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Recognition of Moving Object in High Dynamic Scene for Visual
Prosthesis

Fei GUO†, Yuan YANG†a), Yang XIAO†, Yong GAO†, Nonmembers, and Ningmei YU†, Member

SUMMARY Currently, visual perceptions generated by visual prosthe-
sis are low resolution with unruly color and restricted grayscale. This
severely restricts the ability of prosthetic implant to complete visual tasks in
daily scenes. Some studies explore existing image processing techniques to
improve the percepts of objects in prosthetic vision. However, most of them
extract the moving objects and optimize the visual percepts in general dy-
namic scenes. The application of visual prosthesis in daily life scenes with
high dynamic is greatly limited. Hence, in this study, a novel unsupervised
moving object segmentation model is proposed to automatically extract the
moving objects in high dynamic scene. In this model, foreground cues with
spatiotemporal edge features and background cues with boundary-prior are
exploited, the moving object proximity map are generated in dynamic scene
according to the manifold ranking function. Moreover, the foreground and
background cues are ranked simultaneously, and the moving objects are
extracted by the two ranking maps integration. The evaluation experiment
indicates that the proposed method can uniformly highlight the moving ob-
ject and keep good boundaries in high dynamic scene with other methods.
Based on this model, two optimization strategies are proposed to improve
the perception of moving objects under simulated prosthetic vision. Exper-
imental results demonstrate that the introduction of optimization strategies
based on the moving object segmentation model can efficiently segment
and enhance moving objects in high dynamic scene, and significantly im-
prove the recognition performance of moving objects for the blind.
key words: visual prosthesis, moving object segmentation, high dynamic
scene, prosthetic vision

1. Introduction

Potentially dry age-related macular degeneration (AMD)
and ritinitis pigmentosa (PR) are the major retinal diseases
causing blindness [1], [2]. At present, no effective clinical
treatments are put forward to restore the blind vision. By
implanting visual prosthesis at the visual pathway to gener-
ate the electrical stimulation in the vision nerve has been
proven as an effective technique to restore partial vision
for the blind [3]. Currently, there are three main types of
retinal prosthesis: epiretinal, subretinal and suprachoroidal
prosthesis according to the location where the electrodes
implanted [4]–[6]. Between them, two most commercially
available devices are the Argus II and Alpha IMS, respec-
tively. The Argus II is developed by Second Sight Med-
ical Products, which have received FDA approval in USA
in February 2013 and CE marking in Europe in March
2011.While the Alpha-IMS is developed by Retinal Im-
plant AG, which obtained CE marking in Europe in July
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2013 [2]. Up to this date, there are more than 200 cases that
blind patients implanted the above devices. After implanting
the devices, subjects have better performance on the visual
tasks [7], [8].

Great progresses have been made in visual prosthesis,
the electrodes number have increased from 16 (Argus I) to
60 (Argus II). However, due to the challenges in technique
and biology, visual acuity in visual prosthesis is worse than
normal vision [9]. The best visual acuity in Argus II and
Alpha IMS that recent clinical reported was 20/1262 and
20/546, respectively [10], [11]. This is still lower than the
limit of visual acuity (20/200) for the legal blindness [12].
Although significant improvements for the activities of daily
life in the implant with such visual acuity by accessing va-
riety of daily visual tasks, it is still difficult to complete
more complex visual tasks such as location and recognition
in high dynamic scenes. The high density electrodes are
needed in future designs. Meanwhile, prosthetic implants
reported that the elicited phosphenes are unruly and have
limited gray levels. Therefore, we can conclude that the vi-
sual perception elicited by the visual prosthesis can cause
the poor understandings for the blind.

In visual prosthesis, image processing algorithms are
introduced in the external video processing unit (VPU) to
optimize the perception of objects in limited prosthetic vi-
sion. This is a variable way to improve the understanding of
the visual perception for the prosthetic implants. Many stud-
ies have developed image processing strategies, and evaluat-
ing the performance by performing visual tasks in simulated
prosthetic vision. Boyle et al. [13] adopted two traditional
processing methods (inverse contrast and edge detection)
and two image presentation techniques (distance mapping
and importance mapping) to evaluate the subject percep-
tions under simulated prosthetic vision with different reso-
lutions and gray scales. Van Rheede et al. [14] proposed im-
age presentation strategies (Full-Field Presentation, Region
of Interest (ROI) and Fish eye) based on retinal prosthetic
vision. Results showed that the region of interest and fish
eye methods increased the visual acuity of the prosthetic de-
vice user to produce favorable results during the static obser-
vation tasks. The Full-Field presentation method performs
better in visual tasks that need external environmental infor-
mation. Zhao et al. [15] studied the minimum information
requirement of simulated prosthetic vision aimed at solv-
ing the task of object and scene recognition. Lu et al. [16]
proposed the projection and nearest neighbor search meth-
ods to optimize the presentation of Chinese characters and
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paragraphs. Results showed that the two optimized strate-
gies increased the recognition of Chinese characters and the
user’s ability to read. Jea-Hyun Jung et al. [17] adopted a
system of active confocal imaging based on the light-field
technology. The system was able to help prosthetic users
focus on the objects of interest interesting objects while
weakening interference of background clutters. Jing Wang
et al. [18] and N. Parikh [19] proposed image processing
strategies based on improved itti-saliency detection method.
The results demonstrated that the saliency map can provide
clues for searching and performing tasks for users with vi-
sual prosthesis. Li et al. [20] proposed two image optimiza-
tion processing strategies based on GBVS -saliency detec-
tion model, aims to optimize the presentation in simulated
prosthetic vision. Results showed that the introduction of
image processing methods can improve the performance of
object recognition. Li et al. [21] proposed a real-time image
processing strategy, which based on a novel saliency detec-
tion algorithm. Their results demonstrated that the effective-
ness of adopting the novel saliency detection algorithm to
improve the processing efficiency of strategy and the percep-
tion of objects in a scene. Guo et al. [22] proposed visual in-
formation optimization strategies, which focus on the recog-
nition of the salient object detection in static life scenes.
The optimization strategies are based on a two-stage salient
object detection model and exploit the gray transform and
zooming techniques to optimize the salient object presenta-
tion. For the two-stage salient object detection method, the
saliency values are computed based on the ranking scores to
each side of the background queries in the first stage. In the
second stage, the saliency values are refined by the ranking
scores to the foreground segmented from the first stage. The
results showed the effectiveness of the optimization strate-
gies and the significance for the future application of visual
prosthesis.

Introduction of image processing algorithms has been
proven to be beneficial for optimizing the visual presenta-
tion and improving object recognition performance. How-
ever, studies have rarely investigated the recognition of
moving objects in high dynamic scenes under simulated
prosthetic vision. A time-to-contact map based on depth im-
age is proposed by McCarthy and Barnes [23], which focus
on free-moving incoming object perception. Results demon-
strated that the effectiveness of the proposed method for
emphasizing objects posing an imminent threat of collision.
Jing Wang et al. [24] proposed two image processing strate-
gies based on an improved background-subtraction (Vibe)
technique [25], aims to segment moving objects from daily
scenes and optimize the presentation in simulated prosthetic
vision. Results from their research showed that the adopted
image-processing strategies increased the recognition and
response accuracy in low resolution. But they only investi-
gated the feasibility of perceiving a moving object in a static
camera condition. However, the application of visual pros-
thesis is always in the moving camera and high dynamic
scenes. Hence, we proposed an unsupervised moving ob-
ject segmentation model that is effective and robust in high

dynamic scenes, such as illumination changes and mobile
camera. Using this model to segment the moving objects
can make the processing strategies more suitable for the vi-
sual prosthesis application condition.

In this study, the ultimate goal is to improve the percep-
tion performance in simulated prosthetic vision. Thus, on
the basis of the moving object segmentation method, Edge
detection and gray transform are combined to construct two
image optimization strategies. Moreover, psychological ex-
periments are performed to evaluate the effectiveness of the
optimization strategies in daily scenes. The results demon-
strate that the moving object segmentation model has the
superior in terms of accuracy and speed over other methods,
and the proposed strategies are able to improve the percep-
tion in daily life for the recognition of moving objects under
simulated prosthetic vision.

2. Material and Method

2.1 Subjects

The subjects participated in the experiment are 16 volun-
teers chosen from Xi’an University of technology. They (8
males and 8 females) are aged from 20 to 25 years. They are
all with normal or corrected visual acuity. The experiment is
performed in accordance with the Declaration of Helsinki.

2.2 Material

The materials used in the experiment were video sequences
selected from our daily life. The visual field is 20◦ that sim-
ulates the current prosthesis device. The resolution of each
frame was normalized to 320*320. In order to avoid the in-
fluence of resolution, the visual field of the main object in
the image are covered the angle of 12◦ − 14◦.

2.3 Image Processing Strategies

In the image processing stage, input images are adjusted to
the low resolution for simulating the implanted electrode ar-
ray. When present the daily life scenes, the low resolution
will lead to a visual features loss. Segmenting the moving
object from the whole life scene and increasing the contrast
between the foreground and background can optimize the
moving object perception under simulated prosthetic vision.
Therefore, a novel unsupervised moving object segmenta-
tion model is developed to extract the moving object in high
dynamic and moving camera scenes. Furthermore, two im-
age processing strategies are proposed to improve the per-
ception in simulated vision, and then compared with direct
lowering resolution (DLG) without any processing. Figure 1
shows the overview of the image processing strategies based
on moving object segmentation model. ‘SP’ and ‘FED’ pro-
cessing strategies are introduced to enhance the contrast of
foreground and background. In ‘SP’ processing strategy, the
gray-levels of background are linearly decreased to its half,
the foreground is remained as the binary segmentation map.
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Fig. 1 Flowchart of the proposed image processing strategies based on a moving object segmentation
model

For the ‘FED’ processing strategy, the background is trans-
formed the same as SP strategy, edge detection is used in
the foreground to extract the contour information. In the
final, the processing images are processed under prosthetic
vision with low resolution corresponding to the implanted
electrode array.

2.4 Moving Object Segmentation Method

2.4.1 Related Work

In current, the techniques of moving object segmentation
are urged widely in many applications. Supervised and un-
supervised methods are the two main categories in the mov-
ing object segmentation model. For the supervised meth-
ods, the manual annotations on given frames are needed

to identify the objects, and are implemented always based
on deep learning, which have good performance [26], [27].
However, for the unsupervised one, they focus on automatic
moving object segmentation without any annotations. Due
to the lack of information prior, the unsupervised method
is more difficult than the supervised one. Considering the
application of visual prosthesis, the unsupervised methods
are the focuses in this paper. In the unsupervised method,
background subtraction (BS) is a common technique for
the moving detection. In this model, the pixels that show
changes from one frame to another are considered as fore-
ground and others belonged to background. The detec-
tion performance is always relied on the background model.
A Gaussian mixture model (GMM) are studied and used
as the background model to deal with the dynamic back-
ground [28], [29]. Apart from GMM, Kernel density es-
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Fig. 2 Framework overview of the proposed moving object segmentation model

timation (KDE) and other non-parametric models are pro-
posed [30]. Also, the codebook model and improvements
are proposed to represent the background [31]. But so far,
these background modelling methods discussed above failed
to deal with the scenes with simultaneous motion of cam-
era and moving objects. Hence, more methods based on
optical flow and trajectory arises to address the challenges
of moving camera. For optical flow obtained from two
adjacent frames, it is widely used in motion estimation,
object segmentation and motion segmentation. Kwak et
al. [32]utilizes optical flow to initialize the motion field, the
Bayesian filters are maintained as background model. To
optimize this model, Mark Random Fileds are employed
by Zamalieva et al. [33]. In addition to that, Naranyan et
al. [35]increase the robustness of this model by employing
the orientation of optical flow. Deqing et al. [36]captures
the long range correlations in natural scenes by adopting a
fully connected layered model. In [37], for the optical flow,
its angle and magnitude are combined to maximize the ob-
ject motion differences. In order to decrease the errors in
optical flow, Tokmakov et al. [38] learned a coarse features
of optical flow field by utilizing an deep learning network
with end to end.

Trajectory is the combination of optical flow in time
sequences. Narayanan et al. [39] employed the point trajec-
tories to tracked the motion. Ochs et al. [40]and Brox et
al. [41] uses color features to analyse the long term trajec-
tory. To classify the trajectories, Elqursh et al. [42] and Cui
et al. [43] proposed a framework with Bayesian filtering and
a statistic model. Moreover, Berger et al. [44] described the
background by using the linear trajectories subspace. Wu et
al. [45] utilizes the motion difference to segment objects by
assuming the stronger of objects motion compared with mo-
tion of camera. But due to the large computational error in
the moving edge, the accuracy of object detection and seg-
mentation is influenced. Some improvements are needed to
reduce the interference of moving edges. Xu et al. [46] pro-

posed a variational model for the accurate optical flow esti-
mation. Liu et al. [47]proposed a SIFT-flow method based
on the constraint equation of the optical flow, this method
improves the moving detection effects. However, due to oc-
clusions and large displacement, the estimated optical flow
may contain significant errors. Also, most methods don’t
consider flow estimation and object segmentation together.
Hence, optical flow and trajectory-based method can’t accu-
rately label the foreground from the moving camera.

In this study, a novel unsupervised moving object seg-
mentation method is proposed, which aims to automatically
extract the moving objects in high dynamic scenes with
moving camera for the visual information optimization of
visual prosthesis. The whole processing flow is illustrated
by Fig. 2. The video sequences are first constructed as a
graph with super-pixels. A foreground cues are generated by
the integration of spatial edges map and the gradient magni-
tude of optical flow field. At the same time, the background
cues are generated based on the boundary prior. For each
super-pixel, we applied manifold ranking model to rank the
foreground cues and background cues, simultaneously. The
moving object maps are measured by integration of the rank-
ing scores of foreground and background cues. Finally, the
moving object segmentation maps are produced and refined
by the grab-cut. In this method, a novel framework is pro-
posed to detect the moving objects in high dynamic scene.
Unlike other works, the proposed framework focuses on in-
tegrating foreground and background cues simultaneously
rather than improving the optical flow accuracy. The si-
multaneously integration of the two cues can compensate
the respective drawbacks. Meanwhile, the spatiotemporal
edges are generated as a foreground cues instead of the op-
tical flow field. This scheme can eliminate the foreground
detection map errors caused by the occlusions and large dis-
placements in the optical flow estimation. The background
cues based on the boundary prior are exploited to refine the
foreground ranking maps.
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2.4.2 The Proposed Method

The proposed moving object segmentation method exploits
the manifold ranking model with foreground cues and back-
ground cues to achieve the reliable moving object segmen-
tation in moving camera scenes. We detailed describe the
proposed method by the following sections:

Cues Extraction of Foreground and Background: motion
features captured by optical flow between two consecutive
frames are crucial for the moving object detection, but errors
are still existed in optical flow estimation. In order to de-
crease the errors in detecting the target, similar to [48], [49],
we explored a spatiotemporal foreground features to locate
the moving object, which integrate the spatial edges and mo-
tion edge to compensate the errors of single motion features.
For a video frame F(x), a spatial edge map Es(x) of the
frame is computed first using ‘sobel’ operator. The optical
flow field V of the pairs of the consecutive frame is esti-
mated by [47]. Then, the temporal edge Et(x) is generated
by Eq. (1).

Et(x) = ‖�V(x)‖ (1)

where ‖�V(x)‖ is the gradient magnitude of optical flow
field V(x).

Then, we combine the spatial and temporal edges as
the spatiotemporal edge features using Eq. (2).

Ek(x) = Es(x) ∗ Et(x) (2)

For the spatiotemporal edge map, distinct motion pat-
terns and spatial gradient indicate the location of moving
object. The high values of pixels within the spatiotempo-
ral edge map are as the foreground cues to the subsequent
processing.

To further decrease the influences of the errors in opti-
cal flow estimation, in this paper, the background cues are
also be generated to estimate the moving object. For the
background cues, we defined the pixels in the frame bound-
ary to be the background cues based on the boundary prior.
The boundary priors inspired by [50] indicated that humans
tend to gaze at the image centre. This theory is used widely
in saliency detection, image segmentation and related re-
searches [51]–[53]. In this paper, the pixels in the bound-
aries of a given frame are as the background cues to be
ranked to estimate the moving object.

Manifold Ranking: in the proposed moving object segmen-
tation method, we model the segmentation as a manifold
ranking problem with background and foreground cues, si-
multaneously. Manifold ranking labels the graph by em-
ploying the intrinsic manifold structure of data (e.g. im-
ages). Given a node as query, the other nodes are ranked
with the relevance to the given query. In the manifold rank-
ing, the relevance between the given queries and the other
nodes is defined by a ranking function needed to be learned.
For example, in a dataset X = {x1, . . . , xi, . . . , xn} ∈ Rm×n,

some data are set as queries and the others need to be
ranked based on relevance with the queries.We define a
ranking function f : x → Rn, it can be treat as a vector
f = [ f1, . . . , fn]T that assigns a ranking score fi to each node
Xi. Meanwhile, we define a indicator vectory = [y1, . . . , yn],
in which yi = 1 if the Xi is query node, else yi = 0.
Next, a graph model G(V, E) are constructed, in which V
are the dataset X and E are the edges. An affinity matrix
W =

[
Wi j

]
m×n

is defined to weight the edges E. Based
on G, the degree matrix D = diag{d11, . . . , dnn} is obtained,
where d =

∑
j wi j. Thus, the optimal ranking function fran

of queries are captured by solving the following optimiza-
tion [52]:

fran = argmin
1
2

(
n∑

i j

wi j

∥∥∥∥∥∥∥
fi√
dii

− f j√
d j j

∥∥∥∥∥∥∥

2

+ μ

n∑

i=1

‖ fi − yi‖2) (3)

Where μ controls the balance between the smoothness con-
straint (the first term) and the fitting constraint (the second
term).i and j indexes the super-pixels on on the graph. By
setting the derivative to be zero, the ranking function can be
written as:

fran = (D − αW)−1 y (4)

Where α = (1 + μ)−1, W is the unnormalized Laplacian ma-
trix.

Graph Construction:Given the input video frame, super-
pixel segmentation is applied first by using SLIC [54]. Then,
a graph model G(V, E) is constructed, in which nodes V are
the set of super-pixels, E are the links of the adjacent super-
pixels. Based on the manifold ranking theory mentioned
above, the weight w between two nodes is described as

wi j = e−
‖ci−c j‖
σ2 (5)

Where i and j are the indexes of super-pixel nodes, ci and
c j are the mean value of two super-pixels, respectively. σ
is the constant to control the weight strength. Moreover, the
affinity matrix W and degree matrix D are obtained.

Ranking with Foreground Cues:For the foreground cues,
we utilizes the nodes in the spatiotemporal edges proxim-
ity map as the queries, the other nodes are as the unlabelled
data. The query nodes are the super-pixels in the spatiotem-
poral proximity map with high value, which are defined as

y (i) =

⎧⎪⎪⎨⎪⎪⎩
0 if Ek (i) < T

1 if Ek (i) ≥ T
(6)

where Ek (i) is value of i-th nodes in the spatiotemporal
probability map. T is the adaptive threshold generated by
otsu [55]. If the i-th node is query, the indicator vector
y (i) = 1, else y (i) = 0. Hence, the indictor vector y is
given. The object detection probability map Pf o based on
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Fig. 3 Scheme of the ranking with background cues (top, bottom, left
and right side boundaries)

foreground cues is ranked by ranking functions, which is
described as

Pf o = f̄ran (i) (7)

where f̄ran is the normalized version of fran, and i indexes
the nodes on the graph.

Ranking with Background Cues: For the background
cues, given the dissimilar of different side super-pixels in
the image boundary, the nodes in the boundary are divided
into four sides: the bottom, the top, the right and the left
part to be ranked separately instead of the all the boundary
nodes, simultaneously. The scheme is illustrated in Fig. 3.
This can decrease the effects of imprecise queries and im-
prove the ranking effect. We selected the right boundary
prior in details to describe the ranking scheme.

For the right boundary, the right-side nodes are uti-
lized as queries, the other nodes are as the unlabelled data.
Hence, the indictor vector y is obtained, all the other nodes
are ranked according to the ranking function. We normal-
ized the ranking value, and the probability map based on
top boundary is written as:

Pr = 1 − f̄ran (i) (8)

Where i indexes the super-pixel node on the graph, f̄ran is
the normalized version of fran.

Similarly, we compute the other three maps Pt, Pl and
Pb by using top, left and bottom boundaries as queries, re-
spectively. The object detection probability map Pba is ob-
tained by integrating the four probability maps by the fol-
lowing process:

Pba = Pt × Pb × Pl × Pr (9)

The final moving object detection map P is generated
by combining the background and foreground cues, which
are written as:

P = Pba × Pf o (10)

Obtained the final moving object map, we employed

grab-cut method [56] to segment the detection result. We
segment the moving probability map as a binary mask by
setting an adaptive threshold, the binary mask is as the ac-
curate region to the grab-cut. We can effectively segment
the accurate moving objects. Due to the accurate location
of the moving object instead of the manual rectangle region,
the grab-cut method can get the relatively good results with
efficient.

2.5 Prosthetic Vision Model

For the simulated prosthetic vision, a Gaussian distribution-
based phosphene model is introduced [57]. The video im-
ages must be down-sampled to 24*24 and 32*32 resolution
to match the number of electrodes in the visual prosthesis. In
details, the images are divided into regions with fixed size,
and the pixels in the regions are combined. The mean gray
value of the pixels in the region is used as the central lumi-
nance value of the Gaussian points. The luminance distribu-
tion of simulated prosthetic vision is as the Gaussian curve.
This model is described as:

I (x, y) = A (ux, ux) •G (x, y) (11)

whereA (ux, ux)is the gray value of the stimulated pixels and
G (x, y) represents the Gaussian distribution function, which
is shown as:

G (x, y) =
1

2πσ2
e−

(x−ux)2+(x−uy)2

2σ2 (12)

The images using the prosthetic vision model corre-
spond to the electrode arrays. This process is called ‘Low-
ering Resolution with Gaussian dots,(LRG)’.

2.6 Experimental Setup

Subjects are seated 60 cm in front of a 21 inches LCD mon-
itor (Lenovo INC, BeiJing, 1280*1024 resolutions, 26◦ vi-
sual fields). The videos display on the centre of the monitor,
randomly. The experimental process is controlled by the
psychological toolbox software ‘PsychToolbox-3’. Before
the start of the experiment, the subjects are provided with
a list of the experimental objects. This helps the subjects
familiarize themselves with the upcoming objects and the
experimental protocol. During the experiment, the videos
are divided into three groups (‘DLG’, ‘SP’ and ‘FED’) and
randomly presented to the participants.

2.7 Data Analysis

The recognition score (RS) are used to quantify the recog-
nition results. If the subjects are able to correctly recognize
the objects and give the right name, RS is set to 2. If the sub-
jects can not correctly name the object, they can describe the
shape or specific features of objects, RS is set to 1. Other-
wise, the RS is set to 0. The values of RS are normalized
to the recognition accuracy (RA) under different processing
strategies, as shown in Eq. (13). The software of Statistical
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Fig. 4 Qualitative comparison of our method with SAVOS [49], calMoSeg [58] and SCUBU [59]
models on the representative subset of the FBMS dataset

Product and Service Solutions (SPSS) for Windows (SPSS
Inc.) is adopted to perform statistical analysis. The results
are expressed in the form of mean ± S EM (standard error
of mean). A two-factor analysis of variance (ANOVA) is
adopted as the metric to evaluate the effect of statistical sig-
nificance of the resolution and processing strategies.

RA =
RS
2
× 100% (13)

3. Results and Discussion

3.1 Results of Moving Object Segmentation

In order to illustrate the advantages of the moving object
segmentation model, our method is compared with three
state-of-art methods, which are SAVOS [49], calMoSeg [58]
and SCUBU [59] based on the Freiburg-Berkeley Motion
Segmentation dataset (FBMS) [40]. The video sequences
provided by the FBMS dataset (including 59 videoes) con-
tains complex scenes with the camera motion such as trans-
lation, rotation and scaling transformations, which lead to a
more challenge in moving object segmentation. The com-
parison of segmentation effects using the FBMS dataset is
comprehensive. Before the evaluation, all the optical flows
of different methods are estimated in davance by [47]. First,
the qualitative comparisons are performed with other state-
of art methods. Given the length of the paper, Fig. 4 shows
the binary masks of the moving object segmented by differ-
ent models, which including 12 representive videos selected
from the FBMS-testing dataset. From the analysis of the
images, we can conclude that the results processed by our
method have advantage over others. It ensures the clarity
and completeness of the object contour. Moreover, it is ro-
bust to the changes in scenes and completes the segmenta-
tion task well in multi-objects and moving camera scenes.

Furthermore, the quantitative comparisons are exe-
cuted using the metric of F − measure. In the quantita-
tive evaluation, Precision reflects the proportion of cor-

Table 1 Quantitative comparison of our method with three state-of-art
methods on the representative subset of FBMS dataset using F − measure
metric, and the average F − measure on FBMS dataset. The best results
are boldfaced

Videos ours SAVOS [49] calMoSeg [58] SCUBU [59]
Camel01 0.823 0.812 0.226 0.173

Cars1 0.856 0.766 0.542 0.324
Cars4 0.944 0.786 0.874 0.532
Cats01 0.743 0.847 0.706 0.466
Dogs01 0.914 0.821 0.546 0.265
Farm01 0.846 0.816 0.723 0.473
Goats01 0.893 0.924 0.864 0.305
Horses04 0.836 0.634 0.346 0.105
People1 0.927 0.656 0.842 0.776
People2 0.893 0.825 0.802 0.763
Tennis 0.885 0.871 0.773 0.726
Lion01 0.876 0.805 0.905 0.793

Average 0.673 0.616 0.524 0.364

rect salient pixels with the salient pixels, while recall cor-
responds to the fraction of correctly assigned salient pix-
els with the ground truth. However, Precision and recall
ignored the true negative assignments, so we utilized the
F − measure metric that is the combination of precision and
recall, which is defined as:

F − measure =
(1 + β2) × Precision × recall
β2 × Precision + recall

(14)

In the perception evaluation, the Precision is more im-
portant than recall. As suggested by many moving object
detection works [49], [58], [59], β2 is often set to 0.3 to raise
the importance to the Precision value.

In Table 1, it shows the comparison of F − measure
scores on the representative subset of FBMS dataset and the
average F − measure scores on the whole FBMS dataset.
The proposed method obtained a higher average score with
other models, which increased 9% with SAVOS, 28% with
calMoSeg and 85% with SCUBU, respectively. It demon-
strated that the proposed method have more robustness in
different moving camera scenes.

In Table 2, the average time taken by each method are
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Table 2 Average time taken in FBMS dataset. The best and second re-
sults are boldfaced and unerlined, accordingly

Mothod ours SAVOS [49] calMoSeg [58] SCUBU [59]
Time(s) 0.106 0.178 0.625 0.005

Code Type Matlab Matlab Matlab C++

Fig. 5 Recognition accuracy of three processing strategies at two resolu-
tions (* p<0.5, **p<0.01, *** P<0.001, n=16)

evaluated on an Intel Core I7 machine with 16GB RAM.
The test video sequences are the resolution of 640*480. It
showed that the proposed method have taken the sub-lowest
average time. In our method, the learnt optimal ranking
affinity matrix is computed only once, the only change is
the indictor vector, which is a binary vector. The main time
consumptions are included in the super-pixel segmentation
and optical flow estimation. These results indicated that our
method can detect and segment moving objects in moving
camera scenes with superior efficiency.

3.2 Results of Moving Object Recognition

The recognition rate results of moving objects outdoor at
two resolutions, 24*24 and 32*32 using the three different
image processing strategy, DLG, SP and FED are shown
in Fig. 5. The RA score using DLG strategy at resolu-
tion of 24*24 is 44.06 ± 10.04%, which is the lowest RA
score. However, the RA scores significantly (p < 0.001)
improve to 75.68 ± 8.17% and 85.31 ± 8.65% under SP and
FED strategies, respectively. The RA scores under DLG
strategy at 32*32 resolution is 55.94 ± 12.92%, while, un-
der SP and FED strategies, the average RA scores sig-
nificantly improve to 85.34 ± 8.65% and 86.56 ± 7.69%
(p < 0.001), respectively. The highest RA score is obtained
in FED at the resolution of 32*32. The statistical analy-
sis indicates that the processing strategies have significant
effects (Fstrategy = 119.277, p < 0.001) on the RA score.
Meanwhile, resolution has significant impact on RA scores
(Fstrategy = 54.004, p < 0.01). For the two processing strate-
gies, there is no significant interaction between them.

Compared with SP and FED, the performance of object
recognition is the worst in DLG. Without any optimization
processing, it is hard for the prosthetic implants to recog-
nize objects in dynamic scene, especially in mobile camera

and insufficient contrast of luminance. According to the be-
havioural studies, larger, brighter and fast moving objects
are biased by human attention [61]. Therefore, the mov-
ing segmentation model is introduced to extract the moving
object from the whole scenes. Gray levels and edge infor-
mation have an influence on the recognition of object and
face when implanting visual prosthesis [62]–[64]. Based on
the segmentation results, we attempt to reduce the gray lev-
els to weaken the background and remain the binary mask
and edge information to enhance the foreground. Thus, they
can effectively increase the contrast between the foreground
and background. The results demonstrated that SP and FED
were significantly advantageous to DLG in guiding subjects
to perceive moving objects.

3.3 Limitations

In the proposed method, occlusions and large displacement
may occur in optical flow estimation when the moving ob-
jects are in high dynamic scene [47]. Although the spa-
tiotemporal edges are proposed as the foreground cues in-
stead of the optical flow field to eliminate the errors in opti-
cal flow estimation, the occlusions and large displacements
can still cause the inaccuracy results in some extent. Also,
the current optical flow estimation models have high com-
putational cost, which can decrease the efficiency of moving
object detection. Furthermore, in order to eliminate the de-
tection errors of foreground ranking map, the background
cues are exploited. The background cues rely on the bound-
ary prior theory, which assumed that the pixels in the image
boundaries tend to be the background pixels and the detec-
tion objects are always in the image center. However, the
assumption sometimes may fail, especially when the mov-
ing objects touch the image border, which will lead to the
accuracy results.

4. Conclusion

In this paper, an unsupervised moving object segmenta-
tion method is proposed that exploits the manifold rank-
ing model fused background and foreground cues, simuta-
neously. Based on the moving segmentation results, two
image optimization strategies are proposed to improve the
perception of moving objects in simulated prosthetic vision.
The experimental results demonstrated that the moving ob-
ject segmentation method outperforms the existing methods.
Furthermore, psychological experiments indicated that ‘SP’
and ‘FED’ strategies are benificial to optimize the percep-
tions of moving objects. It is hoped that the proposed mov-
ing object segmentation-based image processing strategies
may make a great contribution to the further development of
visual prosthesis, which assists the implants to obtain inde-
pendent mobility in real-life.
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