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Fast Computation with Efficient Object Data Distribution for
Large-Scale Hologram Generation on a Multi-GPU Cluster
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SUMMARY  The 3D holographic display has long been expected as a
future human interface as it does not require users to wear special devices.
However, its heavy computation requirement prevents the realization of
such displays. A recent study says that objects and holograms with sev-
eral giga-pixels should be processed in real time for the realization of high
resolution and wide view angle. To this problem, first, we have adapted
a conventional FFT algorithm to a GPU cluster environment in order to
avoid heavy inter-node communications. Then, we have applied several
single-node and multi-node optimization and parallelization techniques.
The single-node optimizations include a change of the way of object de-
composition, reduction of data transfer between the CPU and GPU, kernel
integration, stream processing, and utilization of multiple GPUs within a
node. The multi-node optimizations include distribution methods of ob-
ject data from host node to the other nodes. Experimental results show
that intra-node optimizations attain 11.52 times speed-up from the origi-
nal single node code. Further, multi-node optimizations using 8 nodes, 2
GPUs per node, attain an execution time of 4.28 sec for generating a 1.6
giga-pixel hologram from a 3.2 giga-pixel object. It means a 237.92 times
speed-up of the sequential processing by CPU and 41.78 times speed-up
of multi-threaded execution on multicore-CPU, using a conventional FFT-
based algorithm.

key words: computer generated holography, large-scale CGH, GPU clus-
ter

1. Introduction

The 3D holographic display has long been expected as a fu-
ture human interface as it does not require users to wear spe-
cial devices[1]. In display systems, the computer receives
3D object data, computes wave propagation from each ob-
ject point to each hologram point as well as the interfer-
ence with a reference laser beam and stores the whole result
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to a SLM (Spatial Light Modulator). By applying a refer-
ence laser illumination to the SLM, the diffraction pattern
regenerates the object wave and the user can see the recon-
structed 3D object as if it exists at the original position. This
process is well-known as computer generated holography
(CGH) 2], [3].

One of the largest issues for realizing such display sys-
tems is their requirement for a huge number of computa-
tions. The computation cost of wave propagation from N
object points to N hologram points becomes O(N?) [9]. In
order to solve this problem, a wide variety of approaches
have been taken. To accelerate the calculation of point-to-
point wave propagation, a table-lookup method is used to
evaluate trigonometric functions [4], [16]. Architectural ap-
proaches include the development of special-purpose com-
puters using large-scale FPGA chips[10], [11] and the uti-
lization of GPU and GPU clusters [9], [12]-[15], [18], [25].
In order to reduce the large cost of point-to-point calcula-
tion, FFT-based methods are used to improve the order of
computation from O(N?) to O(N logN) [17]. However, for
the size of the objects and holograms these projects treat,
the processing time for one frame becomes hundreds to even
thousands of seconds [12], [26].

On the other hand, the capability of 14.7 giga pixel ob-
ject display is required for the human eyes’ recognition ca-
pability [7]. Further, a 4.5 gigapixel SLM is needed to re-
alize view angles of 20 degree for 7 inch objects [8]. Thus,
the giga-pixel order is required to realize the high resolution
and wide view angle needed to match the human interface.

If we treat, for example, 4 giga-pixels, each pixel re-
quires 8B as a complex number representation and a total
of 32 GB of memory space is required to store just the ob-
ject data. We need additional memory space for the output
hologram and working space. The global memory size of
current GPUs is far behind these requirements [28]. Thus,
if we want to utilize the parallel computation capability of
GPU clusters as well as the low computation cost of FFT
based methods, we need to decompose the input object into
multiple sub-objects and apply distributed FFT algorithms
to them. In this case, we encounter a further problem that
the distributed FFT algorithms require a lot of node-to-node
data transfer for realizing butterfly operations [18].

To this problem, we have been working on a distributed
algorithm, called a decomposition method, for generating
2D Fourier holograms [5] and 3D Fresnel holograms [6]. In
order to estimate the performance of the method, we per-
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formed a simulation. In this simulation, as we could not use
GPU-clusters, we first obtained computation time on a sin-
gle multi-GPU node without application-oriented optimiza-
tions and inserted the time to the CPU-cluster program by
using the nano-sleep library function. The simulation results
were used for showing the advantage of our decomposition
method over conventional methods. In parallel with the sim-
ulation, we have also developed a real GPU cluster using 8
nodes of multi-GPU machines, implemented the decompo-
sition method for 3D Fresnel hologram generation on the
cluster and applied application-oriented optimizations [19]—
[21]. Thus, the major differences of this research from [6]
are that this research utilizes a real multi-GPU cluster and
applies various application-oriented, single-node and multi-
node optimizations to verify their effectiveness.

Aiming for the ultimate goal of realizing 3D holo-
graphic display with high-resolution and wide view angle
properties in real time, this research revises the results of
[19], [20] and [21] and shows how we resolve the difficulties
of large-scale CGH generation on a multi-GPU cluster by
adapting the FFT-based algorithm to the clusters’ environ-
ment and how to apply application-oriented optimizations
under the multicore-CPU and multi-GPU combined hetero-
geneous architecture.

This paper is organized as follows. Section 2 describes
the basic concept of the conventional FFT-based CGH gen-
eration and the object decomposition method. Sections 3
and 4 describe the application of optimizations within sin-
gle node and multiple nodes, respectively. Section 5 shows
experimental results using a multi-GPU cluster. Section 6
concludes the paper.

2. Algorithm Adaptation for GPU Cluster Implemen-
tation

Figure 1 shows the process of 3D image reconstruction us-
ing conventional FFT-based methods. Notice that a 3D ob-
ject is represented as multiple 2D planes, called object lay-
ers, in order to apply 2D-FFT operations. In the figure an
input object consists of two layers placed at different posi-
tions. Firstly, the wave propagation from these multiple ob-
ject layers to the hologram plane is computed by applying
2D-FFT operations; then, the interference with the reference
laser beam is added to make hologram data, called interfer-
ence fringes; then, this hologram data is transferred to the
SLM; finally, by illuminating the SLM with the reference
laser light the diffraction regenerates the object wave from
the 3D object. This regenerated wave enables the viewer to
see as if the original object exists at the original position.

Equations (1) to (3) below express the wave propaga-
tion computation from an object layer O(x1, y;) to the holo-
gram plane H(x, y).

H(x,y) = OP(x,y) X FFTynxn[(O(x1,y1)

1
XQP1(x1,y1))] M

k(242
QP(x.y) =&/ =" 2)
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In these expressions, H represents a hologram plane, x
and y represent the hologram plane’s horizontal and vertical
coordinates, respectively, O is the two-dimensional object
layer, x; and y; are the object’s horizontal and vertical co-
ordinates, z represents the distance from the object layer to
the recording hologram plane, N is the number of pixels on
one dimension of the object, and k is the value of 2 divided
by the wavelength of light (2).

Figure 2 shows the flow of conventional FFT-based 3D
Fresnel hologram computation. The five steps from “Gen-
erate QP;” to “Multiply QP” realize Eq. (1). That is, “Gen-
erate QP;” and “Calculate O X QP;” compute O(xy,y;) X
QOPi(x1,y1). The next step “2D-FFT” realizes F F'Tyxy. The
next two steps of “Generate QP and “Multiply QP” realize
multiplication by Eq. (2). Notice that the first two steps of
“Generate Random num.” and “Randomize” are inserted as
an optical convention so that light from all parts of the ob-
ject can spread over the hologram plane [22]. The step “Add
reference beam” implements the interference with the refer-
ence light. The “Final addition” accumulates all the results
for different layers.

Figure 3 shows the process of hologram computation
and 3D image reconstruction using the object decomposi-
tion method [5]. In the figure, the input object consists of
two 2D object layers, a pigeon and an olive. Each object
layer is first decomposed into sub-objects; in the figure, we
assume the use of 4 nodes and decompose the object layer
into 4 sub-objects; then the three operations of interpolation,
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FFT, and shift are applied to each sub-object to produce a
hologram, called a sub-CGH; by adding two sub-CGHs for
sub-objects of different layers we can obtain the final sub-
CGH; and by illuminating this final sub-CGH the original
sub-objects are reconstructed at their original positions. In-
terpolation is necessary to keep the original bandwidth and
make the object segment reconstructed successfully. A shift
operation is necessary for reconstruction at the original posi-
tion of the object segment. Without this shift, all the object
segments are reconstructed at the upper-left corner. Theo-
retically, if we add up all the sub-CGHs, we can obtain the
same results with those obtained by the conventional FFT-
based method [17]. However, in order to save this addition
time, we suppose the display system which switches its in-
put from among the generated, multiple sub-CGHs. This
enables us to reconstruct the original 3D object by time
sequential reconstruction of sub-objects. We have proved
that if the time sequential reconstruction is performed at
an appropriate speed, the whole original 3D image is per-
ceived [5], [6].

Notice that the boxes in Fig.3 indicate that after the
original object is decomposed and distributed to parallel
processing units, the computation from sub-object to sub-
CGH and reconstruction can be performed in a mutually in-
dependent manner.

For the theoretical background and optical verification
of the decomposition method as well as the preliminary re-
sults of its application to the Fourier and Fresnel hologram
generation, see [5] and [6], respectively.

Figure 4 shows the basic flow of the decomposition
method that generates each sub-CGH from each sub-object.
In the figure, the interpolation, 1D-FFT and shift operations
are applied in the x- and y-directions, sequentially. This pro-
cess is repeated for different object layers and the results are
accumulated by the final addition. Notice that the functions
from “MemcpyHtoD” to “MemcpyDtoH” are executed in
the GPUs. Thus, the time-consuming “Add reference beam”
should be included in these functions.

At first, we have implemented this flow on a single-

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.7 JULY 2019

Generate Random num.

Decomposition

MemcpyHtoD

Generote @7

[ Generate QP | [ Multiply QP |
Interpolation

(x direction)

1D-FFT

(x direction)

Yes

‘Any other
y direction
processes?,

Shift
(x direction)

Transpose

Interpolation

(y direction)

"Any other
x direction
processes?

Yes

1D-FFT

(y direction)

"Any other
sub-
objects?

Shift
(y direction)

Transpose

Fig.4  Flowchart of the decomposition method

o o

Application of interpolation,
2D-FFT and space-shift to
sub-objectfor j=0 on GPU

Transfer to CPU and add to
sub-sub-CGH area for j=0

(a) Generation process from sub-object to sub-sub-CGH for j=0

Addition to sub-sub- Addition to sub-sub- Addition to sub-sub-
CGH area for j=1 CGH area for j=2 CGH area for j=3

(b) Repetition of the process (a) for j=1, 2, 3 to generate sub-CGH

Fig.5  Generation process from sub-object to sub-CGH

node with multiple GPUs as the base program of further
optimizations and parallelization. Considering the limited
global memory size of each GPU, we have tried to off-load
the sub-object to sub-CGH generation, the most heavy com-
putation part, to the GPUs. The CPU controls the global
flow and does memory intensive work, i.e. keeping the
whole object and the generated sub-CGH.

Figure 5 shows an illustration of the sub-CGH genera-
tion process by the loop iterations in the flowchart. At the
first iteration, the application of the x and y direction op-
erations to each sub-object produces the same size of par-
tial sub-CGH, called sub-sub-CGH data. A GPU performs
this part of the computation K times, where K represents the
number of decompositions, and sends the results to the CPU.
Then, the CPU adds the sub-sub-CGH data to the predeter-
mined area, as shown in Fig.5(a). In the figure, j is used
as an index for counting loop iterations up to the number of
decompositions, i.e., K.

By filling up the sub-CGH area in CPU memory by
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four times of sub-sub-CGH data, sent from GPU, the sub-
CGH is completed. Notice that the number of loop itera-
tions reflects the number of decompositions. The x- and y-
direction operations should be repeated by the number of x-
and y-direction decompositions, respectively. For example,
if the input object is decomposed like Fig. 3 the numbers of
x- and y-direction iterations become 2 and 2, respectively,
and a total of 4 sub-sub-CGH data generation processes are
performed.

This means that the increase of the number of decom-
position increases the number of loop iterations and thus
the total computation cost. Therefore, from the view point
of computation cost, a small number of decompositions is
good. On the other hand, from the view point of global
memory size, a large number of decompositions is good as it
makes the sub-object size small. Thus, in general, we should
select the number of decompositions as a tradeoff point of
these two aspects.

Comparing with the conventional method, the decom-
position method requires less communication as the com-
putation processes from sub-objects to sub-CGHs are mu-
tually data-independent. Thus, once the original object is
decomposed into sub-objects and sent to computing nodes,
no node-to-node communications are necessary at all. No-
tice the final reconstructions are also mutually independent.
Another important aspect of the decomposition method is
that it requires much less GPU memory space, since just the
decomposed sub-object and the corresponding partial sub-
CGH data are treated in the GPU. This is critical for gen-
erating gigapixel hologram using a limited global memory
space of GPU.

However, we should be careful about the following
two points: first, the decomposition method increases the
amount of computation for interpolation and space-shift;
second, the sub-CGH generated from the sub-object re-
quires the same size of memory space as the whole CGH.

Thus, the key issues of object decomposition method
implementation on GPU clusters are to determine: i)
whether the additional computation cost for the interpola-
tion and shift operations is paid back by less communica-
tion and by the deletion of the addition of sub-CGHs, and
ii) whether the sub-sub-CGH data is generated within a lim-
ited global memory space of GPU and appropriately stored
back to the host CPU to make sub-CGH used for the re-
construction. Our effort of optimizations and parallelization
(Sects. 3 and 4) and the experimental results (Sect.5) will
answer these issues.

3. Single-Node, Multi-GPU Optimizations

This section describes the optimizations and parallelization
within a single node with multiple GPUs.

3.1 Changing Distributed Accesses to Contiguous Ones
(Optimization 1)

When we send data from the CPU to a GPU, the data transfer
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is performed by the cudaMemcpy function, which requires
the input data to be on a contiguous address space.

At first, we decompose the input object plane into x-
and y-directions like shown in Fig. 6 (a). In this case, we
need to rearrange the data so that the selected parts be-
come contiguous in memory before transferring from CPU
to GPU.

We have improved the way of decomposition by chang-
ing to y-direction only decomposition, as shown in Fig. 6(b).
This makes the decomposed areas contiguous in memory
and we can transfer the data without rearrangement.

Figure 7 shows the flow after this optimization. By
comparing this flow with the original flow of Fig. 4, we can
understand that, in the original flow, the combination of the
x- and y-direction operations is repeatedly executed. How-
ever, in Fig. 5, once the x-direction operation is executed, the
resulting data in local memory can be utilized repeatedly by
the following y-direction operations. This not only reduces
the number of kernel executions for x-direction operations
but also enables the passing of temporal computation results
from a x-direction computation to a y-direction one through
high-speed local memory.

Notice that in the original way of decomposition the
number of decompositions should be N Zwhere N = 1,2,....
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However, this change of the way of decomposition alters the
number to just N and thus makes it easier to adjust the sub-
object size to the limitation of a GPU’s memory size. In our
implementation, for the ease of coding, N is selected as 2"
wheren =1,2,....

3.2 Reduction of Data Transfer Amount between CPU and
GPU (Optimization 2)

As the data transfer time between CPU and GPU adds to the
computation time, the GPU’s fast computation may be im-
paired by the slow transfer time. Thus, we should be careful
about the contents of the transfer.

Our CGH generation program uses cufft, a CUDA
library, for the FFT computation [23]. It requires cufftCom-
plex as its input array. The cufftComplex consists of a real
part and an imaginary part, and each part requires 4B mem-
ory space for storing floating point data. Thus, in our origi-
nal program, both CPU-to-GPU input transfer and GPU-to-
CPU output transfer use an 8B cufftComplex type.

However, the use of this data type is redundant. A pixel
of the input object uses just one byte of the real part. This
can be replaced with 8-bit unsigned integers. In a similar
manner, the output from GPU only uses a 4B real part and
can be replaced with a floating point number.

Figure 8 shows this change schematically. The reduc-
tion of the data size shortens the data transfers from CPU to
GPU and from GPU to CPU. However, the GPU must per-
form the additional tasks of extension from the input 8-bit
to 8-byte complex type and reduction from 8-byte complex
type to 4-byte real type. Experimental results are expected
to clarify the total effect.

3.3 Kernel Integration and Utilization of High-Speed
Memory (Optimization 3)

Usually, a GPU has thousands of execution cores for arith-
metic and logical operations [24]. In order to utilize their
computing power effectively, it is critical to smoothly pro-
vide them data to be processed. For this purpose, a GPU
has a hierarchically structured memory system of register
file, local memory, cache memory (usually multi-level), and
global memory. The input data to a GPU is first sent to the
global memory. When a kernel starts its execution, it reads
data from the global memory to a higher level memory and
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tries to keep the data at the higher level until the end of the
execution. At the end of the execution, the results should
be saved to global memory to pass them to the succeeding
kernel. Then the succeeding kernel reads the data again into
higher level memory to perform its operation. The problem
here is the large overhead of this write-back and read-out
cost of global memory, the slowest memory in the hierar-
chy. We cannot overlook that these write-back and read-out
operations also lose the locality of references.

In order to solve this problem, we have tried to inte-
grate kernel functions into one kernel function as much as
possible. Figure 9 shows the integrations of the three ker-
nels from “Randomize” to “Calcurate O x QP;” and the
five kernels from “Shift” to “Add reference beam”. These
kernels are called separately from the CPU in Fig.7. Be-
fore the integration, each kernel reads all the pixels from
global memory, applies each computation and stores the re-
sults back to global memory. After the integration, the three
kernel functions are combined into one kernel function. This
kernel function reads a part of the pixels from global mem-
ory, applies the three operations to them, i.e. Shift, Trans-
pose and Multiply QP, and stores the partial results back to
global memory, repeatedly, until all the pixels are processed.
By this integration, we can utilize higher-level memories,
such as registers and shared memory, for inter-kernel data
passing. The integration also reduces the number of kernel
function calls and, thus, reduces the cost for GPU control.

3.4 Stream Processing of GPU Calculations and Transfer
of the Result (Optimization 4)

As shown in Fig. 5, the sub-CGH, generated from the sub-
object, becomes the same size as the final CGH. Thus, we
need to send the partial results, i.e., sub-sub-CGH data, back
to the CPU repeatedly to save the limited memory space of
the GPU. Fortunately, the generation process can be divided
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into K mutually data-independent operations where K rep-
resents the number of decompositions. Thus, we repeat the
process K times.

We have utilized stream processing to treat these com-
putation and communication pairs efficiently, as shown in
Fig. 10. That is, first, the pair of the partial result calcu-
lations in the GPU, represented as A and B, are executed.
Then, the results are transferred from the GPU to the CPU
by sub-CGH data transfer operation, represented as C. Fi-
nally, the final addition operation, D, is executed in CPU.

The pipelining of these operations should take into ac-
count the following conditions. The first pair of calculations
should be serial as B inputs the output of A. The transfer
from GPU to CPU should wait for the completion of B in
the GPU. The calculation at A should wait for the comple-
tion of B of the preceding pipeline as they share the same
buffer memory.

3.5 Utilization of Multiple GPUs under the Control of a
Multicore CPU (Optimization 5)

If multiple GPUs are available in a single node, we may uti-
lize their parallel processing capability. In this case, it is de-
sirable to assign them mutually data-independent processing
so that they can execute in parallel.

In the CGH generation, if we assign sub-objects of dif-
ferent layers to the multiple GPUs, the generation process
becomes mutually independent. In order to control these
parallel operations in multiple GPUs, we use multithreading
in the CPU. One thread controls one GPU, by specifying the
GPU using cudaSetDevice [23].

One important issue for utilizing the multiple GPUs is
how the CPU receives the results of the computation from
them and, if necessary, does some reduction operations on
the results. In our decomposition model, the reduction op-
eration is the addition of sub-CGHs generated from differ-
ent object layers. as shown in Fig. 11. We considered three
methods to treat this issue: (i) providing disjoint areas for
different GPUs, (ii) using “lock” to prevent the other threads
from modifying the same area, and (iii) using a synchroniza-
tion mechanism to avoid allowing the two threads to handle
the shared data area simultaneously. We performed prelimi-
nary evaluation of these methods and found that (iii) attains
the best performance [19]. Thus, we use this method for our
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experiments, as described in Sect. 5.
4. Multi-Node Optimizations

The major principle of the decomposition method is to save
communication cost by avoiding the frequent data transfers
required for 2D-FFT operations. Following this principle,
we assign sub-objects with the same x- and y-coordinate
values but with different layers to a single node. This as-
signment avoids unnecessary data transfers during the com-
putation.

One inevitable data transfer operation occurs when the
host node distributes sub-objects of different layers to the
other nodes. We must consider that the input object is given
in a compressed image file, such as JPEG and PNG. The
object in the compressed format can not be decomposed and
used for further computation and we need to decompress it
before decomposition. Thus, there are two possibilities.

The first method is to decompress the input object to
bitmap, i.e., one pixel to 8-bit unsigned integer, on the host
node, decompose the decompressed object into sub-objects,
and transfer each sub-object to an appropriate node. In this
method, the transfer amount, i.e., the sub-object size, is de-
termined statically. Further, it should be smaller than the
size of the original compressed object. Figure 12 shows
how the input object is decompressed and decomposed into
sub-objects in the host node, Node 0, and sent to the other
nodes for sub-CGH generation. The decompressed and de-
composed sub-objects are sent by MPI send and recv pair
operations, sequentially [27].

The second method is that the host node first distributes
the compressed whole object to all the other nodes, as shown
in Fig. 13. Then, each node decompresses the input object
and extracts the sub-object to be processed in the node. In
this method, the data size of the compressed object is dy-
namically determined. Thus, the size should be distributed
first from the host to the other nodes so that they can allo-
cate necessary memory space for storing input compressed
object. The MPI broadcast is used to distribute the com-
pressed whole object. Each node needs to perform decom-
pression separately. For the details of the sending procedure
by using MPI, see [19].

In the following section, we will show the performance
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results of these two methods.
5. Experimental Results

We have performed experiments in order to verify the effec-
tiveness of the optimizations. The execution environment is
summarized in Table 1. Simply speaking, it is I000BASE-T
connected 8 node GPU cluster with each node containing
two GPUs. Many similar projects use a high-speed net-
work, such as Infiniband, to treat this kind of large-scale
bandwidth intensive task without locality [18], [25]. Unlike
them, we use a low cost gigabit Ethernet. We use C to de-
scribe CPU code, Pthreads to describe multithreading for
optimization 5, MPI Ver. 1.10.3 to describe the internode
communication, and CUDA version 8.0 to describe the GPU
code.

The input object consists of a pair of PNG files (40K x
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Table1 Evaluation environment
model number Core i7 6850K
CPU frequency 3.60GHz
memory 64GB
number of cores 6
model number GeForce GTX 1080 Ti
GPU frequency 1.58GHz
(each node memory 11GB
has 2GPUs) | number of cores 3584
(0N CentOS7.3
LAN 1000BASE-T
CUDA ver. 8.0
OpenMPI ver. 1.10.3
< 300
Q
£ 250
£ 200
T 150
2 100
3
& 50
i 0 | || || L 7]
A B C D E F
Case
O decomposition O memcpy

B final-addition
memcpy + kernel + final-addition

H kernel

Fig.14  Single-node results

40K for each) and the total data size is 141.3MB. They are
decompressed into two bitmap files (1.6GB for each) by us-
ing an OpenCV function. Thus, the total size of the input
object is 3.2 giga-pixels. The hologram size is 1.6 giga-
pixels.

Following the discussion in Sect. 2, the number of de-
compositions is determined to be 8 as a trade-off between
the decomposed object size and computation cost.

Our first experiment is to apply the optimizations 1
through 5 to clarify their effect in a single node. Throughout
the experiment the number of decompositions is fixed at not
8, as determined above, but 16. The reason is that the num-
ber should be 22" before optimization 1, as noted in 3.1, and
we must use the same value consistently during single-node
optimizations. Thus, the host CPU sends a total of 32 (=
(number o f decomposition) X (number of layers) = 16 X 2)
sub-objects to the GPUs to process all of them.

Figure 14 shows the execution time results where the
time of each bar is decomposed into the times for decompo-
sition, memory copy (memcpy), kernel, and the final addi-
tion. The decomposition and final addition are done by the
CPU. Memory copy includes both CPU-to-GPU and GPU-
to-CPU transfers. The kernel processes 32 sub-objects and
the kernel time includes the kernel-call time.

The bar A represents the starting point of our optimiza-
tion. Conventional optimizations, such as an appropriate
definition of grid and blocks, coalescing access of global
memory, and efficient use of local memory, have already
been applied.
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The bar B shows the effect of optimization 1. The
change in decomposition method eliminates the decompo-
sition time, shown as a very small white box at the top of
bar A. It also reduces the kernel time as the results of the
x; direction processing is repetitively utilized as described
in 3.1. Notice that the effect of results output as contiguous
memory space also shortens the final addition time of CPU.

The bar C shows the effect of optimization 2. The re-
sults show that the increased kernel time reduces memory
copy time. Changing from a complex data type to a real one
also reduces the time for the final addition on the CPU.

The bar D shows the effect of optimization 3. The in-
tegration of kernels naturally reduces the kernel time.

As to the bars E and F, we cannot simply decompose
the execution time as the optimizations realize parallel oper-
ations between computation and communication (optimiza-
tion 4) and between multiple GPUs (optimization 5).

The bar E shows the effect of stream processing. The
measured time shows improvement, but not as much as we
initially expected. The reason is twofold: first, in order to
save the memory space of GPU, we did not utilize double
buffering between the four operations, and second, the exe-
cution times of four pipe-stages are imbalanced (the execu-
tion time ratio of the pipe-stages A, B, C and D in Fig. 10
was 1:1:2:4) and the fourth stage of addition by CPU be-
comes the bottleneck.

The bar F represents the effect of optimization 5. Using
two GPUs nearly halves the time for E.

Eventually, F attains a 11.52 times speed-up from A.

Figure 15 shows the execution times of the CPU and
the GPU cluster, while changing the number of cluster
nodes.

The left-most bar represents the sequential processing
time by the CPU, following the flow of Fig.2, i.e. a con-
ventional FFT-based algorithm. The CPU uses just the CPU
part of Table 1. The sequential code is written in C and the
2D-FFT is realized by the FFTW 3.3.2 library. We obtain
this time as the baseline performance. Thus, we intention-
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Fig.15  Multi-node results
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ally do not utilize CPU parallelism, such as multicore multi-
threading and SIMD extensions. The results show 1018.32
seconds of processing time.

For the experiment using the 8 node GPU cluster, we
fixed the number of decomposition at 8. This is based on the
discussion in Sect. 2.

For the next bar of 1 node we use one node of the GPU
cluster defined in Table 1. From 2 nodes to 8 nodes, we
applied the multi-node optimizations described in Sect. 4.
The bars for (a) and (b) show the execution time for the
decompress-and-unicast method and multicast-and-decom-
press one, respectively. Each bar is decomposed into CGH
generation time and transfer one.

From the results we understand that broadcasting com-
pressed object is much faster than sequential unicasting
of decompressed sub-objects. The reason is as follows:
the broadcasting transfers the same data to all nodes and
thus the total transfer amount of the method (b), i.e., com-
pressed object, became 141.3 MB (i.e., size of 2 PNG
files); on the other hand, that of method (a), i.e., de-
compressed and decomposed data for 8 nodes, uses mul-
tiple unicasting and its total transfer amount became 2.8
GB (= (sizeof decompressed and decomposed ob ject) X
(number o fnodes — 1) = 400MB x 7). Thus, the method
(a) is even slower than the execution time by a single node.

From the viewpoint of scalability, the increase of nodes
decreases the generation time but at the same time increases
the transfer time. Even in method (b), the transfer time
slightly increases. These results indicate that the bottleneck
of the current system exists in the transfer time.

The rightmost bar indicates that 8 nodes cluster attains
the execution time of 4.28 sec, which means 237.92 times
speed-up of the sequential processing on CPU.

Further, for fair comparison with a CPU without GPUs,
we have performed an experiment of multi-threading on a
multicore-CPU using OpenMP. The program has been com-
piled by gcc ver.4.8.5(CentOS 7’s default compiler) with op-
timization option -O3. As the multi-node implementation is
slower than the single node one due to its heavy node-to-
node communication costs and low communication speed
of 1000BASE-T network, we show the single CPU results
in Fig. 16.
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Fig.16  CPU-only results by multithreading
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The results show that the case for 12 threads attains the
shortest execution time of 178.81 sec. This means that our
results attain 41.78 times better performance than that for a
multicore-CPU.

6. Conclusion

We have described our research results for overcoming the
difficulty of large-scale CGH generation on a multi-GPU
cluster. Our efforts include algorithm adaptation for a multi-
GPU cluster and both intra- and inter-node optimizations of
the code for multicore CPU and multi-GPU combined het-
erogeneous node architecture.

The intra-node optimizations attain an 11.52 times
speed-up from the original single node code. The extreme
results, using our 8 nodes 2-GPU architecture, show a 4.28
sec execution time for generating a 1.6 giga-pixel hologram.
This is 237.92 times faster than the sequential processing by
CPU using a conventional FFT-based algorithm and 41.78
times faster than the multithreaded implementation.

Thus, the major contribution of this paper is to show
that we can generate a giga-pixel CGH from a giga-pixel ob-
ject in a few seconds under the constraints of limited mem-
ory size of GPUs. It is enabled by adapting an FFT-based al-
gorithm to GPU cluster environment and by applying appli-
cation-oriented optimization and parallelization techniques.

Our future plan is to further reduce the extreme pro-
cessing time of 4.28 sec to realize our ultimate goal of real
time 3D display with high-resolution and wide view angle.
For this objective, we need to analyze the current results and
seek for possibilities of performance improvement by using
higher performance processors and network as well as their
code optimization and parallelization.
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