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Neural Oscillation-Based Classification of Japanese Spoken
Sentences During Speech Perception

Hiroki WATANABE†a), Nonmember, Hiroki TANAKA†, Sakriani SAKTI†,††,
and Satoshi NAKAMURA†, Members

SUMMARY Brain-computer interfaces (BCIs) have been used by users
to convey their intentions directly with brain signals. For example, a
spelling system that uses EEGs allows letters on a display to be selected. In
comparison, previous studies have investigated decoding speech informa-
tion such as syllables, words from single-trial brain signals during speech
comprehension, or articulatory imagination. Such decoding realizes speech
recognition with a relatively short time-lag and without relying on a display.
Previous magnetoencephalogram (MEG) research showed that a template
matching method could be used to classify three English sentences by us-
ing phase patterns in theta oscillations. This method is based on the syn-
chronization between speech rhythms and neural oscillations during speech
processing, that is, theta oscillations synchronized with syllabic rhythms
and low-gamma oscillations with phonemic rhythms. The present study
aimed to approximate this classification method to a BCI application. To
this end, (1) we investigated the performance of the EEG-based classifica-
tion of three Japanese sentences and (2) evaluated the generalizability of
our models to other different users. For the purpose of improving accuracy,
(3) we investigated the performances of four classifiers: template matching
(baseline), logistic regression, support vector machine, and random forest.
In addition, (4) we propose using novel features including phase patterns in
a higher frequency range. Our proposed features were constructed in order
to capture synchronization in a low-gamma band, that is, (i) phases in EEG
oscillations in the range of 2–50 Hz from all electrodes used for measuring
EEG data (all) and (ii) phases selected on the basis of feature importance
(selected). The classification results showed that, except for random for-
est, most classifiers perform similarly. Our proposed features improved the
classification accuracy with statistical significance compared with a base-
line feature, which is a phase pattern in neural oscillations in the range of
4–8 Hz from the right hemisphere. The best mean accuracy across folds
was 55.9% using template matching trained by all features. We concluded
that the use of phase information in a higher frequency band improves the
performance of EEG-based sentence classification and that this model is
applicable to other different users.
key words: brain-computer interface, electroencephalogram (EEG), neu-
ral decoding, neural oscillations, phase-locking

1. Introduction

A brain-computer interface (BCI) provides a way for phys-
ically handicapped people to compensate for lost bodily
functions [1]. For example, locked-in syndrome patients
cannot coordinate voluntary movements except for limited
eye movements and blinks, even though they are awake with
normal consciousness, and this means that it is difficult for
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them to express their intentions. Hence, a BCI is required
for them to communicate with others without making body
movements.

Event-related potential (ERP)-based typing systems
that use scalp electroencephalograms (EEGs) are one of the
most famous applications for communicating without move-
ments, e.g., the P300 speller [2]. On this system, the user
can select a letter on a monitor when the system detects a
P300 that corresponds to a particular letter. However, re-
gardless of the high usefulness of this ERP-based BCI, the
system has some limitations [3]. First, a time-lag occurs
from the timing when a user attempts to express his/her in-
tention until all letters are selected. This is derived from an
averaging process for detecting ERP. Second, communica-
tion is limited to places where a monitor display can be set.

Attempts to recognize speech information from single-
trial brain activity during linguistic processing, e.g.,
a speech comprehension [4]–[8] or articulatory imagina-
tion [9]–[12], overcome the above-mentioned limitations. A
dramatic reduction in time-lag shows the potential for real-
time brain-based communication [3]. One possible neu-
rophysiological mechanism for enabling such brain-based
speech recognition is the synchronization between neural
oscillations during speech processing and speech rhythms,
that is, the phase of theta oscillations (∼4–8 Hz) in listen-
ers’ auditory cortexes matches speech envelopes (this is also
mainly ∼4–8 Hz) consisting of syllabic rhythm, i.e., phase-
locking (see [13] for a review). This mechanism reproduces
consistent neural phase patterns for a specific sentence and
different patterns for different ones. On the basis of this
mechanism, magnetoencephalogram (MEG) phase patterns
in theta oscillations during speech processing were used to
classify three spoken English sentences [7], [8].

The current research aims to fill a gap between the pre-
vious, neurophysiologically-motivated classification meth-
ods and BCI applications. First, applying MEG-based sen-
tence classification as in previous research for a BCI sys-
tem is hard. This is because the apparatuses for measur-
ing MEGs are too large for BCI systems, and the running
costs of the apparatuses are generally high. EEGs can be
measured by using a relatively compact device with a lower
running cost than MEGs, but it is argued that although the
characteristics of EEGs seem more suitable for BCI sys-
tems, the accuracy of EEG-based decoding is lower than
MEG-based decoding as reported in previous neural decod-
ing research [14]. However, the performance of EEG-based
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sentence classification with phase synchronization between
neural oscillations and speech rhythms has not been ex-
plored. Therefore, in this study, we investigated the per-
formance of EEG-based sentence classification.

Second, the existing approach was used to construct
only subject-dependent models. Concerning BCI applica-
tions, this, however, indicates that we need to build each
model specifically for each subject. This means that the
number of models is equal to the number of subjects, so
collecting data for model training from all users is always
necessary. In contrast, when we train subject-independent
models, we prepare a model for all possible subjects. This
way, a model can be used for a new user that has never
been seen in training data. This is crucial when we want
to construct a BCI application without the need to retrain a
model with a new subject. However, according to previously
reported studies, the classification performance when us-
ing subject-independent neural decoding [4], [14] might be
worse than the performance when using subject-dependent
decoding [15]. However, Kerlin et al. [16] demonstrated
that phase-locked responses are replicable phase patterns
across different listeners. Thus, in the current research,
we performed subject-independent classification on the ba-
sis of phase-locked responses. In particular, we investi-
gated how accurately our model classified spoken Japanese
sentences when evaluating models by leave-one-subject-out
cross-validation (LOSO), which tests performances using
the data of unknown subjects.

Third, in previous research, only template matching
was used for classifying spoken sentences, which is based
on the Euclidean distance between a template and test data.
In the domain of BCI, various types of algorithms have been
utilized for classification [17]. This indicates that the use of
different types of classifiers leads to an improvement in clas-
sification accuracy in EEG-based sentence classification.
Thus, in the current study, we investigated the performances
of four types of classifiers: (a) template matching (baseline),
(b) logistic regression, (c) support vector machine (SVM),
and (d) random forest. These models work well for small-
scale and high-dimensional data such as EEGs.

Finally, the previous method of classification used
phase information in theta oscillations as a feature to capture
the synchronization between theta oscillation phases and
syllabic rhythm. Neural oscillations in a higher frequency
band synchronize with phonemic level rhythm [18], [19].
This parallel synchronization in a distinct frequency band
shows functional lateralization; syllabic information extrac-
tion preferentially relies on the right hemisphere (RH), and
phonemic information extraction relies preferentially on the
left hemisphere (LH) [18]. Such synchronization in the
higher frequency band leads to the hypothesis that phase pat-
terns in broader frequency ranges in different hemispheres
provide additional information for classification. Thus, in
addition to the baseline feature, we propose three features
for the purpose of capturing synchronization in a higher fre-
quency band: (i) a theta-RH feature (baseline), i.e., phase
patterns extracted from the theta frequency range (4–8 Hz)

in the right hemisphere, (ii) all features, i.e., phase patterns
extracted from a broader frequency range (2–50 Hz) from
all electrodes used for measuring EEG data, and (iii) se-
lected features, i.e., phase patterns selected from all features
on the basis of feature importance. The selected features
were prepared for the sake of avoiding overfitting because
the high dimensionality of EEGs may hinder classification
performance.

In summary, in this study, we perform EEG-based clas-
sification for three Japanese sentences by using a subject-
independent model and four types of classifiers (template
matching, logistic regression, SVM, and random forest). We
also propose using new features including phase patterns in
a higher frequency range. Specifically, we focus our re-
search on addressing the following questions†:

(1) How accurately do our subject-independent EEG-based
models classify the three Japanese spoken sentences?

(2) Which of the three classifiers improved classification
accuracy over template matching (the baseline classi-
fier)?

(3) Do our proposed features including phase patterns in
a higher frequency band improve classification accu-
racy?

2. EEG Data Recordings

2.1 Participants

Seventeen right-handed L1 Japanese speakers participated
in data recordings. One female participant was excluded
from the analysis because she changed her dominant hand
from left to right during childhood. The average age and
lateralization quotient for the handedness [20] of the remain-
ing participants (6 females, 10 males) was 24.2 ± 2.0 and
90.15 ± 12.3, respectively. All participants agreed to par-
ticipate and gave informed consent in writing. They all re-
ported no any history of neurological illness and no hearing
abnormalities. This experiment was approved by the ethical
review board of the Nara Institute of Science and Technol-
ogy.

2.2 Spoken Sentence Stimuli

We constructed three Japanese sentences for our classifica-
tion task (Table 1). All sentences had a similar duration
and did not include the same word across sentences. The
sentences were recorded by a female L1 Japanese speaker
(16-bit and 44.1 kHz). She was instructed to utter these sen-
tences at a normal speech rate and without any pauses in the
middle of the sentences. The recording was conducted in a
soundproof chamber. The duration range of the sentences
was from 2,925 to 3,278 ms (average: 3,146 ms).

†This study is an extended work from our conference proceed-
ing [15].
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Table 1 Japanese sentences used in classification task.

sentence 1
あなたが昨日夢中で読んでいた本は面白かった。
Anataga kinou muchuude yondeita honwa omoshirokatta.
(The book that you were absorbed in yesterday was interesting.)

sentence 2
ついさっき女の子が私に言ったことは本当の話。
Tsui sakki onnanokoga watashini ittakotowa hontouno hanashi.
(What the girl said to me just now is true.)

sentence 3
向こうの壁に飾っているのは彼のお兄さんが書いた絵。
Mukou no kabeni kazatteirunowa kareno oniisanga kaita e.
(The picture on the other wall was drawn by his older brother.)

2.3 Apparatus for EEG Data Recording

EEG data were measured with an amplifier (BrainAmp DC,
Brain Products GmbH., Germany) from 32 Ag/AgCl elec-
trodes. EEGs were referenced to a right earlobe electrode.
An additional AFz electrode was used as a ground. The
measurement and ground electrodes were mounted on an
elastic cap (EASYCAP GmbH., Germany) according to the
10% system. Electrode impedance was kept below 10 kΩ
before the recording. Raw EEG data were filtered with a
0.016-Hz high-pass filter and a 250-Hz low-pass filter dur-
ing the recording. The sampling rate was 1,000 Hz. Stim-
ulus presentation was controlled by the Presentation soft-
ware (Neurobehavioral Systems, Inc., U.S.A). Speech stim-
uli were presented via earphones (ER-1, Etymotic Research,
Inc., U.S.A).

2.4 Procedure for Recording EEG Data

The sentences were presented to each participant aurally.
A trial included one behavioral task based on previous re-
search [8] with the aim of keeping participants’ attention
on the stimuli. Participants sat on a comfortable chair in a
dimly lit sound-attenuating room. A monitor and keyboard
were mounted on a desk in front of them. They placed their
right index finger on the J key and their left index finger
on the F key, and they maintained this position during the
data recording. Before the recording, the participants re-
ceived instructions to remain motionless, to fixate their eyes
on a fixation mark on the monitor display, to not to blink as
much as possible during stimulus presentation, and to rest
their eyes between trials if necessary.

Before presenting the sentences, pairs of different or
the same sentences, e.g., different: sentence 1 - sentence 2,
same: sentence 1 - sentence 1, were constructed automat-
ically. The order of pairs was randomized. The sentences
in a pair were played in sequence as follows. (1) A sen-
tence, “Are you ready?”, appeared on the display. Partici-
pants started a trial by pushing the space key. (2) A fixation
mark (+) appeared at the center of the display. (3) The first
sentence in a pair was played at 1,500 ms from the trial on-
set. (4) The second sentence was played at 7,500 ms. (5) A
short tone sound was played at 12,000 ms. (6) Participants

Fig. 1 Procedure of one trial.

pushed the F key when both sentences were the same and
pushed the J key when they were different. Trials finished
automatically at 14,500 ms. We summarized the procedure
of one trial in Fig. 1.

A brief rest was inserted after all pairs (different pairs:
6, same pairs: 3) were presented to participants. The next
session was started by pushing the space key. Participants
had four sessions in total with the exact same procedure.
Each sentence was presented 24 times to each participant.
The EEG data recording lasted approximately for 1 to 1.5
hours including preparation.

3. EEG Data Analysis

3.1 Preprocessing of EEG

The FieldTrip toolbox for MATLAB (The MathWorks, Inc.,
U.S.A) was used for EEG data analysis [21]. EEG data
were epoched from −500 to 2,900 ms relative to the on-
set of speech. To remove slow drift, a sixth-order two-pass
IIR Butterworth high-pass filter (1 Hz) was applied to the
EEG data. Line noise at 60 Hz was removed by using a
discrete Fourier transform filter. During the filtering proce-
dure, buffer zones were added before and after EEG epochs
in order to avoid edge artifacts. EEG data were detrended
and baseline-corrected [−500 ms, 0 ms]. Electrodes con-
taminated with large noise over most all of the trials were
detected by visual inspection. One electrode was removed
from the data of two participants.

Next, we rejected trials contaminated with large ampli-
tude artifacts and muscle artifacts. For large amplitude arti-
facts, trials exceeding ±350 μv were removed from further
analysis. Trials including muscle artifacts were detected by
a z-score-based method implemented in FieldTrip and by
visual inspection. To calculate the z-score, each trial was
bandpass-filtered in the range [110 Hz, 140 Hz] that is gen-
erally considered to reflect muscle activities. The filtered
trials were converted to a Hilbert envelope per electrode.
Data at each time point were z-normalized, and z-values
were then averaged across electrodes. If any z-value in the
time points in a trial exceeded a predefined threshold value,
the trial was judged as having an artifact. The predefined
threshold was set to 15. After this automatic procedure, we
judged whether a trial that was automatically judged as hav-
ing an artifact included muscle artifacts visually. In total,
4.8% of trials across all participants were removed. One-
way factorial analysis of variance revealed no significant
differences in the number of rejected trials among sentence
types (average number of rejected trials across participants,
sentence 1 = 1.00, sentence 2 = 1.25, sentence 3 = 1.19,
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F(2, 45) = 0.116, p = 0.89).
EEG data were decomposed of independent compo-

nents (ICs) by independent components analysis. The ICs
reflecting blinks, eye movements, electrocardiograms, elec-
tromyograms, and noise derived from electrodes were se-
lected by inspecting the waveforms and topographies of the
ICs visually. The selected ICs were removed from the EEG
data. Finally, EEG data were re-referenced by using a com-
mon average reference. Rejected electrodes were interpo-
lated by using neighboring electrodes. EEG data were low-
pass filtered by a sixth-order two-pass IIR Butterworth filter
(50 Hz) to improve the signal-to-noise ratio.

3.2 Cross-Trial Phase Coherence (Cphase)

For the purpose of determining whether phase-locked re-
sponses occurred, we quantified the degree of the response
in each frequency band (theta: 4–8 Hz, alpha: 10–14 Hz,
beta: 16–20 Hz, low-gamma: 38–42 Hz) by using cross-trial
phase coherence (Cphase) [7], [8], [19]. This is an index of
the phase coherence among EEG responses to a spoken sen-
tence (range = [0, 1], 0: no phase coherence, 1: perfect
coherence). Cphase was calculated per electrode and fre-
quency band.

First, we extracted phase information from EEG trials
by using short-time Fourier transform (STFT; FFT points:
500, shift points: 100, Hanning window tapering, 29 win-
dows in total; duration of EEG trials: 2,900 ms). Cphase
was calculated with concatenated data across all participants
by using Eq. (1) [7], [8], [19]:

Cphasei, j

=
1
K

K∑
k=1

[[∑N
n=1 cos(θkni j)

N

]2
+

[∑N
n=1 sin(θkni j)

N

]2]
. (1)

Here, i, j, k, and n represent a frequency bin (2–50 Hz; 2-
Hz interval), a shifting window in STFT, a sentence type,
and a trial. To calculate Cphase for each frequency band,
Cphasei, j was averaged across shifting windows, followed
by averaging the mean Cphase among frequency bins be-
longing to the frequency band, e.g., Cphasetheta was aver-
aged values among Cphase4Hz, Cphase6Hz, and Cphase8Hz.
Because a speech onset produces an ERP, which induces
strong coherence across trials, we used a time range after
500 ms from the onset of speech in order to average the
Cphase values in the time domain.

4. Spoken Sentence Classification

4.1 Feature Extraction

We created a vector (hereafter, a phase pattern); each ele-
ment of the vector is a phase value calculated in each shift-
ing window (total of 29 windows) in STFT (see Sect. 3.2). A
phase pattern was prepared per frequency bin (2–50 Hz; 2-
Hz interval). We created the following three types of feature
vectors from the phase patterns.

(1) Theta-RH
This feature was a concatenated vector of phase pat-
terns at 4, 6, and 8 Hz from the right hemisphere elec-
trodes (C4, CP2, CP6, F4, F8, FC2, FC6, FT10, Fp2,
O2, P4, P8, T8, and TP10). The theta-RH features
had 1,218 dimensions (14 electrodes × 29 shifting win-
dows × 3 frequency bins: 4, 6, and 8 Hz). In previous
research, theta phase patterns were extracted from elec-
trodes selected by using Cphase values [7], [8], while
we did not use Cphase values themselves to select elec-
trodes. Thus, this feature was not exactly the same as
that in previous research. However, considering that
phase-locking in theta oscillations was observed domi-
nantly in the right hemisphere [18], we treated this fea-
ture as a baseline.

(2) All
All features were a concatenated vector of phase pat-
terns in the range of 2–50 Hz from all 32 electrodes.
All features had 23,200 dimensions (32 electrodes ×
29 shifting windows × 25 frequency bins: 2–50 Hz, 2-
Hz interval). This feature was constructed in order to
utilize the synchronization between speech and neural
oscillations at a phonemic level.

(3) Selected
To avoid overfitting due to the high dimensionality
of all features, features were selected by using fea-
ture importance calculated by each trained classifier.
We identified the best 20 important combinations of
a frequency bin × an electrode. The importance of
the combination was calculated as follows. (a) Clas-
sifiers were trained by using all features at each cross-
validation step (see Sect. 4.2). (b) Feature importances
were averaged among each training dataset. (c) The av-
eraged feature importances were z-normalized and av-
eraged across the shifting windows per combination of
an electrode and a frequency bin. The selected features
were a concatenated vector of phase patterns from the
highest 20 electrode × frequency combinations. The
number of dimensions was 580 (20 combinations × 29
shifting windows).

4.2 Classifiers and Evaluation Method

We trained template matching, logistic regression, SVM,
and random forest. The classification task was to predict
a sentence by using phase patterns in a single-trial EEG. We
used a Python library, Scikit-learn [22], and custom Python
scripts for training and evaluating classifiers. We evaluated
the classification performance by using LOSO with the aim
of confirming the generalizability of our models to other
users. At each validation step, the feature importance was
calculated per classifier in order to use it for feature selec-
tion (Sect. 4.1).

Except for template matching, the best parameters of
each classifier were estimated by using a grid search. We
used the data of one subject as a test set and the data of the



WATANABE et al.: NEURAL OSCILLATION-BASED CLASSIFICATION OF JAPANESE SPOKEN SENTENCES DURING SPEECH PERCEPTION
387

next subject as a development set for parameter tuning. The
remaining data were used for training. In template match-
ing, we used the data of one subject as a test set and the
remaining data as a training set. The descriptions of classi-
fiers are as follows.

(1) Template matching
We created a vector of the averaged features per class;
each element of feature vectors was averaged across tri-
als in a training dataset. The vector of the averaged fea-
tures was considered as a template of each class. The
Euclidean distance between the test data and each tem-
plate was calculated. The class with the minimum dis-
tance was considered as a prediction result. The vari-
ance of each feature among templates was utilized as
the feature importance because a larger variance indi-
cates that the distances among the templates in the fea-
ture are far apart from each other.

(2) Logistic regression
Classifiers were trained by using L2 regularization. We
used a one-vs-the-rest multiclass strategy. The best
cost parameter was searched for in the range [−4, 4]
in log space. We used the variance of coefficients as-
signed to each feature among one-vs-the-rest classifiers
as feature importance.

(3) SVM
A linear kernel was used, and the one-vs-the-rest mul-
ticlass strategy was adopted. The tuning of a cost pa-
rameter, type of regularization, and procedure for cal-
culating feature importance were the same as logistic
regression.

(4) Random forest
The best number of trees and maximum tree depth were
searched for in the ranges [10, 50, 100, 150] and [5, 10,
15], respectively.

5. Results

5.1 Phase-Locking to Speech Rhythms

To determine whether phase-locked responses to speech
stimuli occurred, we plotted Cphase topographies per fre-
quency band (Fig. 2). A visual inspection suggested a rela-
tively strong Cphase on the fronto-central region for theta.
Whereas similar distributional patterns to theta were ob-
served for alpha and low-gamma, Cphase for beta was lower
than the other frequency bands.

To determine whether the Cphase at each electrode in
each frequency band was statistically significantly different
from a null-hypothesis, i.e., the Cphase at an electrode in
a frequency band is located at the chance level, we cre-
ated a permutation distribution of null-hypotheses from ob-
served data by shuffling the sentence labels [23]. For the
sake of controlling multiple comparisons, we took the max-
imum and minimum Cphase from randomly shuffled data
among all electrodes in all frequency bands to distribute the
null-hypotheses [23]. The alpha level was set to 0.05. The

Fig. 2 Topographies of Cphase for each frequency band. Red star
represents electrode with statistically significant difference from null-
distribution.

Fig. 3 Topographies of feature importance for each frequency band and
each classifier. Feature importance was z-normalized.

number of iterations was 2,000. We counted the number of
values of the null-hypothesis distribution exceeding the ob-
served Cphase for each electrode and each frequency band.
The number was divided by the number of iterations for cal-
culating p values.

A two-tailed test revealed that the Cphase values in the
fronto-central region for theta were statistically significantly
larger that the null-hypothesis (electrodes represented by red
stars in Fig. 2). The other Cphase values were not statisti-
cally significant.

5.2 Topographies of Feature Importance

We determined the feature importance topographies per fre-
quency band and classifier (Fig. 3) because an obvious mis-
match between the topographies of feature importance and
phase-locked responses suggested that the classifiers failed
to utilize phase-locked responses for classification. An over-
all visual inspection suggested that the feature importance
topographies of all classifiers had similar distributional pat-
terns to Cphase topographies: the fronto-central region for
theta and low-gamma. In addition, in the fronto-central re-
gion for alpha, random forest and template matching were
relatively high, but they had weaker feature importance than
theta.
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Fig. 4 Classification accuracies for each classifier and feature. Each box
represents accuracies from all folds. Horizontal line is 33.3% chance level.

Table 2 Mean accuracies across folds per classifier and feature type.
Sample standard deviations are given in parentheses. Best accuracy is
shown in bold.

Theta-RH All Selected
Template matching 46.9 (7.1) 55.9 (7.9) 50.3 (6.2)
Logistic regression 46.5 (7.5) 54.3 (6.6) 54.6 (7.0)
SVM 44.2 (6.6) 52.3 (7.6) 53.9 (8.7)
Random forest 46.4 (6.1) 42.7 (6.5) 47.7 (6.6)

5.3 Classification Performances

Figure 4 summarizes the classification accuracies from folds
per combination of classifiers and features. The best mean
accuracy across folds was 55.9% for template matching
based on all features (Table 2).

To evaluate the effect of classifiers and features on ac-
curacy, we constructed a generalized linear mixed model
(GLMM) by using the number of correct classifications as
response variables. We used R [24] and an lme4 pack-
age [25] for model construction. The response variables
were postulated to follow a binomial distribution because
the variables can take only two values for each piece of test
data: correct or not in N trials (N depends on each fold). A
logit link function was used for the model. Types of classi-
fiers and features were incorporated into a GLMM as fixed
effects. Our model had intercepts for each fold as random
effects. The statistical significances of fixed effects were
tested by using Type II Wald chi-square tests with a car R
package [26]. As a result, we found a statistically significant
effect of classifiers [χ2(3) = 31.33, p < 0.01] and features
[χ2(2) = 36.19, p < 0.01].

For the purpose of determining what classifiers and
features affected accuracies, we performed multiple com-
parisons for each fixed effect by using a multcomp pack-
age [27]. P-values were adjusted for multiple comparisons

Table 3 Multiple comparisons for classifier types.

Estimate (S.E)
Logistic regression -vs- Template matching 0.032 (4.955e-2)
SVM -vs- Template matching −0.034 (4.954e-2)
Random forest -vs- Template matching −0.221 (4.964e-2)**
SVM -vs- Logistic regression −0.066 (4.955e-2)
Random forest -vs- Logistic regression −0.253 (4.965e-2)**
Random forest -vs- SVM −0.187 (4.963e-2)**

** p < 0.01. S.E denotes standard error.

Table 4 Multiple comparisons for feature types.

Estimate (S.E)
All -vs- Theta-RH 0.220 (4.297e-2)**
Selected -vs- Theta-RH 0.228 (4.297e-2)**
Selected -vs- All 0.007 (4.291e-2)

** p < 0.01. S.E denotes standard error.

Table 5 Multiple comparisons between baseline model and all classifiers
trained by each feature using Dunnett method for p-value adjustment.

Estimate (S.E)
Template matching

All -vs- baseline 0.376 (8.609e-2)**
Selected -vs- baseline 0.140 (8.577e-2)

Logistic regression
Theta-RH -vs- baseline −0.011 (8.587e-2)
All -vs- baseline 0.309 (8.594e-2)**
Selected -vs- baseline 0.313 (8.594e-2)**

SVM
Theta-RH -vs- baseline −0.104 (8.606e-2)
All -vs- baseline 0.228 (8.582e-2)*
Selected -vs- baseline 0.287 (8.590e-2)**

Random forest
Theta-RH -vs- baseline −0.018 (8.589e-2)
All -vs- baseline −0.167 (8.624e-2)
Selected -vs- baseline 0.037 (8.582e-2)

** p < 0.01, * p < 0.1.
S.E denotes standard error.

by using the Tukey-Kramer method. Multiple comparisons
among classifier types revealed that random forest lowered
accuracy compared with the other classifiers significantly
(Table 3). The other classifiers did not differ from each
other. Multiple comparisons among feature types revealed
that both all and selected features improved accuracy com-
pared with the baseline feature (Table 4).

Finally, we determined whether a combination of each
classifier and feature improved accuracy compared with a
baseline method (template matching based on theta-RH).
To that end, classification accuracies from all models were
compared to that from the baseline by using the Dunnett
method for p-value adjustment. The results of the compar-
isons are summarized in Table 5. The best performances,
from template matching (all features), showed a statisti-
cally significant improvement from the baseline. In addi-
tion, logistic regression (all features and selected features)
and SVM (selected features) also showed a statistically sig-
nificant improvement.
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6. Discussion

In the current research, we investigated the performance of
sentence classification based on single-trial EEG phase pat-
terns during speech processing. Our research aimed to an-
swer three research questions: (1) How accurately do our
subject-independent EEG-based models classify the three
Japanese spoken sentences?, (2) Which of the three classi-
fiers improved classification accuracy over template match-
ing (the baseline classifier)?, and (3) Do our proposed fea-
tures including phase patterns in a higher frequency band
improve classification accuracy?

As for research question (1), our classification accu-
racy was 55.9% over template matching trained with all fea-
tures. Considering that the spatial resolution of an EEG is
worse than that of an MEG, this accuracy might be promis-
ing. Model evaluation by LOSO indicates that this model
can be applied to other different users. We expected that
such subject-independent classification was possible [15]
because phase-locked responses to speech rhythms are con-
sistent across listeners [16]. The second research question
focused on the effect of classifier types on classification
performances. Whereas the best accuracy was obtained
from template matching [7], [8], in our GLMM analysis, the
classifiers used in the current research showed similar per-
formances to template matching except for random forest,
which showed a statistically worse accuracy. The current
spoken sentence classification is based on a phase synchro-
nization mechanism between neural oscillations and speech
rhythms. This means that an EEG phase value at each time
point takes a value close to a phase value in speech en-
velopes. Thus, it is thought that all linear classifiers used
in the current experiment captured such a linear relationship
between EEGs and speech successfully.

Finally, as for the third research question, our two pro-
posed features (all and selected) contributed to improving
the classification accuracy over the baseline feature. As dis-
cussed in the introduction, this performance improvement
is thought to be obtained from phase-locked responses in a
higher frequency band at a phonemic level.

7. Conclusion and Future Directions

We concluded that the use of phase patterns in a higher
frequency range improved accuracy in EEG-based sen-
tence classification by capturing phase-locked responses at
a phonemic level.

There are some future directions for approximating this
classification method closer to a BCI application. A first di-
rection is related to improving accuracy further. The ac-
curacy in our classification is still not enough for prac-
tical use in BCI applications. Thus, other neural oscil-
lation features related to language processing might have
a role in further improvement. Recent neurophysiolog-
ical research demonstrated a relationship between neural
oscillation phases and the boundaries of syntactic phras-

ing [28], [29], sentences [29], and intonation phrases [30].
Utilizing this information in neural oscillatory dynamics
might improve accuracy. Another direction is to use multi-
ple speech stimuli recorded from various speakers to test ro-
bustness against acoustic variability. In the current research,
each speech stimulus was recorded from one single female
speaker; thus, this robustness needs to be investigated in the
future. In connection with this direction, a final direction is
the use of a larger number of sentences; if the number of
sentences to be classified were increased, this EEG-based
classification would be closer to a BCI application.
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