IEICE TRANS. INFE. & SYST., VOL.E102-D, NO.6 JUNE 2019

1197

[PAPER

Utterance Intent Classification for Spoken Dialogue System with
Data-Driven Untying of Recursive Autoencoders

Tsuneo KATO™®, Member, Atsushi NAGAI', Nonmember, Naoki NODAT, Jianming WU, Members,

SUMMARY  Data-driven untying of a recursive autoencoder (RAE) is
proposed for utterance intent classification for spoken dialogue systems.
Although an RAE expresses a nonlinear operation on two neighboring child
nodes in a parse tree in the application of spoken language understanding
(SLU) of spoken dialogue systems, the nonlinear operation is considered to
be intrinsically different depending on the types of child nodes. To reduce
the gap between the single nonlinear operation of an RAE and intrinsically
different operations depending on the node types, a data-driven untying
of autoencoders using part-of-speech (PoS) tags at leaf nodes is proposed.
When using the proposed method, the experimental results on two corpora:
ATIS English data set and Japanese data set of a smartphone-based spo-
ken dialogue system showed improved accuracies compared to when using
the tied RAE, as well as a reasonable difference in untying between two
languages.

key words: utterance intent classification, spoken dialogue system, recur-
sive autoencoder, data-driven untying

1. Introduction

In accordance with the recent popularity of spoken dialogue
systems such as smart speakers, spoken dialogue technology
is anticipated to become more sophisticated. Spoken dia-
logue systems are expected to correctly recognize the topic
and intention of a user’s utterance, and give an appropriate
response. Spoken language understanding (SLU) is an es-
sential component of a spoken dialogue system. SLU has
to correctly estimate the intent and topic of a user’s utter-
ance despite of the variety of oral expressions used. A basic
approach has been to classify the output text of automatic
speech recognition (ASR) into one of a predefined set of in-
tent classes, followed by slot filling specific to the estimated
intent class.

Traditionally, the classification of the user’s utterance
intent was made based on a bag-of-words representation or
its extension to N-grams of the words. The criterion was
maximizing the cosine distance to the bag-of-words repre-
sentations of the predefined intent classes or with classi-
fiers such as an SVM [1], [2] and maximum-entropy classi-
fier [3]. In such bag-of-words systems, the relations between
words were given by a thesaurus such as WordNet [4]. How-
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ever, thesauri have problems such as expensive in develop-
ment and maintenance, hard to adapt meaning changes over
time and difficult to express difference of nuances.

In contrast, continuous vector models of words such
as Word2Vec [5] and GloVe [6] were successful in captur-
ing meaning of words. These models learn an embedding
of words into a real vector space of a relatively low di-
mension by estimating likely words conditioned with their
contexts using a large text corpus. As it is not straight-
forward to obtain embeddings for longer phrases and sen-
tences, there have been various compositionality technique
proposals that estimate real vectors for phrases and clauses
through arithmetic operations on word embeddings. Neu-
ral network techniques have been applied to the nonlinear
arithmetic operations for the compositionality.

Recurrent neural network (RNN) models with Long
Short-Term Memory (LSTM) and attention mechanism are
actively studied as neural network models capturing seman-
tics from time series data. In SLU tasks, RNN models ac-
cept the sequence of word indices in the order of time and/or
in the reverse order, and the word indices are converted to
embeddings internally. Luan et al.[7] reported that RNN-
based SLU was improved by pre-training with word embed-
dings. Liu and Lane proposed joint SLU techniques that
estimate utterance intention, slot filling and next word pre-
diction [8] and that estimate utterance intent and slot fill-
ing with attention-based RNN [9]. Chen et al. tried to in-
corporate syntactic or semantic structures of sentences as
knowledge-guided structural attention networks into a RNN,
which is structured as a linear chain temporally [10].

In contrast to RNN models, the recursive neural net-
work models accept a word sequence, but have the latitude
of coupling a node with either its preceding or succeed-
ing node. This mechanism allows the neural network based
compositionality technique to incorporate syntactic parsing.
It has a potential to achieve a balance between soft com-
positionality of word embeddings and hard syntactic pars-
ing. Japanese, an agglutinative language, has a relatively
flexible word order though it has an underlying subject-
object-verb order. In colloquial expression, the word or-
der becomes more flexible. We think the recursive neu-
ral network models are suitable for SLU of Japanese col-
loquial expressions. Socher et al. showed promising re-
sults in polarity estimation and sentiment distribution esti-
mation with a recursive autoencoder (RAE) [11]. However,
the recursive neural network models utilized little syntac-
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tic information. As a noticeable example, a single autoen-
coder was applied to all nodes in a tree in the applications
of RAE. However, the arithmetic operation between nodes is
intrinsically different depending on the combination of child
nodes, and it is difficult to represent this operation with only
a single autoencoder. To solve this problem, Socher pro-
posed explicit word-dependent operations in a matrix-vector
model [12]. This model had to estimate a huge number of
parameters. In his next proposal of Compositional Vec-
tor Grammars (CVGs) [13], which combined Probabilistic
Context-Free Grammar (PCFG) with compositional vector
models, recursive neural networks were untied by the types
of child nodes. Hermann and Blunsom incorporated Com-
binatory Categorial Grammar (CCG) [14] into an RAE[15].
Guo et al. proposed joint utterance intent classification and
slot filling with syntactic type dependent recursive neural
networks [16]. However, the number of syntactically untied
neural networks is likely to be excessive and it is difficult
to define appropriate syntactic untying manually in practice.
The estimation of model parameters can readily fall into the
data sparseness problem.

Hence, we propose a data-driven untying of autoen-
coders based on a regression tree with part-of-speech (PoS)
information to obtain an efficient untying of the recursive
autoencoder (RAE). The regression tree is formed with pre-
dictor parameters of PoS tags of the left and right child
nodes to reduce the total of an error function. We eval-
uate the proposed method with English ATIS corpus and
Japanese corpus of a smartphone-based spoken dialogue
system [17] to see generality and difference of the methods
between two languages. We compare the accuracies of ut-
terance intent classification between the RAEs of a single
tied autoencoder, autoencoders untied by a manually defined
rule, and autoencoders untied by the data-driven splitting.

The remainder of the paper is structured as follows.
In Sect. 2, Socher’s RAE as the baseline method and some
previous studies incorporating syntactic information into re-
cursive neural network models are introduced. In Sect. 3,
two types of English and Japanese data used for utterance
intent classification are described. In Sect.4, the basics of
RAE, rule-based syntactic untying and data-driven untying
of RAE are explained. Experiments of utterance intent clas-
sification and the regression tree generated by data-driven
untying are discussed in Sect.5. Finally, the conclusion is
given in Sect. 6.

2. Related Studies

Socher et al. applied an autoencoder repeatedly to a word se-
quence to obtain a sentence-level vector representation and
to estimate distribution of five sentiment labels[11]. The
RAE can reflect a hierarchical structure of a sentence on
compositionality of word vectors. The training of the RAE
and the estimation of an utterance intent class with the RAE
are explained in Sect. 4.1.

The next proposal by Socher et al., Recursive Matrix-
Vector neural network [12], modeled the inherent meaning
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with the vector and how it changes the meaning of neighbor-
ing words or phrases with the matrix explicitly. The model
showed a promising result in classifying semantic relation-
ship such as cause-effect or topic-message between nouns.
However, the model had to estimate a huge number of pa-
rameters.

Compositional Vector Grammar (CVG) proposed by
Socher et al. [13] was a combination of Probabilistic Con-
text Free Grammar (PCFG) with syntactically untied recur-
sive neural networks. Vectors of non-leaf nodes were com-
puted by a recursive neural network which was conditioned
on syntactic categories from a PCFG. The weights of the
neural network were dependent on the categories of the child
nodes. CVG improved its parsing accuracy on WSJ section
23 from 86.6% to 90.4% over the Stanford Parser.

Hermann and Blunsom incorporated syntax into
RAE in combination with Combinatory Categorial Gram-
mar (CCG). Their Combinatory Categorial Autoencoders
(CCAE) [15] switched a set of nonlinear arithmetic opera-
tions for compositionality at any point in a parse tree based
on the CCG formalism. The model was more compact than
the Recursive Matrix-Vector model due to the efficient com-
binators of CCG. They trained several CCAE models mak-
ing increasing use of the CCG formalism and showed their
effects in sentiment analysis.

Guo et al. applied their recursive neural networks to
utterance classification and slot filling for spoken dialogue
systems [16]. The recursive neural network for joint estima-
tion of an utterance class and slot filling adopted two types
of syntactic untying. One was syntactic type dependent ty-
ing and the other was dependent on syntactic types of the
current and child nodes. The proposed model showed com-
petitive performances with ATIS and Cortana data sets.

3. Data for Utterance Intent Classification
3.1 Air Travel Information System (ATIS)

Though the proposed method is targeted to process Japanese
language, the general effectiveness in other languages is
tested with the Air Travel Information System (ATIS) En-
glish data set. The ATIS has been widely used in SLU
studies. ATIS data set has 18 intent classes: flight, airfare,
ground service, airline and so on. The training set has 4,478
utterances from the ATIS-2 and ATIS-3 corpora, and the test
set has 899 utterances from the ATIS-3 Nov93 and Dec04
data sets. Table 1 lists the intent classes with the relative
frequency distribution and sample utterances. The relative
frequency distribution has a greater imbalance than that of
the Japanese data set, where the Flight class of the greatest
frequencies occupies about three quarters of all the utter-
ances. Meanwhile, the number of common words among
different intent classes is greater than that in the Japanese
data set.
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Table 1
set

Utterance intent classes and relative frequencies of ATIS data

Intent class tag ~ Freq.  Sample utterance

Flight 74.3  Flights from Newark to Boston.

Airfare 8.6 Show me the most expensive fare.

GroundService 5.2 List ground transportation in Detroit.

Airline 3.1  Which airlines serve Pittsburgh?

Abbreviation 2.9  Whatis air code H?

Aircraft 1.6 What planes are used by TWA?

FlightTime 1.0 What time does flight AA459 depart?

Quantity 0.9  How many booking classes are there?

City 0.4  What time zone is Denver in?

Distance 0.4  How far is Oakland airport from
downtown?

Airport 0.4  What airport is at Tampa?

GroundFare 0.3 What are the rental car rates in Dallas?

Capacity 0.3  How many seats in a 734?

FlightNo 0.3 Flight numbers from Columbus to
Minneapolis tomorrow.

Meal 0.1  What types of meals are available?

Restriction 0.1  What is restriction AP57?

DayName 0.1  What day of the week do flights from
Nashville to Tacoma fly on?

Cheapest 0.1  Show me the cheapest fare in the

database.
Freq.: relative frequency distribution in percent.

3.2 Smartphone-Based Japanese Spoken Dialogue System

The target system is a smartphone-based Japanese-language
spoken dialogue application that was designed to encourage
users to constantly use its speech interface[17]. The ap-
plication introduced gamification to enhance the users’ mo-
tivation to use the interface. In the beginning, the variety
of responses from an animated character are severely lim-
ited, and the variation of responses and functionalities are
gradually released with the continued use of the application.
Major functionalities include weather forecasting, schedule
managing, alarm setting, web searching, chatting, and so on.

Most of the user utterances are short phrases and words
with a few sentences of complex ideas and nuances. The
authors reviewed ASR log data of about 139,000 utterances,
redefined utterance intent classes, and assigned one of the
class tags to every utterance of part of the data. Specifically,
three of the authors annotated the most frequent 3,000 vari-
ations of the ASR log data, which correspond to 97,000 ut-
terances, i.e. 70.0% of the total. We redefined 169 utterance
intent classes including an others class through discussions,
and assigned a class tag to each of the 3,000 variations of
utterances.

Frequent utterance intent classes out of the total of 169
classes, their relative frequency distribution and their sample
utterances are listed in Table 2. Note that short sentences are
selected as the sample utterances in the table due to space
limitations. A small number of major classes have more
than half of the total number of utterances, while a large
number of minor classes have a small number of utterances.
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Table 2  Utterance intent classes and their relative frequencies of
smartphone-based Japanese spoken dialogue system

Sample utterance (translation)
How’s the weather in Tokyo now?

Intent class tag ~ Freq.
CheckWeather 20.4

Greetings 16.5  Good morning.

AskTime 11.3  What time is it now?
CheckSchedule 7.2 Check today’s schedule.
SetAlarm 5.7  Wake me up at 6am tomorrow.
Thanks 3.6  Thank you.

Yes 3.1  Yes.

Goodbye 24 Good night.

WebSearch 2.2 Search (keyword)

Praise 2.2 You are so cute.

Time 1.9  Tomorrow.

MakeFun 1.6 Stupid.

GoodFeeling 0.9 TI'mfine.

BadFeeling 0.8  Iam tired

CheckTemp 0.8  What is the temperature today?
BackChannel 0.7  Sure.

AddSchedule 0.7  Schedule a party at 7pm on Friday.
FortuneTeller 0.7  Tell my fortune today.

Call 0.6 Ho.

No 0.6  No way.

Freq.: relative frequency distribution in percent.
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Fig.1 Utterance intent classification with RAE. Solid lines represent
RAE estimating continuous vector for non-leaf nodes and dashed-dotted
lines represent softmax layer estimating intent class.

4. Intent Class Estimation Based on Untied RAE
4.1 Training of Basic RAE

Before proposing untying of the RAE, we start this section
with an explanation of the basic RAE. Figure 1 illustrates
the overall picture of RAE-based intent classification.

The classification based on RAE takes word embed-
dings as leaf nodes of a tree and applies an autoencoder to
neighboring node pairs in a bottom-up manner repeatedly
to form a tree. The RAE computes vectors of phrases and
clauses at non-leaf nodes, and that of a whole utterance at
the top node of the tree, The classification is performed by
another softmax layer that takes all the vectors of the words,
phrases, clauses and whole utterance as inputs and outputs
a vector whose dimension is equal to the number of intent
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Table3 Manually designed node type table and autoencoder type table for Japanese.
Node type table Autoencoder type table
Node type index of Node type index of right child node Node type | Autoencoder
left child node 1 2 3 4 5 6 7 8 9 10 11 12 13 index type index
1 11 13 3 4 11 11 13 11 11 11 11 13 13 1 1
2 11 2 3 4 2 2 2 8 2 2 11 12 13 2 1
3 11 2 3 4 3 3 3 8 3 311 12 13 3 1
4 1 2 3 4 4 4 4 8 4 4 11 12 13 4 1
5 1 2 3 4 5 6 7 8 9 10 11 12 13 5 1
6 1 2 3 4 5 6 6 8 6 6 11 12 13 6 1
7 1 2 3 4 5 6 7 8 9 7 11 12 13 7 1
8 11 12 3 4 8 8 8 8 8 8 11 12 13 8 1
9 1 2 3 4 9 9 9 8 9 9 11 12 13 9 1
10 1 2 3 4 5 6 7 8 9 10 11 12 13 10 1
11 1 13 1 1 11 11 1t 1 11 11 11 13 13 11 1
12 1 12 12 12 12 12 12 12 12 12 12 12 13 12 2
13 3 13 13 13 13 13 13 13 13 13 13 13 13 13 2
legend  1: noun, 2: verb, 3: adjective, 4: adverb, 5: particle, 6: conjunction,
7: auxiliary verb, 8: adnominal adjective, 9: interjection, 10: others,
11: noun phrase, 12: predicate phrase, 13: clause
Reconstruction error  Classification error that minimizes the reconstruction error in reality. Among
' ) ' ] d ' all pairs of neighboring nodes at a certain time, a pair with
r___f_i___ \ r____x_j___‘ the minimal reconstruction error E,.. is selected to form a
{cegel fegeat (00000 parent node.
O O S Lt — /I'/V(label) plabel) ' Here, the autoencoder apphed to every pair of nodes
’ g ’ is a single common one; specifically, it is a set of model
0 0 0 O] »ij parameters W, bV, W® and b®. The set of model pa-
. b rameters of the tied RAE is trained to minimize the total of
’ E,.. for all the training data.
[O (o)Xo) O] [O (e)o) O] The softmax layer for intent classification takes all the
X X vectors of nodes as inputs, and outputs posterior probabili-
i . . . . ,
! ties of K units corresponding to the intent classes. The k’th
Fig.2  Model parameters and error functions of RAE. Error functiions component dj of the output vector is expressed in Eq. (4).

of RAE and softmax layer are reconstruction error and classification error,
respectively.

classes.

The autoencoder applies a weighting matrix W) and
bias b with an activation function f to a vector pair of
neighboring child nodes x; and x;, and outputs a composi-
tion vector y; j with the same dimension as the parent node.

yaj = FWPxi; x;] + b)

We use a sigmoid function as the activation function.

The autoencoder applies another neural network for an
inversion which reproduces x; and x; as x; and ', from y; j
as accurately as possible. The inversion is expressed as
Eq. (2).

[x; X1 = FWPyq jy + b))

(D

2)

We use the sigmoid function as the activation function f for

the inversion. The error function is reconstruction error E,.
expressed in Eq. (3).

2

Erec = 5llxi: x5 = Lxi )]l 3)

The tree is conceptually formed in accordance with a

syntactic parse tree, but it is formed by a greedy search

exp( W]Elabel) y+ b[({label))

di = “)
25‘(:1 exp(WEl“bd)y + bﬁlabel))
The correct signal is one hot vector.
t=10,...,0,1,0,...,01" (5)

The error function is the cross-entropy error E., expressed
in Eq. (6).

K
Eeoly,1) = = ) e logdi(y) (©6)
k=1

Figure 2 lists the model parameters and error func-
tions of the RAE. While the autoencoder aims to obtain a
condensed vector representation best reproducing two child
nodes of neighboring words or phrases, the whole RAE aims
to classify the utterance intent accurately. As a whole, the
total error function is set as a weighted sum of two error
functions in Eq. (7).

E = a@E,oc + (1 — @)E,, @)

We set the weighting coefficient @ to 0.2, the default value
in [11] after confirming that it was reasonable in preliminary
experiments.
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The training of RAE optimizes the model parameters in
accordance with the criterion of minimizing the total error
function for all the training data.

4.2 Rule-Based Syntactic Untying of RAE

The basic RAE in the previous section applies a single arith-
metic operation of an autoencoder to every pair of neighbor-
ing nodes. Even if the single autoencoder is optimized to
reproduce any pair of child nodes well, the arithmetic op-
eration is intrinsically different depending on the types of
child nodes.

To reduce the difference of the nonlinear operation de-
pending on the types of nodes, we manually designed a rule
that switches two autoencoders depending on the types of
two child nodes. We designed the rule for Japanese, not
for English. At the leaf level of a tree, about a half of
the words are nouns, while a sentence or phrase is com-
posed of a predicate with a subject and/or objects and/or
complements. The arithmetic operation of vectors between
words and noun phrases, and that between predicate phrases
and clauses are assumed to differ considerably. Hence, the
manual rule switches two autoencoders; one for words and
noun phrases and the other for predicate phrases and clauses.
Along a tree, the former is applied at lower nodes around
leaves, and the latter is applied at upper nodes close to the
root node.

The node type is determined as follows. At leaf nodes,
every word of a sentence is given a part-of-speech tag as a
node type. Japanese sentences are processed by a Japanese
morpheme analyzer [18]. The tag set for Japanese is com-
prised of ten part-of-speech tags: noun, verb, adjective, ad-
verb, particle, auxiliary verb, adnominal adjective, conjunc-
tion, interjection and others. At upper nodes, a node type is
determined by the combination of node types of two child
nodes. Table 3 consists of two panels. The left panel shows
the table determining the node type of a parent node based
on the combination of the node types of left and right child
nodes. This panel was defined by reference to a Japanese
grammar textbook [19]. The right panel shows which au-
toencoder to apply based on the node type given in the left
panel.

4.3 Data-Driven Untying of RAE

To obtain a more effective untied RAE, we designed a train-
ing method including data-driven untying of RAE. This
method is based on splitting an autoencoder with a regres-
sion tree reducing the total reconstruction error E,... To be
exact, this method alternates splitting an autoencoder into
two with a binary regression tree with a response of the re-
construction error E,.. and optimizing the model parameters
of the split autoencoders.

Figure 3 shows the procedure. The procedure starts
with part-of-speech tagging of every morpheme of a sen-
tence at preparation step 1). This part-of-speech tagging is
the same process as that in the previous section for Japanese.
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1) Preparation

Part-of-speech tagging to all morphemes of
training data.

2) Training tied RAE of single autoencoder
Train tied RAE of single autoencoder for all
nodes.

|

y
3) Data collection for split
Apply RAE to training data, and tally E,,. for
each node type.

4) Selection of autoencoder to split
Select autoencoder of maximum total £,

v

5) Binary split for untying autoencoder
Split autoencoder into two classes based on
regression tree with response of £,,..

!

6) Retraining of untied RAE
Retrain RAE. Softmax layer is kept single.

|
v

[ Untied RAE ]

rect

Fig.3  Procedure of training RAE of multiple autoencoders with data-
driven untying.

For English, the sentences are first processed by a part-of-
speech tagger in NLTK [20]. The tag set used is the ‘univer-
sal’ tag set with eleven tags but without the punctuation tag.
The baseline bi-gram tagger was trained with 57,340 tagged
sentences of the Brown corpus, and the Brill tagger was
trained with 3,914 tagged sentences of the Treebank corpus
and 577 tagged sentences of the ATIS corpus. Then, an ini-
tial tied RAE comprised of a single autoencoder is trained
by the conventional method at step 2). In this training step,
a tree is formed in the bottom-up manner for each sentence
in the training data. While forming a tree, a node type is
given to every node according to the node types of the child
nodes. This is to be described in the next paragraph. The
trained RAE is applied to the sentences of the training data,
and the total reconstruction error E,.. is tallied for each au-
toencoder type; that is single in the initial RAE at step 3).
Then, an autoencoder type of the maximum total reconstruc-
tion error E,,. is selected for splitting at step 4). At step 5),
a class of all the node types pertaining to the selected au-
toencoder type is split into two based on a regression tree
trained by CART [21] with a response of E,... The predic-
tor variables are the node types of the left and right child
nodes. The model parameters of the split autoencoders are
initialized by those of the autoencoder before splitting and
retrained with L2 regularization at step 6). After retraining,
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Response: £,

rec

E,,: threshold for split

Tied RAE

E rec <E th E rec >E th

Predictor variables:
node types of
left and right
child nodes

Fig.4  Sequential splitting of autoencoders with response of E,.. and two
predictor variables of node types of left and right child nodes.

Table4 Node type index assignment table.

Node type of right child node
Node type of PoS index of Autoencoder type
left child node leaf nodes of non-leaf nodes
1|2 | - ]10]11]12 13
11 - -[-1- R R - N
S I N N N
index of - - - -
leaf nodes - | - | - | Unique node type - -
10| - | - index of - -
Autoencoder | - - non-leaf nodes - -
type of non- { 122 - --1- - - - -
leaf nodes 3 - -1-1- - ‘ - ‘ - -

the RAE is applied to the sentences of the training data, and
E,.. is tallied for each autoencoder type at step 3) again for
the next splitting. The total reconstruction error E,.. can be
used as a stopping condition of the iteration. In practice,
the trained RAE was evaluated after each iteration this time.
Figure 4 shows a regression tree produced by the sequential
splitting. Each leaf of the tree corresponds to an autoen-
coder type. Here in the figure, the left node represents an
autoencoder type of the smaller E,.., while the right node
represents an autoencoder type of the greater E,.. for the
sake of simplicity. While the autoencoders are untied in a
step-by-step manner, the softmax layer is kept single in or-
der to avoid making the generated vector space completely
different.

The data-driven assignment of the node types and au-
toencoder types has to be addressed in detail. At step 3),
a node type index is given to every parent node in an auto-
mated way by referring to the node types of its child nodes.
Table 4 illustrates how the node type index is given. For
the leaf nodes, the part-of-speech tag index is used as the
node type index. For the non-leaf nodes, a unique node type
index is given to every combination of the node types of
two child nodes appearing in the data incrementally. The
rows and columns of the table represent the node types of
the left child node and right child node, respectively. Any
non-leaf node except for the root node becomes a child node
of an upper node. The node type index of the non-leaf node,
as either a left or right child node, is a unique index corre-
sponding to its autoencoder type. The autoencoder type is
determined by the data-driven splitting at step 5) in Fig. 3.
The reason the autoencoder type is used as the node type
of a child node instead of the node type index is to prevent
an explosive increase of node type indices in the node type
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index assignment table in Table 4.

In the training of the initial tied RAE, the node types
of the left and right child nodes are the part-of-speech in-
dices of leaf nodes and one additional node type for all non-
leaf nodes. The autoencoder type index assignment table is
filled with a single autoencoder type index initially. There-
after, the table is updated with the results of the data-driven
splitting. This table is used for tallying the reconstruction er-
ror E,,. for each node type index, and the autoencoder type
with the maximum total reconstruction error E,,. is chosen
for the next split.

5. Experiments
5.1 Experimental Setup

We implemented the two untying methods by extending
Socher’s matlab implementation [11], and examined them
with two data sets: the ATIS English data set and the
smartphone-based Japanese spoken dialogue system data
set.

Regarding the ATIS data set, we used the training set
and test set as they were provided. The number of utter-
ance intent classes was predefined as 18. The number of
utterances in the training and test sets were 4,478 and 899,
respectively.

Regarding the Japanese data set, the number of classes
was reduced to 65 by merging classes with few pieces of
data into a similar class or into the other class. By consider-
ing the balance of a few high-frequency utterances such as
“What time is it now?”” and a great number of low-frequency
utterances, the frequencies of utterances were smoothed by
taking their square root, and then placing the smoothed data
set into the training set and test set randomly. The number of
utterances in the training and test sets were 7,833 and 870,
respectively. The fraction of unknown utterances in the test
set was 15 percent.

5.2 Conditions of Experiments

We compared four methods with the English and Japanese
data sets. The methods are 1) cosine similarity of bag-of-
words (BoW), as a baseline, 2) tied RAE of a single autoen-
coder, 3) untied RAE based on manually-defined rule, and
4) untied RAE based on data-driven sequential split, which
are the proposed methods. In the evaluation of the tied
RAE, two types of word vectors, random vectors (2a) and
word2vec vectors (2b), trained in the skip-gram mode were
compared as the minimal components of a tree. The En-
glish word2vec vectors were trained with English Wikipedia
texts of 3.5 billion words and had 3.25 million word entries.
The Japanese word2vec vectors were trained with Japanese
Wikipedia texts of 1.1 billion words and had 1.08 million
word entries as a result. The dimension of the vectors was
fixed at 100. Accordingly, the dimension of all the nodes
was fixed at 100. The skip-gram mode for training word2vec
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Table 5 Precision, recall, and accuracy of utterance intent classification of 18 classes of ATIS data

set.
Method Training set Test set

prec. recall acc. prec. recall acc.

1) Cosine similarity of bag-of-words (BoW) - - - 59.8% 73.6%  88.3%
2a) Tied RAE based on random word vectors 60.9% 522% 96.6% | 32.7% 32.8% 87.2%
2b) Tied RAE based on word2vec vectors 86.2% 77.6% 97.4% | 54.5% 459% 85.4%
3) RAE of two autoencoders untied by manual rule - - - - - -
4a) RAE of two autoencoders untied by data-driven split 69.8% 673% 97.0% | 547% 51.0% 89.4%
4b) RAE of three autoencoders untied by data-driven split | 57.4%  58.7% 96.5% | 44.7% 44.0% 87.7%

vectors was chosen based on the results of preliminary ex-
periments.

Three types of RAEs, that is, a single tied autoencoder,
two autoencoders untied by the manual rule, and multiple
autoencoders untied by the data-driven sequential split were
compared with the baseline method of cosine similarity of
bag-of-word vectors.

5.3 Experimental Results

Table 5 shows the precision, recall, and accuracy of the clas-
sification for the training and test sets of the ATIS English
data set. The baseline BoW method with maximization of
cosine similarity (1) showed a relatively high performance.
We consider the reason is the test set contained a great ra-
tio of known words. The tied RAE based on random word
vectors (2a) showed a higher accuracy (87.2%) than the tied
RAE based on word2vec vectors (2b) for the test set, but
method (2b) showed higher performance than method (2a)
in precision and recall values. We did not test method (3)
for the ATIS data set because it was difficult to define a
manual rule for English. The RAE of two autoencoders
untied by data-driven split (4a) showed the best accuracy,
and the RAE of three autoencoders untied by data-driven
split (4b) showed a decrease. We consider that the RAE
was overlearned with thousands pieces of training data. We
conducted a sign test for significant difference between the
methods. A significant difference was not observed between
method (1) and (4a) with a significant level of 0.1, but a sig-
nificant difference was observed between method (2b) and
(4a) with a significant level of 0.01.

Figure 5 shows the regression tree generated by the
data-driven split for the ATIS data set. In common with
Fig. 4, the left and right nodes in every split represent the
autoencoder types of the smaller and the greater E,.., re-
spectively. The first split was made on the type of the left
child node. Non-leaf nodes with an adposition or a particle
or a determinant or a pronoun as its left child node had a
smaller reconstruction error E,,.., while non-leaf nodes with
a noun or a verb or an adjective or an adverb or a conjunc-
tion or a numeral or an other or a non-leaf node as its left
child node had a greater reconstruction error E,... This split
is understood as a separation of adding a determiner from
the others.

Table 6 shows the precision, recall, and accuracy of the
classification for the training and test sets of the Japanese
data set. The baseline method (1) showed a relatively high

#2 - Left child node: #3 - Left child node:
adposition(5), noun(1), verb(2),
particle(7), adjective(3), adverb(4),
determinant(8), conjunction(6),
pronoun(9) numeral(10), others(11),

AE type #1(13)

#5 - Right child node:
verb(2), adjective(3), adverb(4),
numeral(10), others(11)

#4 - Right child node:

noun(1), adposition(5), conjunction(6),
particle(7), determinant(8), pronoun(9),
AE type #2(14), AE type #3(15)

Fig.5  Generated regression tree for untying RAE with ATIS data set.

performance. We consider the reason is the test set ran-
domly chosen considering the smoothed frequencies con-
tained a great ratio of known words and utterances that were
seen in the training set. The tied RAE based on word2vec
vectors (2b) showed significantly better performance than
the tied RAE based on random word vectors (2a). While
the RAE of two autoencoders untied by a manual rule (3)
made a slight improvement in performance, the RAE of two
autoencoders untied by data-driven split (4a) made a larger
improvement. However, the RAE of three autoencoders un-
tied by data-driven split (4b) showed a fall as in the case
of the ATIS data set. We conducted a sign test for signif-
icant difference between the methods. A significant differ-
ence was not observed between method (1) and (4a) with a
significant level of 0.1, but significant differences were ob-
served between method (2b) and (4a) with a significant level
of 0.01 and between method (3) and (4a) with a significant
level of 0.05, respectively.

Figure 6 shows the regression tree generated by the
data-driven split. The first split was made on the type of the
right child node. Non-leaf nodes with a noun or an adjec-
tive or an adverb or a particle or an interjection or a non-leaf
node as its right child node had a smaller reconstruction er-
ror E,.., while non-leaf nodes with a verb or a conjunction
or an auxiliary verb or an adnominal adjective or an other as
its right child node had a greater reconstruction error E,.
It is not easy to characterize this split simply, but this split
looks like a separation of predicates from the others.

Figure 7 shows how the total reconstruction error E,,.
decreases with respect to the number of autoencoder types in
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Table 6  Precision, recall, and accuracy of utterance intent classification of 65 classes of Japanese

data set.
Method Training set Test set

prec. recall acc. prec. recall acc.

1) Cosine similarity of bag-of-words (BoW) - - - 76.0% 742%  85.1%
2a) Tied RAE based on random word vectors 372% 332% 70.6% | 32.0% 65.6% 66.4%
2b) Tied RAE based on word2vec vectors 81.2% 788% 88.7% | 74.7% 70.5%  82.7%
3) RAE of two autoencoders untied by manual rule 659% 683% 88.1% | 63.0% 62.5% 84.0%
4a) RAE of two autoencoders untied by data-driven split 80.3% 798% 91.3% | 72.4% 72.3% 85.6%
4b) RAE of three autoencoders untied by data-driven split | 73.9%  752% 90.3% | 70.8% 67.9% 84.8%

#2 - Right child node:
noun(1), adjective(3),
adverb(4), particle(5),
interjection(9),
AE type #1(11)

#3 - Right child node:
verb(2), conjunction(6),
auxiliary verb(7),
adnominal adjective(8),
others(10)

#4 - Left child node:
particle(5), conjunction(6),

#5 - Left child node:
noun(1), verb(2), adjective(3),

AE type #2(12), adverb(4), auxiliary verb(7),
AE type #3(13) adnominal adjective(8),
interjection(9), others(10)
Fig.6  Generated regression tree for untying RAE with Japanese data set.
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Fig.7  Decrease of total reconstruction error E,.. w.r.t the number of au-
toencoder types in data-driven untying of RAE.

the data-driven splitting process. The horizontal and vertical
axes represent the number of autoencoder types and the ratio
of total reconstruction error to its initial value, respectively.
The total reconstruction error decreased the most in the first
split, and little by little after the second split as is expected.

6. Conclusions

To provide flexibility and efficiency to the RAE model for
SLU for spoken dialogue systems, an efficient data-driven
untying of the RAE is proposed and examined with two ut-
terance intent classification tasks of English and Japanese
spoken dialogue systems. It is difficult to design an unty-

ing of RAE manually in practice, but the data-driven split
with a criterion of minimizing the reconstruction error us-
ing the PoS information improved the accuracy. The re-
gression trees generated by this method showed reasonable
splits, that is, separating addition of a determiner at the left
child node first for English and separating predicates from
the others at the right child node first for Japanese.
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