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PAPER

Speaker-Phonetic I-Vector Modeling for Text-Dependent Speaker
Verification with Random Digit Strings

Shengyu YAO†,††a), Ruohua ZHOU†,††b), Nonmembers, and Pengyuan ZHANG†,††, Member

SUMMARY This paper proposes a speaker-phonetic i-vector modeling
method for text-dependent speaker verification with random digit strings, in
which enrollment and test utterances are not of the same phrase. The core
of the proposed method is making use of digit alignment information in
i-vector framework. By utilizing force alignment information, verification
scores of the testing trials can be computed in the fixed-phrase situation,
in which the compared speech segments between the enrollment and test
utterances are of the same phonetic content. Specifically, utterances are
segmented into digits, then a unique phonetically-constrained i-vector ex-
tractor is applied to obtain speaker and channel variability representation
for every digit segment. Probabilistic linear discriminant analysis (PLDA)
and s-norm are subsequently used for channel compensation and score nor-
malization respectively. The final score is obtained by combing the digit
scores, which are computed by scoring individual digit segments of the test
utterance against the corresponding ones of the enrollment. Experimental
results on the Part 3 of Robust Speaker Recognition (RSR2015) database
demonstrate that the proposed approach significantly outperforms GMM-
UBM by 52.3% and 53.5% relative in equal error rate (EER) for male and
female respectively.
key words: speaker verification, text-dependent, speaker-phonetic, random
digit strings, i-vector, phonetically-constrained

1. Introduction

Speaker verification refers to verifying the claimed individ-
ual based on his/her voice. Rapid development has been ex-
perienced in this field during the last decade. And currently,
the newly introduced channel compensation techniques such
as joint factor analysis (JFA), i-vector [1], [2] and PLDA
have become popular and made a great contribution to large
improvement of the verification performance. Guided by
the NIST speaker recognition evaluations [3], these meth-
ods have been applied successfully to the text-independent
speaker verification task.

In many applications, speaker verification systems are
required to be capable of obtaining satisfactory performance
for short utterances. However, the i-vector based system suf-
fers from severe performance degradation when the enroll-
ment and test utterances are short, even though it propagates
the uncertainty of the i-vector estimation to the PLDA [4]–
[6]. This is mainly because of the mismatch of the phrase
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contents between enrollment and test utterance [7]. Text-
dependent speaker verification methods are thus used to
avoid the mismatch problem and achieve much better per-
formance than text-independent speaker verification.

Reports in [8] have defined four challenges for text-
dependent task. They are the common pass-phrase with
abundant background data, the common pass-phrase with
scarce background data, the randomized pass-phrase with
constrained vocabulary and the unique pass-phrase with un-
constrained vocabulary. Recently, increasing demand for
voice-based access control applications has attracted our at-
tention on the third situation which is so called random digit
strings task. Part 3 of RSR2015 database [9] has been de-
signed for speaker verification with random digit strings,
where the user is prompted by the system to utter random
sequences of digits.

Attempt has been made to adopt the text-independent
techniques for the speaker verification task with random
digit strings. However, unfortunately, the state-of-the-art i-
vector/PLDA method is found ineffective in this situation,
and better performance can be obtained by using simpler
GMM-UBM techniques [9], [10]. This incapacity of the
conventional i-vector method can be explained from three
aspects, the co-articulation effects between digits [8], the
lack of in-domain training data and the inadequacy of out-
of-domain datasets [13]. These three difficulties make it in-
appropriate to directly apply text-independent i-vector ap-
proach to random digit strings task.

Some studies on text-dependent speaker verification
task are deserve to be reported first. In [10], a phrase-
dependent PLDA model is proposed to make use of the
phonetic content. It shows better performance by training
i-vector extractor with text-dependent database. In [11],
phone-centric local variability vector is proposed, each load-
ing matrix is corresponding to a monophone, and the i-
vector is the concatenation of monophone local vectors.
The work in [12] uses a phrase-specific HMM for every ut-
terance and extracts Baum-Welch statistics in a phonetic-
dependent way. Frames aligned to the same monophone
are used to collect sufficient statistics with the correspond-
ing state. For i-vector estimating, it concatenates suffi-
cient statistics of all monophones, then the i-vector extrac-
tor is trained and used in the usual way. These works show
that phonetic content plays a major role in text-dependent
speaker verification performance.

To utilize the phonetic content, many subsystem based
methods are widely used in recent years. The authors in
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[9] propose HiLAM approach, which makes each state of a
HMM to be a GMM that models a speaker’s one of the 10
digits and deploys the standard Viterbi algorithm for eval-
uating. In [15], a state-based JFA approach is proposed
where one UBM and one corresponding JFA are trained for
each digit. The work in [16] builds a DNN/i-vector based
subsystem for each single digit individually, and LDA is
used to reduce i-vector dimension. In [17], the authors re-
port similar approach, the difference is that they use 10 sim-
ple GMM/i-vector subsystems with digit-dependent PLDA
modeling. Earlier studies [18], [19] also have tried the same
idea and train a i-vector based subsystem for each word or
state. The commonality of the above approaches is that they
segment the utterances into phonetic units (digits, words or
states) and makes each pair of enrollment and test segments
to be of the same phonetic content, moreover they utilize
the alignment information of a utterance by building mul-
tiple subsystems, each subsystem is only used for a corre-
sponding unit and mutually independent with others. How-
ever, application of these subsystem based methods to ran-
dom digit strings task will suffers from two great difficulties.
One is related to the sparsity of training data, since training
data has to be divided into different digit segments, only the
segments with same digit will be used to build an individ-
ual system and the subsystem seems to be unreliable trained
with limited data. Another is the variability of individual
subsystems, as it would challenge the score fusion.

An alternative approach is reported in [13], it has sim-
ilarity with the subsystem based methods, but uses a sin-
gle JFA-JDB system for modeling segments corresponding
to all 10 digits. This work explores three different ways to
collect Baum-Welch statistics for obtaining local and global
vectors. The authors investigate different concatenations of
using local and global vectors, then attain encouraging per-
formance by fusing their scores. Despite its good results, us-
ing the “multi-tier” JFA and the fusion of multiple systems
is complex. We learn from this work and think that using a
common system instead of multiple subsystems might be a
good choice in practical applications.

In this paper, we propose a scheme of using speaker-
phonetic i-vector modeling and show great promotion
for text-dependent speaker verification with random digit
strings. We firstly segment utterances into individual dig-
its by using HMM based speech recognizer and make each
pair of enrollment and test segments to be of the same
digit. Then, we proposed the speaker-phonetic modeling
scheme that uses a common i-vector based system for low-
dimensional representation of segments belonging to all 10
digits. Which differs in using one common system, ver-
sus 10 individual systems of the subsystem based meth-
ods. For the purpose of utilizing phonetic content to bet-
ter modeling each digit segment, we change the hypothesis
of conventional i-vector method and train a phonetically-
constrained i-vector extractor for all digits. And a text-
dependent backend is used to compensate for the channel
variability. We finally make decision by combining the digit
scores. When compared with previous works, the proposed

method is more reliable and convenient in practical appli-
cations. Since that we only need to optimize one system in-
stead of ten as subsystem based method with limited training
data, and spend low computational complexity without fus-
ing multiple systems as [13]. Moreover, experiments show
that our proposed approach performs the best.

The remainder of this paper is organized as follows:
Sect. 2 briefly introduces conventional i-vector based tech-
niques. In Sect. 3, the proposed methods are explained in
detail. Experiments are presented in Sect. 4 and we finally
conclude in Sect. 5.

2. I-Vector Based System

In this section, we review the basics of i-vector system in or-
der to facilitate the description with the proposed techniques
in the following section.

2.1 I-Vector Extraction

An i-vector extractor projects the sequence of feature vec-
tors onto a lower dimensional total variability space. For the
purpose of performing the projection, Baum-Welch statis-
tics are collected for each mixture component of UBM.
Given a speech segment, the speaker and channel dependent
super-vector M of concatenated GMM means is modeled as

M = m + Tw (1)

where m is the UBM mean super-vector, T refers to total
variability matrix of low-rank and w is a latent variable with
standard normal distribution. For each speech segment, its
i-vector is the maximum-a-posterior point estimate of latent
variable w.

2.2 Scoring and Channel Compensation

Channel compensation is crucial for the good performance
of i-vector speaker verification system. The speaker verifi-
cation score can be obtained by directly computing the co-
sine distance between the enrollment i-vector ωe and the test
i-vector ωt

CDe,t =
ωT

e ωt

∥ωe∥ ∥ωt∥
(2)

In this modeling however, the system is unable to
model and reduce channel effects, consequently makes that
the i-vector extraction simply plays the role of feature ex-
tractor rather than modeling speaker and channel effects.
In order to compensate for the channel variability, linear
discriminant analysis (LDA) is applied to precondition i-
vectors. LDA transformation attempts to minimize the intra-
class variance caused by channel effects while maximizing
the variance between speakers. This is achieved by optimiz-
ing the following ratio
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J(v) =
vT S bv

vT S wv
(3)

In Eq. (3), S b is the between-class variance, S w is the
within-class variance and v is the space direction. The opti-
mization of this ratio is used to define a transformation ma-
trix A, which is the generalised eigenvectors with highest
eigenvalues of the equation

S bv = λS wv (4)

The i-vectors are then multiplied by using transformation
matrix AT .

In addition to the cosine similarity scoring, PLDA is
more often used to compute the log-likelihood ratio (LLR)
of the given pair of i-vectors

LLRe,t = log
p(ωe, ωt |Hs)
p(ωe, ωt |Hd)

(5)

where Hs is the hypothesis that the two i-vectors belong to
the same speaker and Hd is the contrary. In PLDA modeling,
it assumes that i-vector ω can be the combination of three
term

ω = µ + Uy + ε (6)

where µ is the i-vector mean, y is a speaker factor having a
normal prior distribution, U is the speaker subspace matrix,
and ε is the residual term with a zero mean and full covari-
ance matrix Gaussian distribution. Before PLDA scoring,
the i-vectors are length normalised [14] to make the distri-
bution of the i-vectors more Gaussian-like.

In the case of multiple segments for each speaker
enrollment, we simply average i-vectors from the given
speaker.

2.3 Score Normalization

Score normalization is widely used in speaker verification.
In our work, symmetric normalization (s-norm) is applied
since it has been found to perform the best in text-dependent
speaker verification task [20]. For the obtained evaluation
score se,t of a pair of enrollment and test utterances, its nor-
malized score se,t

′ is computed as

se,t
′ =

se,t − µ1

σ1
+

se,t − µ2

σ2
(7)

where µ1 and σ1 are the mean and standard deviation of
scores between enrollment target in evaluation data and test
segment of imposter cohort in training data, while µ2 and σ2

are obtained by scoring the trial of test segment and the im-
poster target, from evaluation and training set respectively.

3. Proposed Speaker-Phonetic I-Vector Modeling

In this section, we give a detailed description of the pro-
posed speaker-phonetic i-vector modeling method. The pro-
posed method starts with obtaining digit segments from the

database, and then applies i-vector based system to model
speaker and phonetic information over specific digit seg-
ments. The training methods for phonetically-constrained
i-vector extractor and channel compensation used in the ran-
dom digit string task are presented. In addition, we describe
a score compensation method in order to compensate for the
unreliability of segmentation.

3.1 Segmentation

To segment the utterance into digits, previous methods such
as DTW and semi-continuous HMM with states correspond-
ing to digits seem to be suitable. However, the main diffi-
culty here is the co-articulation effects caused by the ran-
domness of digit strings, which remains a problem for these
alignment methods. In order to obtain accurate digit seg-
ments, we use the traditional continuous density HMMs
method since it better models the context of speech to ob-
tain more reliable alignment information.

After HMMs decoding, we then get alignment labels
of the dataset and segment utterances into digits. Consid-
ering the prerequisite for doing cepstral mean subtraction is
phonetically balanced in the segment [21], situation of one
digit per segment in the proposed approach is unsuitable to
apply mean normalization. So, our works do not directly
segment the waveform of a given utterance into pieces in
the first place. Actually, we do mean normalization on the
whole utterance and finally use its forced alignment labels
to select feature frames of the corresponding digit group to
complete the segmentation process.

3.2 Speaker-Phonetic I-Vector Modeling

The basic idea of the approach is to turn the randomized
pass-phrase task into a fixed pass-phrase one. Noting that
digit is constrained here, it is appropriate to make each pair
of enrollment and test segments to be of the same digit. In
this term, the modeling phonetic content is constrained to a
specific digit.

To be specific, the proposed scheme first estimates
a UBM by using the concatenate features of valid voice
pieces. Then a single i-vector extractor is obtained by ap-
plying our phonetically-constrained training way. After that,
given a target speaker’s enrollment utterances that each con-
sists a sequence of random number covering all 10 dig-
its from 0 to 9, we can easily get 10 groups of digit seg-
ments according to the forced alignment label. Using the
i-vector extractor, an i-vector is extracted for each digit of
the speaker. During evaluation, after segmenting the test ut-
terance, the i-vector for each test digit is extracted and fol-
lowed by cosine similarity scoring (directly or transformed
by LDA) or PLDA evaluating with the corresponding enroll-
ment digit i-vector. The score of the test utterance is finally
computed by averaging all digit scores.

se,t =
1
N

M∑
n=0

δt,nscore(ωe,n, ωt,n) (8)
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Fig. 1 Block diagram of speaker-phonetic i-vector modeling framework.

Fig. 2 Block diagram of i-vector based subsystems modeling framework. In the framework, the Ex-
tractor n and Compen. n are the i-vector extractor and the channel compensation (including the LDA or
PLDA) built specifically for digit n.

where, ωe,n and ωt,n are the i-vectors for digit n of the en-
rollment and test utterance, respectively. And M = 9,
N =

∑
δt,n, δt,n = 1 when digit n is in the test utter-

ance, δt,n = 0 otherwise. Figure 1 shows the block di-
agram of the proposed verification framework. Instead of
building subsystem for every digit as [16], [17], the speaker-
phonetic i-vector modeling method uses a single system
with a common i-vector extractor and channel compensa-
tion model for all digits. Figure 2 gives the block diagram of
i-vector based subsystem modeling framework as described
in [16], [17], each dotted box is a subsystem trained specif-
ically for digit n, n=0,. . . ,9. By comparing between Fig. 1
and Fig. 2, the proposed speaker-phonetic i-vector modeling
framework can show its specific characteristics, that is, the
same i-vector extractor and the same channel compensation
model are used for processing of all ten digits. The inten-
tions of the speaker-phonetic i-vector modeling method are
to avoid sparsity of training data and variability of subsys-
tems (97 speakers of each digit are unreliable for training
a subsystem). From this perspective, the proposed speaker-
phonetic i-vector modeling method is more suitable to use in
practical applications. Next section will present the training
methods for i-vector, LDA and PLDA in detail.

3.3 Phonetically-Constrained I-Vector Extractor and Chan-
nel Compensation

The i-vector extraction here differs from the conventional
one on the hypothesis of Eq. (1). In normal, the total vari-
ability space T estimation treats entire set of utterances as
having been produced by different speakers. In other words,

it models both speaker and channel factors, supposing that
words in an utterance share a common latent variable. The
T space mixes up content information by collecting Baum-
Welch statistics and is effective in the phrase level of gran-
ularity. However, it is incompetent to our task. As the
speaker-phonetic i-vector framework enables us to evaluate
segments corresponding to the same digit from the enroll-
ment and test utterances, it demands that the i-vector ap-
proach can well model both speaker and phonetic variabili-
ties in term of one digit per segment. So, we make a change
to the hypothesis of Eq. (1) and model the speaker and chan-
nel super-vector M j of the j’th digit segment in a given ut-
terance as

M j = m + Tω j (9)

where ω j is a latent variable for the j’th digit segment. In
Eq. (9), we assume that different digits have different latent
variables. The new hypothesis changes the modeling level
of granularity from the phrase to the digit. The other words,
it constrains the phonetic content to be a specific digit num-
ber instead of a phase of mixing content, and is supposed
to be more targeted for prominently modeling the speaker
variability with the phonetic information of one digit per
segment. In this work, we segment the utterance into dig-
its, and the training data with one digit per segment is used
to estimate a common phonetically-constrained T space for
i-vector extraction.

With the phonetic content modeling in term of separate
digits for an utterance, text-dependent training setting is ap-
propriate for LDA and PLDA. We also use the phonetically-
constrained modeling method proposed in [22] in our exper-
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iments, and define each class for estimation as the combina-
tion of both speaker and phonetic content of digit. By this
setting, the true number of classes is 970 (97 speakers and
10 digits), which therefore is sufficient for well training the
LDA and PLDA.

3.4 Compensation for Scores

It is worth mentioning that the force alignment label from
continuous density HMMs cannot be completely correct.
The wrong identification result and the unperfect frame
boundary for digit can bring unreliability to the evaluation
of our system. To take into account the uncertainties in seg-
mentation with the force alignment label, confidence mea-
sure (CM) [23] is used to weight the digit scores before com-
bination. The decision score is computed as

s̃e,t =
1

Ñ

M∑
n=0

αt,nscore(ωe,n, ωt,n) (10)

where confidence for digit n of the test utterance is repre-
sented as αt,n, and Ñ =

∑
αt,n, αt,n = 0 if digit n is not

appear in the test utterance.

4. Experiments and Results

This section describes the database used for evaluation,
the building-up of our experiments and the comparison re-
sults. In all experiments, we report results in terms of
EER and minimum Normalized Detection Cost Function
as defined for NIST SRE08 (minDCF08) and NIST SRE10
(minDCF10). In detection error tradeoff (DET) curves,
the square and star markers correspond to minDCF08 and
minDCF10 points, respectively. Results statistic and DET
curves are obtained by using the BOSARIS toolkit [25].

4.1 Database

Experiments are conducted on the RSR2015 (Part 3)
database, a publicly available speech corpus recorded by
Institute for Infocomm Research in Singapore [9]. Part 3
of RSR2015 database is devoted to speaker verification us-
ing randomly prompted English digit strings, and is divided
into background (bkg), development (dev) and evaluation
(eval) subsets. Table 1 shows the number of speakers for
each subset. Six mobile devices were used for recording
the database. Three of them were assigned to each speaker,
then the speaker used each device to record three sessions
of the prompted sequences. Thus, we have nine sessions in
total, they each contains 3 10-digit and 10 5-digit utterances.
Each speaker model is enrolled with 3 10-digit utterances in
the same session, and three sessions (session 1,4,7 accord-
ing to the protocol in [9]) recorded with the same handset
are chose for enrollment, while 5-digit utterances from the
remaining six sessions are used to build the test set.

Table 1 Number of speakers in RSR2015.

Subset Male Female

bkg 50 47
dev 50 47
eval 57 49

Table 2 Number of trials in RSR2015 Digits.

Subset Gender Target Nontarget

dev Male 5154 251310
dev Female 5061 232806
eval Male 6120 342720
eval Female 5283 253584

4.2 Experimental Setups

We use standard 20-dimensional PLPs with its first and sec-
ond derivatives to form the feature of 60-dimension fol-
lowed by mean and variance normalization. Features in our
experiments are extracted from 25 ms Hamming windowed
signals with 15 ms overlaps by using Kaldi [24].

We also adopt Kaldi toolkit to train the continue
HMMs. Contrary to text-independent tasks, we do not apply
voice activity detection (VAD) directly to the utterances, as
VAD errors would do harm to the Viterbi alignment. There-
fore, we add silence labels to the beginning and the end of
each utterance and use a silence HMM model for silences.
Then, the process of VAD is done by dropping the frames
aligned to silence model. Continuous HMMs with feature
vector doing maximum likelihood linear transformation af-
ter applying LDA are trained to classify 1164 triphone tied
states (senones). We use the bkg subset and digit context of
each utterance to train the continuous HMMs. The decoder
of HMMs gives the alignment results in the way of labeling
the beginning and the end times for each digit.

We take GMM-UBM approaches as our benchmark
since it performs well due to the exceptionally low channel
effect in the RSR2015. It needs to be emphasized that all the
processes are on gender-independent setting unless stated
otherwise. The UBM, i-vector extractor, LDA and PLDA
training are performed by using the bkg subset. The number
of mixture components for UBM is 256. We use a total vari-
ability space of 400 factors, LDA transformation projecting
the i-vectors to 200-dimension and 400-dimension PLDA.

The dev and eval subset are used for verification, the
target-correct (target speaker with correct pass-phrase) and
the imposter-correct (imposter with correct pass-phrase) tri-
als are used as target and nontarget since our concerns with
verifying speaker’s identities instead of the lexical context.
The total number of trials is given for each gender in Table
2. Compared with the trials in [13], we evaluate without any
wave file selection, which is more challenge for achieving
better performance. However, there is still a little difference
in the male trial for eval compared with [9], as we experi-
mentally find that one utterance has been recorded with all
silence and thus is automatically deleted. The set of enroll-
ment and test utterances on bkg is used for s-norm.
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4.3 Results

4.3.1 Comparison with the Benchmark

In this section, we compare the speaker-phonetic i-vector
modeling method with the benchmark. In order to highlight
the effectiveness of applying the speaker-phonetic modeling
scheme, we also include text-independent i-vector system
for comparison. Experiments in this section use an i-vector
extractor trained in the conventional way and only the cosine
similarity scoring for the i-vector based systems. Table 3
and Table 4 present the results on dev and eval sets. The
notation within matrix entries means male/female.

From these result tables, it is clear that GMM-UBM
outperforms the text-independent i-vector system (Text-
in./con., the notation /con. means the use of conventional i-
vector extractor) and thus confirms the discussion in Sect. 1.
However, better performance can be achieved by combining
the speaker-phonetic scheme with i-vector extraction (Spk-
phon./con.). To make it obvious, we see that when compared
to GMM-UBM, the Spk-phon./con. system can get signifi-
cant reduction in EER, minDCF08 and minDCF10 by a fac-
tor of 24.03%, 35.92% and 33.10% on male trial of eval set,
respectively. This result can be attributed to evaluating in
a text-dependent situation as designed by speaker-phonetic
framework.

4.3.2 Phonetically-Constrained I-Vector Extractor vs.
Conventional I-Vector Extractor

In Sect. 3.3, we presented that the proposed phonetically-
constrained i-vector extractor which takes the phonetic con-
tent into consideration is more suitable for speaker-phonetic
i-vector modeling. In order to prove it experimentally,
we compare the performances of speaker-phonetic i-vector
system with i-vector extractors in the conventional and
the phonetically-constrained (Spk-phon./phon., the notation
/phon. means the use of phonetically-constrained i-vector
extractor) training ways in Table 5. The results indicate
that using the phonetically-constrained training way leads
to a big improvement in performance in all criteria (EER,
minDCF08 and minDCF10).

Table 3 Results on RSR2015 Digits, dev trials

System EER(%) minDCF08 minDCF10

Text-in./con. 6.02/10.45 0.274/0.459 0.668/0.867
GMM-UBM 5.07/8.77 0.214/0.366 0.534/0.792
Spk-phon./con. 4.63/7.84 0.196/0.376 0.510/0.780

Table 4 Results on RSR2015 Digits, eval trials

System EER(%) minDCF08 minDCF10

Text-in./con. 5.96/10.36 0.307/0.476 0.854/0.901
GMM-UBM 5.20/7.97 0.284/0.380 0.855/0.788
Spk-phon./con. 3.95/7.48 0.182/0.375 0.572/0.810

4.3.3 The Effects of Compensations for Channel and
Score

Table 6 shows the results of applying LDA precondition-
ing and PLDA scoring for channel compensation. The great
degradation in all criteria indicates that the speaker-phonetic
i-vector modeling framework can be followed by trainable
backends to gain more promotion in performance. Spk-
phon./phon. with PLDA scoring as the backend performs
the best in most criteria.

To compensate for the uncertainty in segmentation, we
weight the digit scores with CM. Results on eval subset are
shown in Table 7, and the corresponding DET curves are
given in Fig. 3 and Fig. 4. We observe limited performance
improvement after applying CM scores compensation, how-
ever the EER, minDCF08 and minDCF10 of the conventional
i-vector extractor system even get worse. These results are
due to the accurate segmentation with force alignment label
obtained by continuous HMMs, which can achieve 4.12%
and 3.60% in word error rate on male and female, respec-
tively. The deterioration in Spk-phon./con. after compensat-
ing with CM shows the weakness of conventional subspace
in modeling digit segment. The proposed Spk-phon./phon.
system with PLDA and CM scores compensation drops the
EER to 2.48% and 3.71% on the eval set on male and fe-
male, respectively. And when compared with the GMM-
UBM, the relative reductions are 52.3% and 53.5%.

We want to make a comparison with the JFA followed
by JDB in [13], which fuses 6 systems to attain the EER

Table 5 Comparison of results by using different i-vector extractor train-
ing methods.

Subet System EER(%) minDCF08 minDCF10

dev Spk-phon./con. 4.63/7.84 0.196/0.376 0.510/0.780
dev Spk-phon./phon. 4.17/6.56 0.175/0.328 0.476/0.758
eval Spk-phon./con. 3.95/7.48 0.182/0.375 0.572/0.810
eval Spk-phon./phon. 3.36/6.25 0.163/0.320 0.533/0.781

Table 6 Results with channel compensation.

Subset System EER(%) minDCF08 minDCF10

dev Spk-phon./con. 4.63/7.84 0.196/0.376 0.510/0.780
dev + LDA 4.03/4.72 0.174/0.247 0.503/0.672
dev + PLDA 3.71/4.47 0.169/0.243 0.495/0.676
dev Spk-phon./phon. 4.17/6.56 0.175/0.328 0.476/0.758
dev + LDA 3.55/4.24 0.155/0.218 0.483/0.619
dev + PLDA 3.29/3.96 0.148/0.209 0.468/0.599
eval Spk-phon./con. 3.95/7.48 0.182/0.375 0.572/0.810
eval + LDA 3.25/5.09 0.158/0.266 0.523/0.737
eval + PLDA 2.91/4.84 0.153/0.248 0.522/0.710
eval Spk-phon./phon. 3.36/6.25 0.163/0.320 0.533/0.781
eval + LDA 2.84/4.14 0.138/0.223 0.472/0.649
eval + PLDA 2.51/3.88 0.133/0.201 0.476/0.583

Table 7 Results on RSR2015 Digits, eval trials by compensation with
confidence.

System EER(%) minDCF08 minDCF10

Spk-phon./con.+cm 3.97/7.49 0.183/0.376 0.573/0.819
Spk-phon./phon.+cm 3.31/6.18 0.162/0.318 0.532/0.785
+ LDA,cm 2.81/4.06 0.137/0.220 0.469/0.650
+ PLDA,cm 2.48/3.71 0.131/0.198 0.472/0.586
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Fig. 3 Results on RSR2015 Digits, male - eval set.

Fig. 4 Results on RSR2015 Digits, female - eval set.

equal to 2.61% and 3.76% on male and female (we concern
only the random digit situation and thus compare with the
results using regular s-norm), respectively. However, differ-
ence between evaluation trials with and without wave file
selection makes it inappropriate to tell which result is bet-
ter. The work [13] rejects utterances that are too short or too
noisy, and leaves out speaker models with less than 3 en-
rollment utterances. Thus, when compared with [13], our
experiments are carried out in a much worse data condi-
tion, but better results are achieved. So, the proposed Spk-
phon./phon. with PLDA and CM scores compensation is
competitive with the fusing systems in [13].

4.3.4 The Effects of Increasing the Number of Training
Speakers

We also include experiments using both bkg and dev subsets
as training data, intend to show the effects of increasing the
number of training speakers. Gender-dependent setting is
applied to take full use of the increasing amount of training
data, since the gender-dependent systems perform better in
text-dependent task, especially for female [26]. Noting that

Table 8 Results on RSR2015 Digits, eval trials by adding dev subset to
the training data.

System EER(%) minDCF08 minDCF10

GMM-UBM 4.79/7.33 0.261/0.350 0.812/0.811
Spk-phon./con.+cm 3.63/6.30 0.174/0.327 0.572/0.774
+ LDA,cm 2.60/3.93 0.127/0.220 0.431/0.688
+ PLDA,cm 2.43/3.62 0.122/0.208 0.440/0.643
Spk-phon./phon.+cm 3.00/4.71 0.152/0.249 0.505/0.704
+ LDA,cm 2.34/3.14 0.115/0.177 0.416/0.603
+ PLDA,cm 2.17/2.99 0.110/0.161 0.431/0.527

Table 9 Comparison with previous results on RSR2015 digits.

System EER(%) minDCF08 minDCF10

HiLAM [9] 5.32/10.87 0.326/0.469 -/-
JFA-JDB [13] 2.61/3.76 0.139/0.195 0.523/0.623
Seg.DNN [16] 2.47/3.44 0.131/0.164 -/-
Spk-phon./phon.

+ PLDA,cm 2.17/2.99 0.110/0.161 0.431/0.527

we use the gender-independent setting when restricted the
use of bkg data only for training, because it is insufficient
to fine train the gender-dependent models (total variability
space, LDA and PLDA) with an extremely small amount of
speakers (47 females and 50 males) and limited duration of
utterances.

Specifically, the utterances of 100 female and 94 male
speakers are used to train the gender-dependent UBMs,
i-vector extractors, LDAs and PLDAs. The continuous
HMMs system remains gender-independent setting and is
trained with all the training data. Results are shown in Table
8, we can see significant improvements (especially for fe-
males) attained for all the results, as the adding of the train-
ing data and the gender information make the transforma-
tions in systems to be more robustly estimated.

4.3.5 Comparison with Previous Methods

In this section, our best results are compared with previ-
ous stat-of-the-art methods on RSR2015 digits. For JFA-
JDB [13], we compare with its best results using regular s-
norm as we concern only the random digit situation. For
HiLAM [9] and Seg.DNN [16], the minDCF10 results are
not available. However, they can still be evaluated in terms
of EER and minDCF08. The comparison results are in Table
9. Obviously, we achieve the best results and improve re-
sults of HiLAM, JFA-JDB and Seg.DNN with a large mar-
gin.

5. Conclusion and Future Work

In this paper, we proposed a speaker-phonetic framework
with phonetically-constrained i-vector modeling method
for text-dependent speaker verification with random digit
strings, enabling us to use the digit alignment information in
an i-vector framework and get decision scores in the fixed-
phrase situation. We first trained a force alignment system,
and then used its alignment labels for the dataset to segment
utterances into digits. With the digit segments of training
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data, a phonetically-constrained i-vector extractor was built
to better model both speaker variance and phonetic content
for digit segments. Finally, simple channel compensation
methods were applied by using the text-dependent train-
ing setting, and confidence information of force alignment
was used to compensate for the digit scores. Experimen-
tal results showed that the proposed Spk-phon./phon. with
PLDA and CM scores compensation significantly improved
the verification performance over the GMM-UBM approach
and attained EER equal to 2.48% and 3.71%, minDCF08

equal to 0.131 and 0.198 and minDCF10 equal to 0.472
and 0.586 on male and female, respectively. By increasing
the number of training speakers, we achieved an extremely
effective system with EER equal to 2.17% and 2.99% on
RSR2015 digits for male and female respectively.

We also showed that due to the limited number of train-
ing speakers, the gender-independent modeling was less ro-
bustly estimated. In the future, we will use larger databases
to build gender-dependent setting for testing the proposed
method.
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