same as the current version of SAW. It does
not fully support reference variables, nor object-oriented
specific features such as inheritance, polymorphism, and va-
riety of types.

Though SAW can verify the equivalence fully auto-
mated, it uses an assumption that the loop is terminated in a
fixed size and cannot deal with lists dynamically changing
their sizes. In addition to the above, our approach assumes
that both of the equals and hashCode methods are pure
functions. Also our approach uses a lemma in order to re-
duce the cost of verification. The lemma should be given
manually.

We have to notice, however, that:

1. from the theoretical point of view, the lemma is needed
just for reducing the cost of verification, such as mem-
ory size and computation time. In other words, the
lemma is not always needed.

2. the form of lemma is usually simple. Of course, for
a case that equals method is implemented in a special
way, we should give a suitable corresponding lemma,
but it is usually easy to obtain from the code of the
equals method.

In the classical approach in Bounded Model Checking, for
loop, unwinding is performed, so that the fragment of body
code is repeated k-times. Then, finite transitions starting
from the initial state are converted to an SAT/SMT expres-
sion and verified. Various approaches to unbounded model
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checking have been studied in order to overcome the set-
ting of the bound used in the bounded model checking ap-
proach, while preserving the advantages of the approach to
convert to expressions in SAT/SMT. One approach is the k-
induction method [32]. Several considerations, however, are
required for dealing with the unreachable state. Another ap-
proach [33] is to use Craig’s interpolation. This approach is
basically an approximate solution. SeaHorn [34], a verifier
for C programs uses ranking functions to check the termi-
nation of loops. It also abstracts a loop condition to a non-
deterministic value.

KeY project[35] is used to prove several properties on
Java program and has obtained many successes. Since it is
basically a deductive approach, it needs several invariants
and assertions generated manually. Although the strategy
for the loop used in SAW version 0.2 is naive compared with
these approaches, since the iteration of the loop is limited
to a fixed number of times, the verification is theoretically
complete and sound.

Since SAW is is continuously developed, some of the
limitations might be resolved in future.

5. Application to Regression Testing

An approach similar to the improvement procedure can re-
duce the cost of “a kind of” regression testing (verification).
We demonstrate the usefulness through a concrete example.

Assume that we add a field variable z from Listing 2
and revise the hashCode method as shown in Listing 5.
Such a process can be performed commonly when refac-
toring is applied to the class.

In such a situation, we want to ensure that the new
hashCode method always returns the same value to be the
value of the old hashCode method multiplied by 31. If such
a fact is checked, we can use the new hashCode method in-
stead of the old hashCode method with a little modification
with divided by 31.

This checking is usually performed by an approach
similar to regression testing. Regression testing, however,
needs a lot of time and resources. Moreover, we cannot ob-
tain firm confidence on the correctness of the results of the
regression testing.

Applying our scheme, we can show the correctness
of the revision by proving that the new hashCode always
returns the same value as the value returned by the old
hashCode value multiplied by 31 when z = 0.

Such verification can be performed using a verification
script in Listing 6.

Listing 5: regression testing

public int hashCode() {
int r=17;
int N=2;
for (int i=0; i< N; i++) {
r = 31=xr+x;

}

r = 3lsr+y;
r = 3lsr+z;
r
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Listing 6: verification script for regression testing

jvm <— java_load_class "EqualsHashCode";
x2 <— fresh_symbolic "xx" {| [32] |};
y2 <- fresh_symbolic "yy" {| [32] |};

print "Extracting.hashCodeOld.term";
t2 <— java_symexec jvm "PhashCodeOld"

won

[("x", x2), ("y", y2)] ["return"] true ;
t2’ <— abstract_symbolic t2;
xl <- fresh_symbolic "x" {| [32] |};
yl <— fresh_symbolic "y" {| [32] |};
zl <— fresh_symbolic "z" {| [32] |};

print "Extracting._hashCode.term";
tl <— java_symexec jvm "PhashCode"

[Cx™, x1), ("y", y1), ("z", z1)]
tl’ <— abstract_symbolic tl;

["return"] true ;

print "Proving";

let thm = {{ \x y —> (31=(t2~
== (t1" xy 0) }}:

prove_print abc thm;

print "Done.";

(x:[32]) (y:[32D)

We call this procedure regression.
6. Experiments

We conducted several experiments of the verification tasks
and measured their execution times. The setup of the exper-
iments is summarized as follows.

CPU Core i7 960 3.2 GHz
MM 12 GB

Windows 10 64-bit

SAW version 0.2

yices version 2.5.1

cvc4 version 4.2.1-sjlj

The experiments use the following parameters.

e m: the number of field variables used in equals and
hashCode methods; it varies from 2, 3, 4, to 5.
e N: the number of iteration in a loop of hashCode
method; it varies from 2, 3, 4, 5, 10, to 20.
e back-end engines: ABC, yices, and cvc4.
6.1 Execution Times for Proving thmE
We measured execution times for proving thmE in List-
ing 2. Since parameter N does not affect these data, we only
vary parameters m and back-end engines in Table 1. All of
verification tasks return positively “pass.”

6.2 Execution Times for Proving thmH in naive-basic

Table 2 shows execution times for the verification on thmH
in Listing 2, namely with naive-basic method, Table 2, how-
ever, shows only cases where m = 2 and 5 as representatives.

6.3 Execution Times for Proving thmH in improvement

Tables 3 and 4 show results for verification based on im-
provement. We only show the times for thmH. Ta-
bles 3 and 4 correspond to proving theorem “Pequals(x,y)
imply Lemma” (thmH1 in short) and theorem “Lemma
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Table 1  Execution time for thmE (sec.)
engine | m=2 3 4 5
ABC 0.75 0.76  0.81 0.85
yices 0.75 0.80 0.85 0.89
cved 0.82 0.86 091 0.96
Table 2  Execution Time (sec.) for thmH in naive-basic
engine m imp. | N=2 3 4 5 10 20
ABC 2 [ 19 3100 - - - -
ABC 5 c 27 110 870 2132 - -
yices 2 c 4 3120 - - - -
yices 5 c - - - - - -
cved 2 [ 0.74 0.77 075 077 077 0.78
cvcd 5 [ 1.2 1.2 1.1 1.2 1.1 1.1
ABC 2 i 0.78 0.83 0.83 0.86 1.1 14
ABC 5 i 1.0 1.1 1.1 1.3 1.3 1.6
yices 2 i 0.75 0.76 077 075 0.77 0.81
yices 5 i 091 092 092 095 094 0.95
cvcd 2 i 0.76 0.82 081 084 0.84 0.83
cved 5 i 1.1 1.1 1.1 1.1 1.1 1.1
note: ‘=’ stands for time over. Limitation is two hours.

Column “imp.” means whether the target Java code is implemented cor-
rectly (c) or incorrectly (i).
Apart from time-out cases, verification returned rightly “invalid” and

“pass” for i and c, respectively.

Table 3  Execution time for thmH1 (sec.)

engine imp. | m=2 3 4 5
ABC c 0.65 0.68 0.73 0.77
yices c 0.63 071 075 0.79
cvcd c 0.62 071 075 0.79
ABC i 0.68 071 0.76 0.81
yices i 0.68 073 077 081
cvcd i 0.71 075 0.79 0.83

note: parameter N is not affect these data.

Column “imp.” means whether the target Java code is implemented cor-
rectly (c) or incorrectly (i). All cases, verification returned rightly “invalid”
and “pass” for i and c, respectively.

Table4  Execution time for thmH2 (sec.)
engine m | N=2 3 4 5 10 20
ABC 2 19 2710 - - - -
ABC 5 27 63 540 1294 - -
yices 2 0.62 0.62 066 063 0.63 0.64
yices 5 0.67 0.67 068 068 0.69 0.71
cved 2 0.62 0.64 064 064 0.63 0.65
cved 5 0.63 0.68 068 069 0.69 0.72
note: ‘-’ stands for time over. Limitation is two hours.

For limitation of the space of the paper, we shows only for m = 2 and 5.
Apart from time-out cases, the verification returned positively, “pass.”

Table 5  Execution time (sec.) for regression verification

engine imp. | N=2 3 4 5 10 20

ABC c 0.71 071 071 071 071 0.74
yices c 0.71 071 071 072 073 0.76
cved c 0.72 073 074 074 074 0.76
ABC i 0.77 0.83 0.83 0.86 1.1 1.5

yices i 0.73 073 073 074 077 0.76
cved i 0.74 076  0.75 076 0.78 0.81

note: Column “imp.” means whether the target Java code is implemented
correctly (c) or incorrectly (i). All cases, verification returned rightly “in-
valid” and “pass” for i and c, respectively.
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imply PhashCode(x)=PhashCode(y)” (thmH2 in short),
respectively.

6.4 Execution Times for Proving regression

Table 5 shows execution times for regression testing
(regression).

7. Discussion

Table 1 shows that all of the verification times for thmE
are efficient. On the other hand, as we expected, Table 2
shows that verification tasks of thmH are time consuming
and have tendency to increase exponentially. We can also
find that incorrect implementations can be verified in short
times regardless of engines.

Tables 3 and 4 are summaries for the case of check-
ing “thmH” based on improvement. Table 4 shows that
ABC cannot return any results for cases with large N, while
both of yices and cvc4 show good performance for all cases.
Though ABC is not improved drastically, but the values are
improved against the naive-basic method. From Tables 3
and 4, we can say that improvement scheme works well
when we use SAT/SMT based engines.

The results of Table 5 imply that regression scheme
is also useful in reducing the cost of regression testing for
hashCode method in view of scalability.

Consequently, we can derive the following conclu-
sions. The proposed method based on improvement is
promising, though we have carefully to choose the verifi-
cation engine. For regression testing, our proposed method
regression is promising for all the engines.

8. Conclusion

We proposed a new and efficient method for verification on
the consistency between equals and hashCode methods in
Java. From the performance evaluation, we showed the use-
fulness of our proposed method.

Future work includes building a general tool for con-
sistency checking which can deal with other verification
engines.
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