
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019
537

PAPER

Unsupervised Deep Domain Adaptation for Heterogeneous Defect
Prediction

Lina GONG†,††, Shujuan JIANG†,†††a), Nonmembers, Qiao YU††††, Member, and Li JIANG†,†††, Nonmember

SUMMARY Heterogeneous defect prediction (HDP) is to detect the
largest number of defective software modules in one project by using his-
torical data collected from other projects with different metrics. However,
these data can not be directly used because of different metrics set among
projects. Meanwhile, software data have more non-defective instances than
defective instances which may cause a significant bias towards defective
instances. To completely solve these two restrictions, we propose unsu-
pervised deep domain adaptation approach to build a HDP model. Specif-
ically, we firstly map the data of source and target projects into a unified
metric representation (UMR). Then, we design a simple neural network
(SNN) model to deal with the heterogeneous and class-imbalanced prob-
lems in software defect prediction (SDP). In particular, our model intro-
duces the Maximum Mean Discrepancy (MMD) as the distance between
the source and target data to reduce the distribution mismatch, and use the
cross-entropy loss function as the classification loss. Extensive experiments
on 18 public projects from four datasets indicate that the proposed approach
can build an effective prediction model for heterogeneous defect prediction
(HDP) and outperforms the related competing approaches.
key words: heterogeneous defect prediction, neural networks, maximum
mean discrepancy, class-imbalance

1. Introduction

Software defect prediction (SDP) is a research field that
builds effective models for detecting the largest number
of defective software modules using sufficient historical
data [1], [2], which has attracted a lot of attention from re-
searchers and practitioners. In recent years, most existing
prediction models are built from historical data of the same
project, which is named as within-project defect prediction
(WPDP) [3]–[8]. Usually, WPDP can provide high quality
results when there are sufficient within-project data. How-
ever, in practice, there are fewer labeled historical instances
at the beginning stage of a project, and this hinders the ap-
plication of WPDP.

To solve this problem, cross-project defect predic-
tion (CPDP) using data from other projects has been pro-
posed [1], [9]. In recent years, many CPDP approaches have

Manuscript received August 17, 2018.
Manuscript revised October 22, 2018.
Manuscript publicized December 5, 2018.
†The authors are with School of Computer Science and Tech-

nology, China University of Mining and Technology, Xuzhou,
China.
††The author is with Department of Information Science and

Engineering, Zaozhuang University, Zaozhuang, China.
†††The authors are with Engineering Research Center of Mine

Digitalization of Ministry of Education, Xuzhou, China.
††††The author is with School of Computer Science and Technol-

ogy, Jiangsu Normal University, Xuzhou, China.
a) E-mail: shjjiang@cumt.edu.cn

DOI: 10.1587/transinf.2018EDP7289

been developed including NN-filter [9], VCB-SVM [11] and
TCBoost [12]. Existing CPDP approaches demand that data
from other projects and testing project should have the same
metric sets.

However, there are no sufficient data with the same
metrics for a new company in practice. In this scenario,
heterogeneous defect prediction (HDP) approaches are pro-
posed [13]–[16]. HDP is to detect the defect-prone modules
of a project by using data collected from other companies
with heterogeneous metric sets. Since training data have
different metric set from testing data, the traditional ma-
chine learning methods can not be used directly [14]. Fur-
thermore, the data of software projects are class imbalanced,
which hinders the performance of classifiers [11], [12], [36].
Most exsiting HDP models do not consider the class imbal-
ance problem.

In this study, we address problems associated with
HDP, and propose an unsupervised deep domain adaptation
approach for HDP. In our approach, we design a simple neu-
ral network (SNN) model whose loss function simultane-
ously considering the classification error from labeled train-
ing data and the distance error between the training and test-
ing data. In summary, our paper brings the following contri-
butions:

• To deal with the heterogeneous problem for HDP with-
out labeled target training data, a new neural network
architecture is designed, which uses an adaptation layer
along with a distance measure to automatically learn a
representation jointly trained to optimize for the dis-
tribution mismatch between training data and testing
data.
• To deal with the class imbalance problem, cost-

sensitive label is introduced into the cross-entropy loss
function that is as the classification error in the new
neural network model. The defective instances and
non-defective instances have different misclassification
costs.
• We explore the Maximum Mean Discrepancy (MMD)

and correlation alignment (CORAL) as a regulariza-
tion embedded in the back-propagation training, and
observe that the Maximum Mean Discrepancy (MMD)
is better to reduce the distribution mismatch for soft-
ware data.

We conduct empirical studies on 18 open source
projects from four companies including NASA [17],
[18], AEEEM [19], SOFTLAB [17] and ReLink [20].

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

538
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

Experimental results indicate that our approach can outper-
form several state-of-the-art WPDP, CPDP and HDP ap-
proaches.

The structure of this paper is as follows: Sect. 2 reviews
and analyzes the related work of defect prediction model; In
Sect. 3, we describe our unsupervised deep domain adap-
tation approach in detail; the setting of our empirical study
and results are presented in Sect. 4; Sect. 5 describes the dis-
cussions and the threats to validity of our approach are intro-
duced in Sect. 6; We conclude the paper and provide insights
for future work in Sect. 7.

2. Related Work

In this section, we briefly review the CPDP approaches,
HDP approaches and class imbalance learning approaches
for SDP.

2.1 CPDP Approaches

Cross-project defect prediction (CPDP) is to predict defect-
prone modules in a project using historical data from other
projects [21]–[27]. Recently researches have developed
many CPDP approaches. Some approaches aim to choose
the suitable training instances for the testing data. Turhan
et al. [9] selected similar instances in different projects as
training set, and used K-Nearest Neighbor (KNN) as clas-
sifier to train. Seyedrebvar et al. [28] proposed a search-
based data selection approach. Firstly, they utilized NN-
filter to sample instances from training data as confirmation
set. Then they employed genetic algorithm to choose the
training set based on which they predicted the testing data.

Some CPDP approaches introduce transfer learning ap-
proaches into the CPDP. Pan et al. [29] found that the dif-
ferent distributional characteristics between training dataset
and test dataset might result in too low prediction results.
To solve this problem, they proposed transfer defect learn-
ing which discovered the potential correlation between the
training dataset and testing dataset by transfer component
analysis (TCA). Nam et al. [10] also used TCA to exploit
the common feature space of different projects. They trans-
fered useful information to reduce distribution differences,
and selected the optimal normalization strategy for CPDP.
Ma et al. [30] proposed the model of Transfer Naive Bayes
(TNB) using the weighted training data to construct the
classifier, and this model significantly improved the defect
prediction performance. Ryu et al. [12] proposed a trans-
fer cost-sensitive boosting approach (TCSBoost) for CPDP
with few labeled target data. Yu et al. [31] proposed an ef-
fective solution for Cross-company defect prediction. They
firstly provided a novel semi-supervised clustering-based
data filtering approach to filter out irrelevant cross-company
instances. Then, they introduced multi-source TrAdaBoost
algorithm into CCDP. However, except TCSBoost existing
methods take no account of the class imbalance problem.

In addition, existing CPDP approaches demand that
training data should have the same metrics to the testing

data. In practice, the number of same metrics between train-
ing and testing data may be very small, which would obtain
undesirable prediction results based on these approaches.

2.2 HDP Approaches

Recently, some heterogeneous defect prediction (HDP) ap-
proaches have been proposed to address the heterogeneous
metrics problems. Jing et al. [13] utilized unified metric
representation (UMR) and CCA-based transfer learning ap-
proach to solve the heterogeneous metrics problems. Exper-
imental results indicated that their approach can make the
distribution of testing data similar to that of training data.

Nam et al. [14] firstly applied metric selection to train-
ing data to remove redundant and irrelevant metrics. Then,
they matched up the training and testing metrics based on
metric similarity. Recently, Cheng et al. [16] presented a
cost-sensitive correlation transfer support vector machine
(CCT-SVM) method to deal with the class imbalance prob-
lem for HDP.

2.3 Class-Imbalance Learning Approaches

Software data have more non-defective instances than de-
fective instances, that is class imbalance problem. Some
researches have studied this problem. Wang et al. [32] used
different approaches to deal with the imbalance datasets, in-
cluding resampling, thresholding and integration methods.
Jing et al. [33] used the sparse representation to eliminate
the effects of imbalance datasets. Limsettho et al. [34] pro-
posed CDE-SMOTE approach to solve the class imbalance
and distribution mismatch problems. They firstly employed
class distribution estimation (CDE) to estimate the class dis-
tribution of the target project, then SMOTE was used to
modify the class distribution of training data into the reverse
of the approximated class distribution of the target project.
Liu et al. [35] proposed two level cost sensitive methods to
solve the imbalance problem in software defect prediction
for the first time. Bennin et al. [36] proposed an efficient
synthetic oversampling approach based on the chromosomal
theory of inheritance (MAHAKIL) to balance the class dis-
tribution. MAHAKIL interpreted two distinct sub-classes as
parents and generated a new instance that inherited different
traits from each parent. Their experiments indicated that
MAHAKIL improved the performance for all the models.

In addition, Seiffert et al. [37] made a detailed study of
classification method and sampling method under the imbal-
ance datasets. They believed that the classification results
would be greatly improved if the datasets were sampled be-
fore trained. Bennin et al. [38] also assessed the impact of
resampling approaches. They analyzed six resampling ap-
proaches on 40 releases of 20 open source projects, and
the experimental results indicated that: (1) there were sta-
tistical differences between the prediction results with and
without resampling methods, but resampling could not im-
prove the AUC values; (2) RUS and Borderline-SMOTE
were proved to be the more stable resampling approaches

GONG et al.: UNSUPERVISED DEEP DOMAIN ADAPTATION FOR HETEROGENEOUS DEFECT PREDICTION
539

among the studied resampling; (3) The performance of re-
sampling approaches depended on the imbalance ratio, that
is to say, oversampling approaches should aim at generating
relevant and informative instances.

Different from the above class imbalance learning
methods, we integrate the cost-sensitive learning technique
into unsupervised deep domain adaptation for HDP.

3. Our Approach

In this section, we firstly describe the notation that will be
used in this study. Then, we describe the preprocessing soft-
ware metrics for training and testing data. Lastly, we pro-
vide our new neural network approach for HDP.

3.1 Notation

At the beginning stage of a project in a new company, the
number of available defect data is not adequate for a pre-
diction model, so the data from other open source projects
can be used for this project. This model can be defined as
follows:

Supposed that Ds is the labeled instance space from
other projects, Dt is the unlabeled instance space from
the testing project. Ds contains a data set Xs =

{χs
1, χs

2, · · · , χs
N} and a label set Ys = {ys

1, ys
2, · · · , ys

N},
where χs

i denotes the ith module in Xs, ys
i is the corre-

sponding label, and N is the number of modules of Xs.
Dt contains unlabeled data set Xt = {χt

1, χt
2, · · · , χt

M},
where χt

i denotes the ith module in Xt and M is the num-
ber of modules of Xt. Each instance in Xs is represented
as χs

i = [as
i1, as

i2, . . . , as
ids], where as

i j refer to the value
of j metric in the instance χs

i, and ds is the number of
metrics of χs in Ds. Each instance in Xt is represented as
χt

i = [at
i1, at

i2, . . . , at
idt], where at

i j refer to the value of j
metric in the instance χt

i, and dt is the number of metrics
in Dt. Note that the metrics in Xs and Xt are different and
ds � dt.

3.2 Preprocessing Software Metrics

The first layer of the neural network is the metrics. How-
ever, training data have different metrics from testing data
for HDP, which can not use the neural network directly. So
we should firstly preprocess the software metrics.

Jing et al. [13] proposed the unified metric representa-
tion (UMR) to solve the different metrics sets, which is used
in our paper. Supposed that As = [as

1, as
2, . . . , as

ds] is the
metric space of training data Xs. At = [at

1, at
2, . . . , at

dt] is
the metric space of testing data Xt. The unified metric repre-
sentation contains three parts. One part is the same metrics
between As and At, whose number is dc. Another part is the
specific metrics except the same metrics in As. The third
part is the specific metrics except the same metrics in At.
The number of the UMR is ds + dt − dc. Figure 1 shows the
construction of UMR.

The χs
i and χt

i can be converted as follows:

Fig. 1 The construction of UMR.

Fig. 2 The architecture of our neural network.

X̄s =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Xc

s
Xs

s
0(dt−dc)×N

⎤⎥⎥⎥⎥⎥⎥⎥⎦ and X̄t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Xc

t
0(ds−dc)×M

Xt
t

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (1)

3.3 Proposed Method

3.3.1 Our Architecture

Since the training data has different distribution from the
testing data, directly training a neural network based on only
the training data often leads to overfitting to the training data
and causes the bad performance when predicting the testing
label. Our motivation is to train a classifier on the train-
ing labeled data that can directly apply to the testing unla-
beled data by learning a representation that minimizes the
distance between training and testing distributions. Our ar-
chitecture optimizes a simple neural network for both clas-
sification loss and domain invariance, which consists of a
training and testing NN. The architecture is shown in Fig. 2.

In Fig. 2, the first two hidden layers fc1 and fc2 encour-
age the representations induced by Xs to be close enough wit
the ones induced by Xt. The fc3, fc4 and fc5 are layers to
learn a strong classification representation. Note that the fc3
and fc4 layers have a Batch Normalization (BN) between
full connection and activation function, which can assure
the activation values presented at each distribution interval.

3.3.2 Training Our Neural Network

We introduce a new neural network architecture to learn a

540
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

visual representation for both heterogeneous (between train-
ing and testing data) and a strong classification. So our ap-
proach not only minimize the distance between training and
testing data, but also train a strong classifier. To meet the
criteria, the loss defined in Eq. (2) should be minimized.

ι = ιC(Xs,Ys) + λ × Distance(Qs,Qt) (2)

Where ιC(Xs,Ys) denotes the classification loss on the
labeled training data Xs, and Distance(Qs,Qt) is the dis-
tance between the training data and testing data, Qs and Qt

are the outputs of the second layer of our neural network
for training and testing data respectively. The hyperparam-
eter λ is a constant controlling the importance of distance
contribution to the loss function.

To calculate classification loss, we use the cross-
entropy loss function as ιC(Xs,Ys) that measures the simi-
larity between the real label distribution and the predicted
label distribution, as formulated by Eq. (3).

C = − 1
N
×

N∑
i=1

1∑
k=0

([yi
s]klog[f (χi

s)]k) (3)

Where l is the number of label that is two in our prob-
lem (defective and non-defective); k is the classified label
(0:non-defective, 1:defective); N is the number of instances;
yi

s is the real label, and f (χi
s) is the predicted label obtained

by softmax activation function in our approach.
In practice, a project has more non-defective modules

than defective modules which leads the software data class-
imbalanced. The classs imbalance results in severe class
distribution skews. However, defective modules are more
important than non-defective modules. To settle this prob-
lem, we introduce an appropriate weight into cross-entropy
loss called weighted cross-entropy loss function, which is
defined as

ιC(Xs,Ys) = − 1
N
×

N∑
i=1

1∑
k=0

(weight[k] × [yi
s]klog[f (χi

s)]k) (4)

Where entry weight[k] represents the weight associated
with classifying the target instance (with true class k) as
wrong label. In our case, more defective modules should be
found. Thus, more weight is put on misclassifying defective
instances that is weight[1] > weight[0]. In our approach,
We set weight[0] = 1 and weight[k] = n0

n1
, in which n0 is

the number of non-defective instances in Ds, and n1 is the
number of defective instances in Ds.

To calculate Distance(Qs,Qt), we consider the Maxi-
mum Mean Discrepancy (MMD) [39]. The MMD is defined
as followed:

MMD(Qs,Qt) = (
1

N(N − 1)

N∑
i=1

N∑
j=1

k(qi
s, q

j
s) +

1
M(M − 1)

M∑
i=1

M∑
j=1

k(qi
t, q

j
t)

Table 1 The back-propagation learning algorithm of our neural network.

Algorithm1 The back-propagation learning algorithm of our neural network
Inputs: labeled instances from other projects DS ;

unlabeled instances from testing project DT ;
The number of epochs T;
The learning rate α;
The hyperparameter λ;

Outputs: The label of the testing instances
1: Initialization: U with small random real values, T, α and λ
2: For t = 1, 2, · · · ,T :
3: Update U = [u1, u2, u3, u4, u5] using the mini-batched

gradient descent ιC(Xs,Ys)
4: Update u1, u2 by the offline gradient descent as follow:
5: ut+1

i = ut
i − αλ ∂Distance(Qs ,Qs)

∂ui
6: Output the label of testing instances

− 1
NM

N∑
i=1

M∑
j=1

k(qi
s, q

j
t))

1
2 (5)

Where k(.,.) is a kernel function, such as Gaussian ker-
nel, which can refer to [39] to see the detail explanation.

In addition, to validate the effect of the Maximum Me-
anDiscrepancy (MMD), we also consider the correlation
alignment (CORAL) [40] as the Distance(Qs,Qt). Accord-
ing to [40], the CORAL is defined as squared Euclidean dis-
tance between second order statistics, and is shown as fol-
lowed:

ιCORAL(Qs,Qt) =
1

4d2
‖Cs −Ct‖2 (6)

Where Cs and Ct are the covariance matrices, and are
shown as follows:

Cs =
1

N − 1
(QT

s Qs − 1
N

(1T Qs)
T (1T Qs)) (7)

Ct =
1

M − 1
(QT

t Qt − 1
M

(1T Qt)
T (1T Qt)) (8)

The aim of our approach is to minimize the loss out-
lined in Eq. (2) by using the gradient descent optimiza-
tion. Only the labeled training data are used to compute
the classification loss, while training and testing data are
both used to compute the domain confusion loss. Supposed
that U = [u1, u2, u3, u4, u5] are the parameter matrices con-
taining both weights and biases in each layer. For each
epoch, the ιC(Xs,Ys) is minimized by adjusting u1, u2, u3,
u4 and u5 using the standard mini-batch back-propagation.
The Distance(Qs,Qt) is minimized by re-adjusting u1 and
u2 with respect to the MMD gradient. The learning steps is
described in Algorithm 1.

4. Experiments

To evaluate our proposed SNN approach, we conduct large-
scale experiments on 18 public projects from four compa-
nies including NASA, SOFTLAB, AEEEM and ReLink.
The evaluation is centered around the follow three research
questions:

• RQ1: Does SNN approach perform better than the

GONG et al.: UNSUPERVISED DEEP DOMAIN ADAPTATION FOR HETEROGENEOUS DEFECT PREDICTION
541

Table 2 The experimental datasets.

Dataset Project
Number

of
metrics

Number
of total

instances

Number of
defective
instances

% of
defective
instances

CM1 37 327 42 12.84
MW1 37 253 27 10.67

NASA PC1 37 705 61 8.65
PC3 37 1077 134 12.44
PC4 37 1458 178 12.21
EQ 61 324 129 39.81
JDT 61 997 206 20.66

AEEEM LC 61 691 64 9.26
ML 61 1862 245 13.16
PDE 61 1497 209 13.96
AR1 29 121 9 7.44
AR3 29 63 8 12.70

SOFTLAB AR4 29 107 20 18.69
AR5 29 36 8 22.22
AR6 29 101 15 14.85
Apache 26 194 98 50.52

ReLink Safe 26 56 22 39.29
ZXing 26 399 118 29.57

Table 3 Nember of same metrics between projects of different compa-
nies.

number

Company

Company
NASA SOFTLAB AEEEM ReLink

NASA 37 28 1 4
SOFTLAB 28 29 1 4
AEEEM 1 1 61 1
ReLink 4 4 1 26

CPDP and WPDP methods?
• RQ2: Could SNN approach obtain better performance

for HDP?
• RQ3: Does the multi-source approaches perform better

than the single-source approaches for HDP?

4.1 Datasets

In this study, we employ 18 publicly available and com-
monly used projects from four different companies includ-
ing NASA [17], [18], AEEEM [19], SOFTLAB [17] and
ReLink [20] as the experiment data. Table 2 lists the brief
properties of 18 projects. Table 3 lists the number of same
metrics of each pair of companies. Since the data quality af-
fects the performance of classifier, we use the technique for
cleaning the data proposed by Shepperd et al. [18] to clean
the 18 public projects.

Each dataset in NASA represents a NASA software
system or sub-system. We only use five projects includ-
ing CM1, PC1, PC3, MW1 and PC4. The AEEEM dataset
was collected by D’Ambros et al. [19], which consists of 61
metrics including EQ, JDT, LC, ML and PDE projects. The
SOFTLAB dataset consists of AR1, AR3, AR4, AR5 and
AR6 projects which exist 29 same metrics. ReLink dataset
was collected by Wu et al. [20], which consists of Apache,
Safe and ZXing projects and 26 metrics.

As can be seen above, NASA [17], [18], AEEEM [19],
SOFTLAB [17] and ReLink [20] have different metric

Table 4 Defect prediction measure.

Defective No-defective
Predict as defective TP FP

Predict as no-defective FN TN

space. Thus, we use the UMR (introduced in Sect. 3.2)
method to preprocess the software metrics before building
our neural network. For example, when CM1 in NASA is
as the training data and Apache in ReLink is as the testing
data, there are 59 (37+ 26− 4) metrics used to build the first
layer of the neural network.

4.2 Evaluation Performance Metrics

In our experiments, we separately employ the prediction
performance on the non-defective or defective class and
the overall performance. The Recall are commonly used
to measure the prediction performance on the defective
class, the AUC [40] and Mattews correlation coefficient
(MCC) [13] are utilized to measure the overall performance.
These three measures can be calculated by true positive
(TP), false positive (FP), true negative (TN) and false neg-
ative (FN) in Table 4. TP is the number of defective in-
stances that are correctly predicted. FP is the number of
non-defective instances that are predicted as defective. TN
is the number of non-defective instances that are correctly
predicted. FN is the number of defective instances that are
predicted as non-defective.

Recall is defined as the ratio of the number of defective
instances that are correctly predicted to the total number of
defective instances, and it is calculated as TP/(TP+FN).

AUC is defined as the area under the receiver operating
characteristic curve, whose x-axis is pf and y-axis is pd.

MCC encompasses all four components of the confu-
sion matrix, that has been demonstrated to be a reliable mea-
sure of prediction performance. It is defined as

MCC =
T P × T N − FP × FN

(T P + FP)(T P + FN)(T N + FP)(T N + FN)
.

(9)

Recall and AUC range from 0 to 1, and MCC ranges
from −1 to 1. Obviously, an good defect prediction model
should have high values of Recall, AUC and MCC.

4.3 Experimental Design

4.3.1 Evaluation Settings

We use 18 projects from NASA, AEEEM, SOFTLAB and
ReLink as experiment object to perform HDP. In experi-
ment, each project is as the testing data in turn, and other
project from other companies is separately as the training
data. For example, when Apache in ReLink is as the test-
ing, there are 15 (18 − 3) heterogeneous defect prediction
combinations. We mainly focus on the data with heteroge-
neous metric sets, so we did not conduct defect prediction

542
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

Table 5 The standard parameter setting of the SNN.

Parameters values
Learning rage (α) 0.02

Epoch 100
Dropout fraction 0.5

Lambda (λ) 0.35
Batch size 32

across projects in the same company. In general, we have
240 possible prediction combinations from 18 projects. In
order to avoid randomness, we repeat the above experiments
20 times and report the mean results for each testing project.

4.3.2 Parameter Settings

In all our experiments, we set fc1 layer in SNN with ds +

dt −dc nodes, fc2, fc3 and fc4 layers with 356 hidden nodes,
and fc5 layer with 2 output nodes.

In the hyperparameter adjustment, since the learning
rate determines whether the neural network can converge to
the global minimum, the regularization terms in loss func-
tion is not taken into account firstly. We firstly adjust the
learning rate to get a more appropriate threshold value, and
take half of the threshold value as the initial value in the
process of adjusting learning rate. After that, the size of
mini-batch size is determined through experiments. After-
ward, the learning rate is carefully adjusted and using the
verified learning rate to choose the Lambda (λ). Lastly, the
learning rate can be re-optimized by going back. The epoch
can be determined by the overall observation of the above
experiments.

In this process, the batch size was chosen to 8, 16, and
32 (the power of two); the range of learning rate was cho-
sen to between 0.01 and 0.8; the dropout was set 0.5, which
has been proven to produce better performance in [47]; the
MMD regularization parameter (λ) is chosen to between 0.2
and 0.5, and this made the objective be primarily weighted
towards classification error, and also with enough regular-
ization to avoid overfitting [48]. And based on the hyper-
parameter adjustment, We set the parameters for the back-
propagation learning specified in Table 5.

4.3.3 Performance Comparison

To statistically investigate the detailed prediction results,
we conduct a non-parametric Wilcoxon signed-rank test [41]
at a confidence level of 95% on multiple models over 18
benchmark projects. If P − Value < 0.005, it shows that
there is a significant difference between the two methods.

Furthermore, To measure the degree of differences in
Recall, AUC and MCC results between our method and the
compared methods, we apply Cohen,s d to measure the ef-
fect size, and this is calculated as followed [42]:

Cohen,s d =
M1 − M2√
(σ2

1 + σ
2
2)/2
. (10)

Where M1 and M2 are the means, and σ1, σ2 are the

standard deviations of experimental and control groups.
There are three levels of effect size in Cohen as 0 � d <

0.2 (Negligible, N), 0.2 � d < 0.5 (Small, S), 0.5 � d < 0.8
(Medium, M) and d � 0.8 (Large, L).

4.4 Experimental Results and Analysis

In this section, we compare with DNN (DNN utilizes cross-
entropy loss as the classification error and has the same net-
work architecture with SNN), CNN (CNN applies the ap-
proach proposed by [34] to balance data before training neu-
ral network), some HDP methods including CCA+ [13] and
CTKCA [43], some CPDP methods including NN-Filter [9],
VCB-SVM [11] and TCBoost [12], and WPDP approach to
validate the performance of our approach for HDP. The re-
sults of Recall, AUC and MCC are listed in Tables 6, 7 and
8. The best value of each testing project is in bold font. We
also analyzed the performance results based on evaluating
the variability of compared approaches across multiple runs
by using violin figure in Figs. 3, 4 and 5. Furthermore, we
examine the statistical differences and effect size between
our approach and the compared approaches, and the results
are listed in Table 9.

4.4.1 RQ1: Does SNN Approach Perform Better than the
CPDP and WPDP Methods?

In order to address RQ1, we compare our SNN approach
with WPDP approaches and typical CPDP approaches in-
cluding NN-filter [9], VCB-SVM [11] and TCBoost [12].
We make comparion with 10% of training data for WPDP.
In CPDP methods, we select one project as testing data in
turn, and separately use other projects in the same company
as source data.

In terms of the overall results in 18 testing projects,
SNN approach improves the mean Recall by 29%, 13.1%
and 11.5%, the mean AUC by 11%, 4.5% and 4.1% and the
mean MMC by 15.2%, 4.5% and 4% over NN-filter, VCB-
SVM and TCBoost, respectively. Compared with WPDP
method, SNN approach improves the mean Recall by 6.7%,
however, the AUC and MCC are lower than WPDP.

We further statistically evaluate the effect of our
method using Wilcoxon signed-rank test and Cohen,s d ex-
plained in Sect. 4.3.3, and conclude the following conclu-
sions:

• Compared with NN-Filter, VCB-SVM and TCBoost
approaches, most P − Value < 0.005, we can conclude
that SNN can statistically improve the performance in
Recall, AUC and MCC in most projects, and achieve
large performance improvement compared to NN-filter
method, and medium performance improvement com-
pared to VCB-SVM and TCBoost methods.
• Compared with WPDP approach, all P − Value >

0.005. That is to say our approach is in the same level
with WPDP approach, that indicate our SNN approach
can solve the HDP problem.

GONG et al.: UNSUPERVISED DEEP DOMAIN ADAPTATION FOR HETEROGENEOUS DEFECT PREDICTION
543

Table 6 Results in Recall for each project.

Dataset project NN-Filter VCB-SVM TCBoost WPDP CCA+ CTKCCA DNN CNN
SNN

Single Multi
CM1 0.165 0.4 0.458 0.36 0.09 0.308 0.445 0.45 0.52 0.46
MW1 0.243 0.278 0.4 0.3 0.183 0.348 0.58 0.584 0.527 0.433

NASA PC1 0.175 0.428 0.403 0.27 0.126 0.262 0.487 0.487 0.533 0.543
PC3 0.14 0.263 0.265 0.36 0.132 0.375 0.551 0.557 0.629 0.473
PC4 0.213 0.238 0.233 0.37 0.165 0.388 0.482 0.443 0.594 0.367
AR1 0.22 0.388 0.333 0.5 0.178 0.494 0477 0.367 0.632 0.557
AR3 0.498 0.813 0.875 0.67 0.178 0.475 0.64 0.691 0.741 0.5

SOFTLAB AR4 0.288 0.45 0.613 0.75 0.112 0.475 0.672 0.658 0.708 0.367
AR5 0.468 0.845 0.783 0.8 0.199 0.462 0.858 0.742 0.915 0.543
AR6 0.183 0.253 0.25 0.6 0.144 0.295 0.472 0.483 0.488 0.31
EQ 0.223 0.308 0.313 0.73 0.149 0.255 0.619 0.599 0.682 0.797
JDT 0.3 0.555 0.6 0.62 0.164 0.329 0.567 0.551 0.618 0.743

AEEEM LC 0.403 0.453 0.433 0.65 0.138 0.337 0.43 0.498 0.569 0.6
ML 0.285 0.445 0.4 0.38 0.108 0.278 0.328 0.336 0.348 0.393
PDE 0.283 0.433 0.385 0.37 0.148 0.284 0.358 0.481 0.515 0.52
Apache 0.495 0.785 0.755 0.72 0.063 0.349 0.574 0.579 0.617 0.483

ReLink Safe 0.5 0.565 0.635 0.75 0.06 0.301 0.631 0.682 0.658 0.62
ZXing 0.405 0.455 0.505 0.3 0.0487 0.347 0.367 0.419 0.407 0.283
median 0.305 0.464 0.48 0.528 0.133 0.353 0.529 0.533 0.595 0.499

Table 7 Results in AUC for each project.

Dataset project NN-Filter VCB-SVM TCBoost WPDP CCA+ CTKCCA DNN CNN
SNN

Single Multi
CM1 0.543 0.614 0.621 0.608 0.48 0.496 0.612 0.618 0.641 0.624
MW1 0.571 0.579 0.614 0.635 0.532 0.529 0.677 0.682 0.692 0.654

NASA PC1 0.539 0.648 0.633 0.629 0.499 0.45 0.646 0.616 0.668 0.658
PC3 0.534 0.587 0.585 0.637 0.502 0.527 0.655 0.657 0.678 0.643
PC4 0.547 0.583 0.582 0.676 0.511 0.529 0.639 0.62 0.677 0.594
AR1 0.58 0.66 0.634 0.721 0.518 0.543 0.587 0.583 0.686 0.654
AR3 0.682 0.66 0.634 0.721 0.518 0.543 0.74 0.766 0.805 0.71

SOFTLAB AR4 0.607 0.667 0.715 0.789 0.514 0.53 0.723 0.698 0.756 0.649
AR5 0.685 0.846 0.864 0.9 0.565 0.614 0.839 0.847 0.843 0.741
AR6 0.573 0.598 0.609 0.762 0.503 0.462 0.624 0.663 0.659 0.594
EQ 0.578 0.609 0.61 0.662 0.536 0.497 0.707 0.671 0.729 0.755
JDT 0.576 0.665 0.68 0.626 0.54 0.531 0.695 0.696 0.726 0.723

AEEEM LC 0.593 0.639 0.63 0.762 0.512 0.498 0.629 0.647 0.692 0.72
ML 0.56 0.62 0.609 0.875 0.494 0.504 0.591 0.596 0.62 0.61
PDE 0.559 0.602 0.601 0.582 0.528 0.493 0.59 0.629 0.659 0.658
Apache 0.565 0.698 0.693 0.667 0.639 0.753 0.486 0.459 0.695 0.644

ReLink Safe 0.669 0.704 0.701 0.751 0.496 0.476 0.704 0.693 0.722 0.649
ZXing 0.611 0.619 0.616 0.771 0.463 0.509 0.578 0.587 0.591 0.57
median 0.587 0.652 0.656 0.719 0.512 0.509 0.661 0.662 0.697 0.658

Table 8 Results in MCC for each project.

Dataset project NN-Filter VCB-SVM TCBoost WPDP CCA+ CTKCCA DNN CNN
SNN

Single Multi
CM1 0.097 0.201 0.196 0.18 -0.037 -0.01 0.191 0.196 0.217 0.204
MW1 0.154 0.159 0.195 0.368 0.087 0.054 0.241 0.248 0.312 0.263

NASA PC1 0.0708 0.224 0.212 0.347 -0.002 -0.083 0.203 0.206 0.231 0.209
PC3 0.09 0.186 0.186 0.258 0.013 0.041 0.233 0.236 0.257 0.228
PC4 0.104 0.192 0.193 0.487 0.021 0.046 0.233 0.236 0.26 0.203
AR1 0.217 0.31 0.31 0.367 0.034 0.044 0.17 0.175 0.248 0.251
AR3 0.288 0.45 0.47 0.604 0.084 0.025 0.417 0.445 0.526 0.528

SOFTLAB AR4 0.325 0.367 0.422 0.439 0.052 0.055 0.378 0.381 0.447 0.452
AR5 0.351 0.629 0.742 0.828 0.24 0.28 0.609 0.566 0.614 0.696
AR6 0.254 0.259 0.32 0.523 0.01 -0.059 0.224 0.209 0.317 0.238
EQ 0.229 0.285 0.292 0.355 0.132 0.008 0.431 0.465 0.46 0.504
JDT 0.159 0.313 0.334 0.235 0.132 0.072 0.347 0.331 0.426 0.376

AEEEM LC 0.136 0.24 0.205 0.526 0.056 0.002 0.216 0.216 0.323 0.322
ML 0.118 0.307 0.185 0.783 -0.013 0.006 0.179 0.14 0.239 0.186
PDE 0.115 0.19 0.199 0.197 0.092 -0.006 0.263 0.17 0.209 0.275
EQ 0.134 0.403 0.39 0.505 0.002 -0.008 0.347 0.356 0.401 0.298

ReLink Safe 0.377 0.422 0.397 0.494 -0.026 -0.061 0.417 0.406 0.46 0.317
ZXing 0.237 0.241 0.225 0.417 -0.013 0.027 0.164 0.176 0.187 0.217
median 0.192 0.299 0.304 0.439 0.048 0.02 0.286 0.288 0.344 0.32

544
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

Fig. 3 The violin of Recall values of compared methods.

Fig. 4 The violin of AUC values of compared methods.

Fig. 5 The violin of MCC values of compared methods.

Possible reasons are that these compared CPDP ap-
proaches only use the same metrics in training and testing
projects that limits the performance.

4.4.2 RQ2: Could SNN Approach Obtain Better Perfor-
mance for HDP?

In order to address RQ2, we compare our SNN with DNN
(DNN utilizes cross-entropy loss as the classification error
and has the same network architecture with SNN), CNN
(CNN applies the approach proposed by [34] to balance
data before training neural network) and two exiting HDP
approaches including CCA+ [13], and CTKCCA [43]. The
settings of these approaches are the same as our approach.

From these Tables 6, 7 and 8, we observe that our ap-
proach achieve the highest Recall, AUC and MCC in most
projects compared with DNN, CNN, CCA+ and CTKCCA.
In terms of the overall results in 18 testing projects, SNN ap-
proach improves the mean Recall by 6.6%, 6.2%, 46.2% and
24.2%, the mean AUC by 3.6%, 3.5%, 18.5% and 18.8%,
and the mean MCC by 5.8%, 5.6%, 29.6% and 32.4% over

Table 9 The test results of compared approaches.

Methods Measure Wilcoxon singed-rank test Cohen,s d
Recall 0.053 0.423(S)

SNN-multi AUC 0.278 0.4468(S)
MCC 0.381 0.213(S)
Recall 0.197 0.356(S)

WPDP AUC 0.407 -0.282
MCC 0.031 -0.604
Recall 0 1.536(L)

NN-Filter AUC 0 1.537(L)
MCC 0.381 0.213(S)
Recall 0 0.692(M)

VCB-SVM AUC 0.001 0.603(M)
MCC 0.089 0.364(S)
Recall 0 0.631(M)

TCBoost AUC 0.002 0.53(M)
MCC 0.01 0.296(S)
Recall 0 2.615(L)

CCA+ AUC 0 2.765(L)
MCC 0 2.141(L)
Recall 0 1.358(L)

CTKCCA AUC 0 2.476(L)
MCC 0 2.321(L)
Recall 0.002 0.341(S)

DNN AUC 0.001 0.452(S)
MCC 0.001 0.414(S)
Recall 0.001 0.453(S)

CNN AUC 0.001 0.423(S)
MCC 0.001 0.398(S)

DNN, CNN, CCA+ and CTKCCA, respectively.
We also further statistically evaluate the effect of our

method, and conclude the following conclusions:

• Compared with DNN and CNN approaches, SNN
achieves the highest Recall, AUC and MCC in most
projects and P − Value < 0.005. That is to say, the
weighted cross-entropy loss in SNN could well solve
the class imbalance problem in HDP.
• Compared with CCA+ and CTKCCA approaches,

SNN achieves the highest Recall, AUC and MCC in
most projects and P−Value < 0.005, we can conclude
that SNN can statistically improve the performance in
Recall, AUC and MCC in most projects. At the same
time, CTKCCA considered the cost-sensitive to solve
the class imbalance problem and the kernel canonical
correlation analysis (TCCA) to solve the distribution
differences. That is to say, the deep neural network
that has the complex nonlinear mapping capabilities is
helpful for HDP.
• For Cohen,s d, SNN achieves a small performance im-

provement compared to DNN and CNN, and large im-
provement compared to CTKCCA. That is to say, the
contribution of deep domain neural network would be
higher than weighted cross-entropy loss.

Possible reasons are that: (1) CCA approach focused
on learning linear correlation or similarity between the train-
ing and testing data, and did not consider the class imbal-
ance problem. (2) Though CTCCA considered the class
imbalance problem, they used kernel canonical correlation
analysis to map the source and testing data into the same

GONG et al.: UNSUPERVISED DEEP DOMAIN ADAPTATION FOR HETEROGENEOUS DEFECT PREDICTION
545

metric space, whose learning ability of nonlinear mapping
is not better to deep neural network.

4.4.3 RQ3: Does the Multi-Source Approaches Perform
Better than the Single-Source Approaches for HDP?

In order to address RQ3, we compare with the multi-source
projects approach. Each project was used as the testing data
in turn, the other projects in other company were separately
used as the training data. For example, when Apache in Re-
Link is as the testing data, all AEEEM projects (or all SOFT-
LAB projects or all ReLink projects) are as the multi-source
training data. In this case, we have 54 possible prediction
combinations from 18 projects.

From Tables 6, 7 and 8, SNN approach with single-
source improves the mean Recall by 9.6%, the mean AUC
by 3.9%, and the mean MMC by 2.4% over multi-source
approach. We observe that the multi-source SNN perform
inferior to the single-source SNN approach in Recall, AUC
and MCC for most projects.

We also further statistically evaluate the effect of our
method, and conclude the following conclusions:

• Compared with multi-source approach, all P−Value >
0.005. That is to say our approach with single-source
is in the same level with multi-source approach.
• SNN can achieve small performance improvement

compared to SNN-Multi.

Possible reason may be that there are different distri-
butional character among different project data, the mixed
project data as the training data may be more complex to
learn the model.

To sum up, we can conclude that our SNN with single-
source can perform better than typical CPDP approaches
including NN-filter [9], VCB-SVM [11] and TCBoost [12],
and HDP methods including CCA+ and CTKCCA. Our
SNN is also comparable to WPDP method. The single-
source SNN is better than multi-source for most projects.

5. Discussion

5.1 Effect of the MMD Distance

In this experiment, we investigate the effect of the
Maximum Mean Discrepancy (MMD) and correlation
alignment (CORAL) as the Distance(Qs,Qt) with no
Distance(Qs,Qt). The results of Recall, AUC and MCC are
listed in Table 10. To graphically visualize the prediction
results across multiple runs, we use the violin Figs. 6, 7 and
8 to analyze the performance results.

From Table 10 and Figs. 6, 7 and 8, we can observe that
the Distance(Qs,Qt) being introduced into the loss function
are useful for the heterogeneous defect prediction, and the
Maximum Mean Discrepancy (MMD) is better used to re-
duce the distribution mismatch for software data.

Table 10 The results of different distance.

Projects Measure MMD CORAL No-Distance
Recall 0.52 0.228 0.234

CM1 AUC 0.641 0.566 0.567
MCC 0.217 0.175 0.181
Recall 0.527 0.306 0.168

MW1 AUC 0.692 0.615 0.552
MCC 0.312 0.309 0.161
Recall 0.533 0.258 0.183

PC1 AUC 0.668 0.582 0.564
MCC 0.231 0.21 0.178
Recall 0.629 0.33 0.198

PC3 AUC 0.678 0.594 0.552
MCC 0.257 0.206 0.133
Recall 0.594 0.26 0.235

PC4 AUC 0.677 0.574 0.567
MCC 0.26 0.177 0.149
Recall 0.632 0.205 0.11

AR1 AUC 0.686 0.549 0.527
MCC 0.248 0.112 0.111
Recall 0.741 0.403 0.318

AR3 AUC 0.805 0.677 0.631
MCC 0.526 0.58 0.47
Recall 0.708 0.381 0.262

AR4 AUC 0.756 0.647 0.594
MCC 0.447 0.46 0.341
Recall 0.915 0.425 0.345

AR5 AUC 0.843 0.687 0.634
MCC 0.614 0.615 0.462
Recall 0.488 0.162 0.168

AR6 AUC 0.659 0.567 0.573
MCC 0.317 0.323 0.339
Recall 0.682 0.071 0.126

EQ AUC 0.729 0.53 0.54
MCC 0.46 0.184 0.218
Recall 0.618 0.115 0.046

JDT AUC 0.726 0.546 0.536
MCC 0.426 0.222 0.239
Recall 0.569 0.136 0.086

LC AUC 0.692 0.552 0.537
MCC 0.323 0.195 0.228
Recall 0.348 0.133 0.077

ML AUC 0.62 0.547 0.524
MCC 0.239 0.173 0.108
Recall 0.515 0.081 0.121

PDE AUC 0.659 0.532 0.536
MCC 0.263 0.149 0.131
Recall 0.401 0.296 0.178

Apache AUC 0.695 0.588 0.543
MCC 0.401 0.296 0.178
Recall 0.658 0.213 0.123

Safe AUC 0.722 0.594 0.549
MCC 0.46 0.377 0.326
Recall 0.407 0.164 0.079

ZXing AUC 0.591 0.537 0.517
MCC 0.187 0.141 0.088

5.2 Effect of the Number of Same Metrics between Train-
ing and Testing Data

In this experiment, we investigate the influence of the num-
ber of same metrics between training and testing data.
All experiments are conducted in single source scenario.
Specifically, the used number of same metrics ranges in 28,
4 and 1. The results of Recall, AUC and MCC are listed in

546
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

Fig. 6 The violin of Recall values of different distance.

Fig. 7 The violin of AUC values of different distance.

Fig. 8 The violin of MCC values of different distance.

Table 11. We also apply the Cohen,s d to measure the ef-
fect. We count the number of projects in each effectiveness
level to give a clearer comparison of the prediction and re-
port the test results in Table 12. From Table 12, We observe
that the number of same metrics has little effect on SNN ap-
proach. That is to say that our approach can use data from
other companies with little same metrics.

5.3 Why SNN Performs Best

The discovery of this study provide substantial empirical
support demonstrating that our SNN approach can solve the
heterogeneous defect prediction problem. For most projects,
SNN can achieve better Recall, AUC and MCC. The perfor-
mance of SNN can be attributed to considering the distribu-
tion differences (MMD) and classification error (weighted
cross-entropy loss) simultaneously.

HDP is to detect the largest number of defective mod-
ules in one project by using other projects with different
metrics. Though UMR is used to map the different met-
rics into a unified metric representation, they have different

Table 11 The results of different number of same metrics

Projects Measure 1 same metric 4 same metric 28 same metric
Recall 0.492 0.653 0.468

CM1 AUC 0.631 0.669 0.635
MCC 0.199 0.238 0.223
Recall 0.538 0.557 0.498

MW1 AUC 0.694 0.707 0.681
MCC 0.309 0.329 0.306
Recall 0.466 0.617 0.55

PC1 AUC 0.6448 0.695 0.675
MCC 0.211 0.252 0.239
Recall 0.634 0.7 0.582

PC3 AUC 0.667 0.71 0.671
MCC 0.236 0.299 0.253
Recall 0.616 0.687 0.516

PC4 AUC 0.676 0.71 0.658
MCC 0.253 0.294 0.247
Recall 0.576 0.89 0.532

AR1 AUC 0.679 0.726 0.669
MCC 0.261 0.238 0.242
Recall 0.7 0.75 0.776

AR3 AUC 0.79 0.778 0.837
MCC 0.503 0.451 0.595
Recall 0.67 0.75 0.72

AR4 AUC 0.728 0.758 0.783
MCC 0.399 0.434 0.503
Recall 0.926 0.96 0.876

AR5 AUC 0.816 0.848 0.866
MCC 0.561 0.592 0.681
Recall 0.494 0.603 0.412

AR6 AUC 0.696 0.695 0.65
MCC 0.399 0.402 0.329
Recall 0.612 0.62 -

Apache AUC 0.696 0.695 -
MCC 0.4 0.402 -
Recall 0.636 0.669 -

Safe AUC 0.721 0.722 -
MCC 0.46 0.459 -
Recall 0.406 0.407 -

ZXing AUC 0.59 0.592 -
MCC 0.185 0.188 -
Recall 0.682 - -

EQ AUC 0.729 - -
MCC 0.46 - -
Recall 0.618 - -

JDT AUC 0.726 - -
MCC 0.426 - -
Recall 0.569 - -

LC AUC 0.692 - -
MCC 0.323 - -
Recall 0.348 - -

ML AUC 0.62 - -
MCC 0.239 - -
Recall 0.515 - -

PDE AUC 0.659 - -
MCC 0.263 - -

distribution differences. As we know, deep neural network
has a strong learning capacity, so we utilize the MMD as
the distance measure regularization embedded in the super-
vised back-propagation training. Where, MMD is used to
determine whether the distribution between source and test-
ing data is the same. To demonstrate whether MMD reg-
ularization can indeed improve the performance of neural
networks, we train the neural network with the MMD and

GONG et al.: UNSUPERVISED DEEP DOMAIN ADAPTATION FOR HETEROGENEOUS DEFECT PREDICTION
547

Table 12 The effectiveness levels of SNN with different number of same
metrics with the Cohen,s d effect test.

Measure Level
Against

1 same metric 4 same metric
N 0 1

Recall
S 2 5
M 3 2
L 0 1
N 0 1

AUC
S 2 1
M 1 1
L 2 4
N 1 0

MCC
S 0 2
M 0 2
L 3 3

without MMD, respectively (introduced in Sect. 5.1). Fig-
ures 6, 7 and 8 indicate that the utilization of MMD might
gain more adaptation ability than without MMD.

As the same time, we consider the class imbal-
ance problem which hinders the classification performance.
Firstly, we use the cross-entropy loss as the classfication er-
ror, which can measure the similarity between the real label
distribution and the predicted label distribution. Also, the
defective modules misclassified are more important in soft-
ware engineering, we introduce an appropriate weight into
cross-entropy loss function. To demonstrate the weighted
cross-entropy loss function, we train the neural network
with cross-entropy loss (DNN), weighted cross-entropy loss
(SNN) and preprocessing SMOTE approach (CNN), Figs. 3,
4 and 5 indicate that the utilization of weighted cross-
entropy loss might gain more adaptation ability. Especially
for NASA datasets, we achieve the highest Recall, AUC
and MCC for all projects. The proportion of defective data
are all below 15%, this also indicates the weighted cross-
entropy loss can solve the class-imbalance problem better.

6. Threats to Validity

In this section, we describe the potential threats to validity
of our study.

6.1 Threats to Construct Validity

Our proposed method utilizes the weighted cross-entropy
loss function as the classification error. Using other loss
function might obtain different results. However, the cross-
entropy loss function is widely used in deep learning
field [44], [45].

With regard to the weight, we adaptively allocate differ-
ent misclassification costs according to the number of non-
defective instances and defective instances of source data.
However, how to set the weight is a problem that is not yet
effectively solved [46].

6.2 Threats to Internal Validity

We use Recall, AUC and MCC to report the prediction

performance. Other comprehensive measures, such as F-
measure, G-means are not reported.

In addition, we carefully implement the compared ap-
proaches, as reported by their authors. However, our exper-
iments may not be totally the same as the original papers,
which leads to some possible biases in comparison between
our method and compared methods.

6.3 Threats to External Validity

We choose projects from four public available companies in-
cluding NASA, AEEEM, SOFTLAB and ReLink that have
been used in many researches. Our chosen projects have
the diversity in size and ratio of defective instances, and this
helps draw the generalization of our findings. Also, we con-
sider a larger number of datasets, and this further validates
our studies. However, further investigations on other busi-
ness datasets are needed.

6.4 Threats to Statistical Conclusion Validity

In our study, we use the Wilcoxon sign rank test for the sta-
tistical analysis. To find the practical effects of the results,
Cohen,s d is used to measure the effect size.

7. Conclusions

In this paper, we present unsupervised deep domain adap-
tation approach for heterogeneous defect prediction. To
address the heterogeneous problem, we utilize the Maxi-
mum Mean Discrepancy (MMD) to calculate the distance
between the source and target data. To address the class
imbalance problem, we use the weighted cross-entropy loss
function as the classification loss.

We perform the non-parametric Wilcoxon signed-rank
test and Cohen,s d effect size test for the evaluation. Ex-
tensive experiments on 18 public projects from four com-
panies indicate that the proposed approach can build an ef-
fective prediction model for heterogeneous defect prediction
(HDP).

For the future work, we would like to employ more
data from commercial projects to evaluate the effectiveness
of our approach.

Acknowledgements

This work is supported in part by the National Natu-
ral Science Foundation of China (No. 61673384 and No.
61502497), the Natural Science Foundation of the Jiangsu
Higher Education Institutions of China (No.18KJB520016),
and Research Support Program for Doctorate Teachers of
Jiangsu Normal University (No. 17XLR001).

References

[1] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning from open-
source projects: An empirical study on defect prediction,” IEEE
Computer Society, pp.45–54, 2013.

548
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

[2] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An Investigation On
the Feasibility of Cross-project Defect prediction,” Automated Soft-
ware Engineering, vol.19, no.2, pp.167–199, 2012.

[3] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with Noise in
Defect Prediction,” 2011 International Conference on Software En-
gineering (ICSE), pp.481–490, 2011.

[4] Y. Kamei, E. Shihab, B. Adams, A.E. Hassan, A. Mockus, A.
Sinha, and N. Ubayashi, “A Large-scale Empirical Study of Just-in-
time Quality Assurance,” IEEE Trans. Softw. Eng., vol.39, no.6,
pp.757–773, 2013.

[5] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,”
IEEE International Conference on Automated Software Engineer-
ing, pp.279–289, 2014.

[6] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, “Dictio-
nary Learning based Software Defect Prediction,” Proc. 36th Inter-
national Conference on Software Engineering, pp.414–423, ACM,
2014.

[7] S. Wang, T. Liu, and L. Tan, “Automatically Learning Semantic Fea-
tures for Defect Prediction,” IEEE International Conference on Soft-
ware Engineering, pp.297–308, 2017.

[8] T. Lee, J. Nam, D. Han, S. Kim, and H.P. In, “Developer Micro Inter-
action Metrics for Software Defect Prediction,” IEEE Trans. Softw.
Eng., vol.42, no.11, pp.1015–1035, 2016.

[9] B. Turhan, T. Menzies, A.B. Bener, and J.D. Stefano, “On the
Relative Value of Cross-company and Within-company Data For
Defect Prediction,” Empirical Software Engineering, vol.14, no.5,
pp.540–578, 2009.

[10] J. Nam, S.J. Pan, and S. Kim, “Transfer Defect Learning,” Inter-
national Conference on Software Engineering, pp.382–391, IEEE,
2013.

[11] D. Ryu, O. Choi, and J. Baik, “Value-cognitive boosting with a
support vector machine for cross-project defect prediction,” Empir.
Softw. Eng., vol.21, no.1, pp.43–71, 2016.

[12] D. Ryu, J.-I. Jang, and J. Baik, “A Transfer Cost-sensitive Boost-
ing Approach for Cross-project defect prediction,” Software Quality
Journal, vol.25, no.1, pp.235–272, 2017.

[13] X. Jing, F. Wu, X. Dong, F. Qi, and B. Xu, “Heterogeneous cross-
company defect prediction by unified metric representation and
CCA-based transfer learning,” Joint Meeting, pp.496–507, 2015.

[14] J. Nam, F. Wei, S. Kim, T. Menzies, and T. Lin, “Heterogeneous
defect prediction,” Proc. 2015 10th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE’2015), pp.508–519, 2015.

[15] P. He, B. Li, and Y. Ma, “Towards cross-project defect prediction
with imbalanced feature sets,” Computer Science, 2014.

[16] M. Cheng, G. Wu, M. Jiang, H. Wan, G. You, and M. Yuan, “Het-
erogeneous Defect Prediction via Exploiting Correlation Subspace,”
The International Conference on Software Engineering and Knowl-
edge Engineering, pp.171–176, 2016.

[17] G. Blanchard and R. Loubère, “High Order Accurate Conserva-
tive Remapping Scheme on Polygonal Meshes Using a Posteri-
ori MOOD Limiting,” Computers and Fluids, vol.136, pp.83–103,
2016.

[18] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data Quality: Some
Comments on the NASA Software Defect Datasets,” IEEE Trans.
Softw. Eng., vol.39, no.9, pp.1208–1215, 2013.

[19] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating Defect Pre-
diction Approaches: a Benchmark and an Extensive Comparison,”
Empirical Software Engineering, vol.17, no.4-5, pp.531–577, 2012.

[20] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “ReLink: Recovering
Links Between Bugs and Changes,” ACM Sigsoft Symposium and
the European Conference on Foundations of Software Engineering,
pp.15–25, 2011.

[21] S. Watanabe, H. Kaiya, and K. Kaijiri, “Adapting a Fault Predic-
tion Model to Allow Inter Languagereuse,” International Workshop
on Predictor MODELS in Software Engineering, pp.19–24, ACM,
2008.

[22] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the

“imprecision” of Cross-project Defect Prediction,” the ACM SIG-
SOFT 20th International Symposium on the Foundations of Soft-
ware Engineering, pp.1–11, 2012.

[23] F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing Pri-
vacy and Utility in Cross-Company Defect Prediction,” IEEE Trans.
Softw. Eng., vol.39, no.8, pp.1054–1068, 2013.

[24] F. Peters, T. Menzies, and L. Layman, “LACE2: Better Privacy-Pre-
serving Data Sharing for Cross Project Defect Prediction,” IEEE In-
ternational Conference on Software Engineering, pp.801–811, 2015.

[25] Y. Kamei, T. Fukushima, S. Mcintosh, K. Yamashita, N. Ubayashi,
and A.E. Hassan, “Studying Just-in-time Defect Prediction Using
Cross-project Models,” Empirical Software Engineering, vol.21,
no.5, pp.2072–2106, 2016.

[26] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards Building
a Universal Defect Prediction Model,” Proc. 11th Working Confer-
ence on Mining Software Repositories (MSR 2014), pp.182–191,
2014.

[27] S. Herbold, A. Trautsch, and J. Grabowski, “Global vs. local models
for cross-project defect prediction,” Empirical Software Engineer-
ing, vol.22, no.4, pp.1–37, 2016.

[28] G.I. Taylor and A.E. Green, “A benchmark study on the effective-
ness of search-based data selection and feature selection for cross
project defect prediction,” Information and Software Technology,
vol.95, no.2, pp.1–17, 2017.

[29] J.P. Sinno, W.T. Ivor, T.K. James, and Q. Yang, “Domain adaptation
via transfer component analysis,” IEEE Trans. Neural Netw., vol.22,
no.2, pp.199–210, 2013.

[30] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer Learning for Cross-
company Software Defect Prediction,” Information and Software
Technology, vol.54, no.3, pp.248–256, 2012.

[31] X. Yu, M. Wu, Y. Jian, K.E. Bennin, M. Fu, and C.X. Ma, “Cross-
company Defect Prediction via Semi-supervised Clustering-based
Data Filtering and MSTrA-based Transfer Learning,” Software
Computing, vol.22, no.10, pp.3461–3472, 2018.

[32] S. Wang and X. Yao, “Using Class Imbalance Learning for Software
Defect Prediction,” IEEE Trans. Rel., vol.62, no.2, pp.434–443,
2013.

[33] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, “Dictionary
Learning based Software Defect Prediction,” 2014 Proc. 36th Inter-
national Conference on Software Engineering (ICSE), pp.414–423,
2014.

[34] N. Limsettho, K.E. Bennin, J.W. Keung, H. Hata, and K.
Matsumoto, “Cross Project Defect Prediction Using Class Distribu-
tion Estimation and Oversampling,” Information and Software Tech-
nology, vol.100, pp.87–102, 2018.

[35] M. Liu, L. Miao, and D. Zhang, “Two-Stage Cost-Sensitive Learn-
ing for Software Defect Prediction,” IEEE Trans. Rel., vol.63, no.2,
pp.676–686, 2014.

[36] K.E. Bennin, K. Jacky, P. Phannachitta, A. Monden, and S.
Mensah, “MAHAKIL: Diversity based oversampling approach to
alleviate the class imbalance issue in software defect prediction,”
IEEE Trans. Softw. Eng., vol.44, no.6, pp.534–550, 2018.

[37] C. Seiffert, T.M. Khoshgoftaar, J.V. Hulse, and A. Folleco, “An
Empirical Study of the Classification Performance of Learners on
Imbalanced and Noisy software quality data,” Information Sciences
and International Journal, vol.259, pp.571–595, 2014.

[38] K.E. Bennin, J.W. Keung, and A. Monden, “On the Relative Value of
data Resampling Approaches for Software Defect Prediction,” Em-
pirical Software Engineering, no.1, pp.1–35, 2018.

[39] A.J. Smola, A. Gretton, and K.M. Borgwardt, “Maximum mean
discrepancy,” Technical report, NICTA-SML-06-001, National ICT
Australia, 2006.

[40] B. Sun and K. Saenko, “Deep CORAL: Correlation alignment for
deep domain adaptation,” European Conference on Computer Vi-
sion, pp.443–450, 2016.

[41] G. Shieh, S.-L. Jan, and R.H. Randles, “Power and sample size
Determinations for the Wilcoxon signed-rank test,” Journal of Statis-

http://dx.doi.org/10.1007/s10515-011-0090-3
http://dx.doi.org/10.1145/1985793.1985859
http://dx.doi.org/10.1109/tse.2012.70
http://dx.doi.org/10.1145/2568225.2568320
http://dx.doi.org/10.1109/tse.2016.2550458
http://dx.doi.org/10.1007/s10664-008-9103-7
http://dx.doi.org/10.1109/icse.2013.6606584
http://dx.doi.org/10.1007/s11219-015-9287-1
http://dx.doi.org/10.18293/seke2016-090
http://dx.doi.org/10.1016/j.compfluid.2016.06.002
http://dx.doi.org/10.1109/tse.2013.11
http://dx.doi.org/10.1007/s10664-011-9173-9
http://dx.doi.org/10.1145/2025113.2025120
http://dx.doi.org/10.1145/1370788.1370794
http://dx.doi.org/10.1145/2393596.2393669
http://dx.doi.org/10.1145/2393596.2393669
http://dx.doi.org/10.1109/tse.2013.6
http://dx.doi.org/10.1109/icse.2015.92
http://dx.doi.org/10.1007/s10664-015-9400-x
http://dx.doi.org/10.1145/2597073.2597078
http://dx.doi.org/10.1016/j.infsof.2011.09.007
http://dx.doi.org/10.1007/s00500-018-3093-1
http://dx.doi.org/10.1109/tr.2013.2259203
http://dx.doi.org/10.1145/2568225.2568320
http://dx.doi.org/10.1016/j.infsof.2018.04.001
http://dx.doi.org/10.1109/tr.2014.2316951
http://dx.doi.org/10.1016/j.ins.2010.12.016
http://dx.doi.org/10.1007/s10664-018-9633-6
http://dx.doi.org/10.1080/10629360600635245

GONG et al.: UNSUPERVISED DEEP DOMAIN ADAPTATION FOR HETEROGENEOUS DEFECT PREDICTION
549

tical Computation and Simulation, vol.77, no.8, pp.717–724, 2007.
[42] K. Muller, “Statistical power analysis for the behavioral sciences,”

Technometrics, vol.31, no.4, pp.499–500, 1988.
[43] Z. Li, X.Y. Jing, F. Wu, X. Zhu, and B. Xu, “Cost-sensitive transfer

kernel canonical correlation analysis for heterogeneous defect pre-
diction,” Automated Software Engineering, no.1, pp.1–45, 2017.

[44] G.S. Kamaledin, “Competitive cross-entropy loss: A study on train-
ing single-layer neural networks for solving nonlinearly separable
classification problems,” Neural Processing Letters, pp.1–8, 2018.

[45] K. Hu, Z. Zhang, X. Niu, C. Cao, F. Xiao, and X.P. Gao, “Retinal
vessel segmentation of color fundus images using multiscale convo-
lutional neural network with an improved cross-entropy loss func-
tion,” Neurocomputing, vol.309, 2018.

[46] J. Zheng, “Cost-sensitive boosting neural networks for software de-
fect prediction,” Expert Systems with Application, vol.37, no.6,
pp.4537–4543, 2010.

[47] P. Baldi and P. Sadowski, “The Dropout Learning Algorithm,” Arti-
ficial intelligence, vol.210, pp.78–122, 2014.

[48] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep
domain confusion: Maximizing for domain invariance,” Computer
Science, 2014.

Lina Gong is a PhD student at School of
Computer Science and Technology, China Uni-
versity of Mining and Technology. Her research
interests include software analysis and testing,
machine learning.

Shujuan Jiang received the Ph.D. degree
from Soutest University in 2006. She was a
visiting scholar at Georgia Institute of Technol-
ogy from September 2008 to April 2009. She
is a professor and Ph.D. supervisor at School
of Computer Science and Technology, China
University of Mining and Technology. Her re-
search interests include compilation techniques
and software engineering, etc.

Qiao Yu received the Ph.D. degree from
China University of Mining and Technology in
2017. She is a lecturer at School of Computer
Science and Technology, Jiangsu Normal Uni-
versity. Her research interests include software
analysis and testing, machine learning. She is a
member of IEICE.

Li Jiang is a MS student at School of Com-
puter Science and Technology, China University
of Mining and Technology. Her research inter-
ests include software analysis and testing, ma-
chine learning.

http://dx.doi.org/10.1080/10629360600635245
http://dx.doi.org/10.1016/j.eswa.2009.12.056
http://dx.doi.org/10.1016/j.artint.2014.02.004

