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The Effect of Axis-Wise Triaxial Acceleration Data Fusion in
CNN-Based Human Activity Recognition

Xinxin HANT-'", Jian YE™"", Nonmembers, Jia LUO'""' Member, and Haiying ZHOU', Nonmember

SUMMARY  The triaxial accelerometer is one of the most important
sensors for human activity recognition (HAR). It has been observed that
the relations between the axes of a triaxial accelerometer plays a signifi-
cant role in improving the accuracy of activity recognition. However, the
existing research rarely focuses on these relations, but rather on the fusion
of multiple sensors. In this paper, we propose a data fusion-based con-
volutional neural network (CNN) approach to effectively use the relations
between the axes. We design a single-channel data fusion method and mul-
tichannel data fusion method in consideration of the diversified formats of
sensor data. After obtaining the fused data, a CNN is used to extract the
features and perform classification. The experiments show that the pro-
posed approach has an advantage over the CNN in accuracy. Moreover, the
single-channel model achieves an accuracy of 98.83% with the WISDM
dataset, which is higher than that of state-of-the-art methods.

key words: triaxial accelerometer, human activity recognition, data fusion,
convolutional neural network

1. Introduction

Human activity recognition (HAR) is widely used in secu-
rity, medical, smart homes and entertainment. HAR de-
tects and recognizes human activities in the real environ-
ment [1] by learning useful information from raw sensor
data or videos containing human motions. In the past, ma-
chine learning algorithms that relied on manual design fea-
tures were used to solve HAR tasks [2]. However, the per-
formance of the model is limited because machine learning
algorithms heavily rely on manual design features and can
only extract shallow features.

Inrecent years, an increasing number of mobile devices
have been embedded with sensors such as accelerometers
and gyroscopes, which has greatly promoted the develop-
ment of sensor-based HAR [3]. A sensor-based model re-
duces the computational complexity and extends the appli-
cation scenarios compared to that of a video-based model,
which makes the sensor-based model increasingly popular
in HAR. For example, Chen and Shen analyzed the per-
formance of smartphone-sensor behavior[4]. In [5], the
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authors believe that not only accelerometer plays an im-
portant role in solving HAR problems, but also the role of
gyroscopes is worth exploring. In [6], experiments show
that accelerometers contain more discriminant information
than gyroscopes, while using both will improve classifi-
cation performance. With the impressive performance of
deep learning in image recognition and speech recognition,
an increasing number of researchers have attempted to use
deep learning methods to solve sensor-based HAR and has
achieved good performance [7], [8]. Deep neural networks
can obtain higher accuracy than traditional machine learn-
ing methods and can be used in different application sce-
narios [9]. Gjoreski et al. demonstrated that deep learning
has the ability to automatically extract features, while at the
same time pointing out that it performs poorly in solving
HAR problem with small amount of data[10]. Compared
with traditional machine learning methods, deep learning
automatically extracts features by training an end-to-end
network instead of relying on experience to manually ex-
tract features [11], [12].

The triaxial accelerometer is one of the most impor-
tant sensors used in sensor-based HAR [13]. The relations
between axes are called hidden relations in [14] and cor-
relation in [15]-[17]. Hidden relations between axes can
help the deep activity recognition model increase its accu-
racy [14], [16], especially for discriminating between activ-
ities that involve translation in just one dimension [18]. The
relations between the axes in three directions is considered
in [19]. In [20], [21], the authors consider the relations be-
tween every two axes. For instance, using synthetic accel-
eration to reduce the rotational interference caused by dif-
ferent placement positions of mobile phones and arranging
sensor data to generate an activity image consider the re-
lations between axes to some extent. However, the design
of these methods depends largely on the experience of the
researchers and has a greater impact on the classification ac-
curacy. These methods have certain limitations.

To solve this problem, we propose a data fusion-
based convolution neural network (CNN) approach. Single-
channel data fusion method and multichannel data fusion
method are designed in consideration of the diversified for-
mats of sensor data. After using the data fusion method to
obtain fused data, a CNN is used for the feature extraction
and classification. The experimental results indicate that
our approach has a higher classification accuracy than that
of the CNN. When the single-channel data fusion method
is used, the accuracy exceeds that of the state-of-the-art
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methods. The contributions of this paper are as follows:

1. We consider the hidden relations between axes and pro-
pose a data fusion-based convolutional neural network
approach to explore the impact of the hidden relations
on classification accuracy.

2. We design single-channel and multichannel data fusion
method to discuss the influence of different data for-
mats of sensor on classification accuracy.

3. We show that the proposed approach is suitable for
sensor-based human activity recognition, and is es-
pecially suitable for solving the problem of activity
recognition with large differences in triaxial data.

4. We demonstrate that our approach has an advantage
over the CNN and state-of-the-art methods.

The remainder of this paper is organized as follows. In
Sect. 2, we review sensor-based HAR. The proposed meth-
ods and model architecture are introduced in Sect. 3. Sec-
tion 4 shows the dataset and the specific information of the
experiments. Section 5 covers the conclusion of this paper.

2. Related Work

Deep learning has the ability to find intricate structures and
is good at dealing with high-dimensional data[22], which
makes it widely used in HAR.

The sensor data here refer to the data segmented us-
ing a sliding window. In [23], a deep CNN was proposed
to perform activity recognition, and the author explored the
influence of different hyperparameter settings on the classi-
fication accuracy. Using a deep CNN to handle multichan-
nel time-series signals was presented in [11]. Hammerla
et al. [24] provided the first systematic exploration of the
performance of deep, convolutional, and recurrent mod-
els. Ordéiiez and Roggen [25] combined convolutional and
LSTM recurrent units to propose a generic framework for
activity recognition. The results showed that a deep ar-
chitecture based on the combination of convolutional and
LSTM recurrent layers outperformed previous results and
could enhance the ability to recognize similar activities.
These works take the sensor data directly as the input of the
model and then use the deep learning approaches to extract
the features and perform classification.

Different data preprocessing methods are proposed to
eliminate the noise of the sensor data and to increase the
classification accuracy. Panwar et al.[26] used a CNN
to recognize elementary arm movements. Considering the
noise and artifacts of the sensor data, different data prepro-
cessing techniques were used. Alsheikh et al. [27] used the
spectrogram representation as the input for the deep activity
recognition model, as it can reduce computational complex-
ity by reducing the data dimension. The authors also pro-
posed a new model based on deep belief networks, which
includes two stages: an unsupervised pre-training step and
a supervised fine-tuning step. In [28], the authors proposed
user-independent and user-dependent models. The data pre-
processing stages of the two models include the following
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steps: converting sample rate, calculating composite value,
using window function and Fourier transform to calculate
power spectrum. The author in [29] employed Extensible
receptor Stream Processing (ESP) to preprocess sensor data.

HAR usually depends on data from diversified sen-
sors. How to fuse the data of these sensors is also worth
exploring. Miinzner et al. [30] used a CNN and proposed
four multimodal sensor fusion approaches, which are early
fusion, sensor-based late fusion, channel-based late fusion
and shared filters hybrid fusion. Radu et al.[31] used the
restricted Boltzmann machine (RMB) and proposed a mul-
timodal RBM (MM-RBM) which is a variant of a RBM.
The experimental results showed that the performance of
the MM-RBM outperforms C4.5, SVM and Random Forest.
This outcome means that the deep learning can better extract
the discriminative information from the multiple sensor data
than can the shallow methods.

When multiple sensors are used for activity recogni-
tion, different data fusion methods lead to different results,
indicating that there is a certain relation between multiple
sensors. Since there are relations between sensors, are there
hidden relations between axes? The x-axis, y-axis and z-
axis directions of the triaxial accelerometer are based on the
screen of the mobile phone. Different positions of the mo-
bile phone will cause the direction of the axis to change. In
[32] and [33], the authors both eliminate the possible rota-
tional interference by synthesizing the acceleration without
considering the direction of the axis, which partly takes into
account the relations between the three axes. By converting
the time-series signal of the sensor into an active image con-
taining the hidden relations between axes, the recognition
accuracy of the model is obviously improved [14]. How-
ever, these methods have some limitations because they are
largely dependent on human domain knowledge. In this pa-
per, we propose a data fusion-based CNN approach, which
allows the network to acquire hidden relations between axes
through training.

3. Methodology

The principle of our approach is shown in Fig. 1. To make
use of the relations between the three axes of an accelerom-
eter, we use convolution to fuse the triaxial data.

The sensor data have two formats. One is a multichan-
nel format where each axis is a single channel [12], [27],
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Accelerometer Data > Fused Data il Classification & Feature Extraction

Fig.1  Overall flow of our data fusion-based convolutional neural net-
work approach; ax + by + cz refers to the linear combination of the triaxial
acceleration data.
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Table1 Input description of the model established by the baseline algo-
rithm.
Model Data description Data format
MC-BA Raw sensor data (1,200, 3)
SC-BA Raw sensor data (3,200, 1)

[30], and the other is a single-channel format where the x—,
y—, and z-axis data are arranged in rows [30], [35], [36]. For
the two formats, we designed a single-channel data fusion
method and a multichannel data fusion method. For each
data format of sensor, there is a convolution kernel. We
only want a linear combination of data, so we do not use the
activation function when performing the data fusion. If an
activation function such as the rectified linear unit (ReLU)
is used, part of the data will become zero, meaning that the
fusion result will be partially lost. Baseline algorithms were
chosen for comparison and analysis.

3.1 Baseline Algorithm

For a baseline algorithm, we used the CNN to compare with
our approach. The CNN is a supervised learning algorithm
that relies on the labels of the data. A generic CNN structure
is composed of an input layer, convolutional layers, pool-
ing layers, fully connected layers, normalization layers and
an output layer. The network can automatically extract fea-
tures from the sensor data without manually designing the
features.

For the two data formats of sensor, we established two
baseline algorithms accordingly. One is a MC-BA (multi-
channel baseline algorithm), the other is a SC-BA (single-
channel baseline algorithm). Detailed information is shown
in Table 1.

3.2 Deep Learning Architecture

Data preprocessing - We use normalization techniques to
preprocess the raw sensor data. Z-normalization (zNorm) is
a widely used normalization technique that uses the mean
and standard deviation of the raw data. The normalized out-
put is calculated by

Xjj — mean(x;)

std(x;)

x| = (1)

The x;; is jth element on channel i. mean(x;) and
std(x;) refer to the mean and the standard deviation over all
data for channel i.

Convolutional Layer — Each layer in a CNN consists
of many neurons. A convolutional layer is used to extract
features with local connectivity and shared weights charac-
teristics.

In the convolutional layer, a convolution operation is
performed on the input data, and its output forms the next
layer of the network. Performing a dot product operation on
the convolution kernel and input local area produces an out-
put value that is one neuron in the next layer. The input data
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have three dimensions: width, height and depth. When the
depth of the input data is 1, we can obtain a 2-dimensional
output by moving the convolution kernel according to the
stride and performing dot product operation on the width
and height of the input data. This output is called a feature
map. When the depth of the input data is not 1, the num-
ber of 2-dimensional outputs is the same as the depth, and
these 2-dimensional outputs are added to generate a feature
map. The feature maps generated by different convolution
kernels are stacked along the depth dimension to form the
entire output of the convolutional layer. The output of the
convolutional layer can be calculated by

M-1
I+1,k _ I+1,k Lk I+1,k
X, = Wy Xy T b 2)
m=0
x3+2,k — O—(x?—]'k) (3)

M is the length of the convolutional kernel. wh " is the

value at the position m of the convolutional kernel. b'*1* is
the bias term for the kth feature map in the (/ + 1)th layer.
The output of Eq. (2) represents the jth neuron of the kth
feature map in the (I + 1)th layer. If we want to add some
nonlinearity to the network, we can use Eq. (3) in which o
is the activation function.

Pooling Layer — Unlike the convolutional layer that
explores the local correlation of the previous layer of fea-
tures, the pooling layer combines the semantically similar
features to generate a single neuron in the next layer [22].
The average pooling calculates the mean value of each local
area and outputs the mean value to the next layer. The max
pooling selects the maximum value of each local area and
passes the output of this area to the next layer.

Softmax Layer — In a classification task, we can use
the softmax layer as the last layer of the model to obtain a
final classification result. The final classification result can
be calculated by

XW;

“4)

f(@) = argmax p(y = clx) = arg max —

3 eXWa
n

Learning Rate Schedule — Learning rate is an impor-
tant hyperparameter that affects the final classification re-
sult. If the learning rate is too large, the loss curve may
fluctuate or even rise. If the learning rate is too small, it will
lead to an increase in the number of iterations. In this paper,
we use a learning rate that dynamically changes according
to the number of iterations. Setting a relatively large learn-
ing rate at the beginning of the training can quickly converge
the model to an ideal accuracy, but there will be large fluctu-
ations in the loss and accuracy curves. Therefore, setting a
relatively small learning rate in the middle stage allows the
model to continue learning while fluctuating less. In the late
stages of training, the learning rate will continue to decrease,
and fluctuations can be further reduced. This method can
reduce the overfitting and the number of iterations to some
extent.
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Table 2  Data description of the multichannel model.
Model Data description Data format
MCM-FRD Raw sensor data and fused data (1,200,n + 3)
MCM-FD Fused data (1,200, n)

Algorithm 1 Multichannel Data Fusion Algorithm.

Input: Labeled dataset {(x;, y;, zi), a;}, unlabeled dataset {(x;, y;, z;)}.
Output: Activity Labels of unlabeled dataset
1: repeat
2: Forward Propagation:
3: for each labeled data (x, y, z) do
4 Use (2) to perform data fusion operation on the input data
5: Concatenate fused data and input data along channel direction
6
7
8

Use (2) (3) to perform convolution operation
Perform max pooling operation on the output of convolutional layer
: end for
9: Use (4) to perform classification
10: Back propagation:
11: Use stochastic gradient descent algorithm to perform back propagation
12: until weight convergences;
13: for each unlabeled data (x, y, z) do
14: Use the trained network to predict activity labels
15: end for

3.3 Multichannel Data Fusion Method

For the multichannel format of sensor data, the number of
channels is 3, and the number of rows is 1. The multichan-
nel data fusion method adopts a 1 X 1 convolution to fuse
the triaxial data and then uses a CNN for the feature extrac-
tion and classification. To explore whether the fused data
can completely replace the raw sensor data, we established
two models: the model that concatenates the raw sensor data
with the fused data and the model that only uses the fused
data. Table 2 shows a brief description of the two models.
Here, we set the number of fusion data to be the same as the
number of filters in the data fusion operation.

For the MCM-FRD (multichannel model based on
fused data and raw data), we use a 1 X 1 convolution to fuse
the x-, y- and z-axis data, and then we concatenate the fused
data with the raw x-, y- and z-axis sensor data along the
channel direction so that the data are changed from 3 chan-
nels to n + 3 channels. n is the number of filters in 1 X 1
convolution, and 3 is the number of channels of raw sen-
sor data. Next, we perform a convolution operation with a
1 x 7 convolution kernel and pooling operation. Finally, the
softmax classifier is used to obtain the output of the model.

The pseudo-code for the MCM-FRD is described in Al-
gorithm 1. The schematic illustration of the MCM-FRD is
shown by the solid line in Fig. 2.

For the MCM-FD (multichannel model based on fused
data), we only use the fused data generated by using a 1 X 1
convolution, and does not concatenate the raw sensor data
with the fused data. The format of the data is (1,200, n),
where n represents the number of filters in a 1 X 1 convo-
lution. Then, we perform the convolution operations and
pooling operations on the fused data directly. Finally, the
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Fig.2  Schematic illustration of the multichannel model.
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Fig.3  Input layer and convolutional layer of MC-BA.
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Fig.4 Input layer, data fusion layer and convolutional layer of MCM-
FD.

softmax layer is used for the activities classification. The
schematic illustration of the MCM-FD is shown by the
dashed line in Fig. 2.

Compared with the baseline algorithm, our MCM-FD
is equivalent to adding a data fusion layer before the first
convolutional layer in the baseline algorithm. Data fusion
is achieved by convolution operations. Let’s compare the
difference between the values of first convolutional layer in
MC-BA and MCM-FD. In this section, we do not consider
bias terms in order to simplify the equation. In Figs.3 and
4, the green box represents the convolution kernel, and the
orange box represents the output value of the convolution
operation.

For convenience of comparison, the convolution ker-
nel size is set to 1 X 2. We use the input value
as [[x1, x21, [y1, Y21, [z1, 22]], the corresponding convolution
kernel uses [[k1, k2], [k3, k4], [ks, k¢]] indicated. The output
value of Fig. 3 can be calculated by

output = 0'()61]61 + x2ky + y1k3 + y2k4 +z1ks + Z2k6) (5)

In order to obtain the fused data, we use 1 X
1 convolution to fuse the three channels of the input
data.  Assuming that the number of 1 X 1 convolu-
tion kernel is three, the data fusion layer has three
channels. The three convolution kernels are represented

by [[a1], [b1], [e1]], [[a2], [b2], [e21], [[as], [b3], [c3]], respec-
tively. The 1 X 2 convolution kernel is represented by
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[[k1, k2], [k3, kal, [ks, ks]]. The value represented by the or-
ange box of the data fusion layer in the Fig. 4 can be calcu-
lated as follows

DF_Output =o(ajx; + blyl +c121) (6)

The output value represented by the orange box in the
convolutional layer can be calculated by Eq. (7). Comparing
Egs. (5) and (7), it can be see that the output of Eq. (7) has
more possibilities, which means that the CNN can extract
more useful information than the baseline algorithm after
adding the multichannel data fusion method.

MCM-FD _Output = o-((a;x1 + b1y, + ¢121)k;
+(a1x2 + by + c122)kz
+ (a2x1 + by + 221)k3
+ (a2x2 + boya + 222)ks
+ (asx1 + bay1 + c3z21)ks
+ (asxz + b3y + c322)ke) (7N

3.4 Single-Channel Data Fusion Method

For the single-channel format of the sensor data, the num-
ber of channels is 1, and the number of rows is 3. Due to the
change in the sensor data format, we change the convolu-
tion kernel size from 1 x 1 to 3 X 1 when performing the data
fusion operations. The single-channel data fusion method
adopts a 3 x 1 convolution to fuse the triaxial data. We es-
tablish a model to make use of the relations between axes.
The 2-dimensional convolution kernel of the shape nx 1 was
used to extract the features, where n is equal to the number
of rows of the data.

For the SCM-FD (single-channel model based on fused
data), we adopt a 3 X 1 convolution to fuse the x-, y- and z-
axis data, which can be called a data fusion operation. A
convolution operation with a convolution kernel size of 3 X
1 is performed on the raw sensor data; then, a fused data
of shape (1,200, 1) can be obtained. When multiple fused
data are required, we repeat the convolution operation with
a convolution kernel size of 3 X 1 on the raw sensor data.
Next, we concatenate the fused data by row to obtain the
input data of the next layer. If the number of fused data is
n, we perform the 3 X 1 convolution operation n times. The
pseudo-code for the SCM-FD is described in Algorithm 2.
Here, we set the number of fused data to be the same as the
number of convolutional layers that perform the data fusion
operation.

The schematic illustration for the SCM-FD is shown
in Fig. 5. We first perform data fusion operations to obtain
fused data. The number of fused data is n, and each shape
is (1,200, 1). Then, we concatenate each fused data by row
to form the entire fused data, and its number of channels
is 1. The shape of entire fused data is (r,200,1). CNN
with a 1-dimensional kernel only can capture local depen-
dency, while the CNN with a 2-dimensional kernel can cap-
ture local dependency and spatial dependency [34]. Hence,

817

Algorithm 2 Single-Channel Data Fusion Algorithm.

1: Notations:

2: N, the number of fused data
Input: Labeled dataset {(x;, y;, zi), a;}, unlabeled dataset {(x;, y;, zi)}
Output: Activity Labels of unlabeled dataset
3: repeat
4: Forward Propagation:
5:ie1
6
7
8

: for each labeled data (x, y, z) do

while i < N, do

: Use (2) to perform data fusion operation on input data

9: i=i+1

10: end while

11: Concatenate fused data by row

12: Use (2), (3) to perform convolution operation on fused data

13: Perform max pooling operation with the output of convolutional
layer

14: end for

15: Use (4) to perform classification

16: Back propagation:

17: Use stochastic gradient descent algorithm to perform back propagation
until weight convergences;

18: for each unlabeled data (x, y, z) do

19: Use the trained network to predict activity labels

20: end for

n 1x200x1
1x194x50

Input layer 2
3%200x1 B / / 1x97x50 1x91x50
' / | 4 1x45%50
s 74 / /|
L —J € Pooling layer
Pooling layer Convolutional layer 1%2 filter

Convolutional layer 132 filter 1%7 filter o

07 filter Softmax
Flatten layer
layer

Concatenate layer
Data fusion layer Y

3x1 filter

Fig.5  Schematic illustration of the single-channel model.

E—
31 —
convolution
—
| \ teeees
| —

Convolutional layer
Input layer

Fig.6  Input layer and convolutional layer of SC-BA.

the convolution kernel size of the next layer is set to n X 7.
Next, we perform convolution operations whose convolu-
tion kernel size is 1 X 7 and the pooling operations. The last
layer of the model is a softmax layer, and the output of the
model is obtained by the softmax layer.

Let’s compare the difference between the values of first
convolutional layer in SC-BA and SCM-FD. We do not con-
sider bias terms in order to simplify the equation. In Figs. 6
and 7, the green box represents the convolution kernel, and
the orange box represents the output value of the convolu-
tion operation.

As for Fig. 6, we use the input value as [[x], [y], [z]].
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3x1

convolution
3x1
convolution

Convolutional layer

Concatenate layer
Input layer .
Data fusion layer

Fig.7 Input layer, data fusion layer, concatenate layer and convolutional
layer of SCM-FD.

The corresponding convolution kernel uses [[fi], [f2], [f3]]
indicated. The output value can be calculated by

Output = o(xf; + yfo + zf3) €]

As for Fig. 7, 3 X 1 convolution is used to fuse triaxial
data. Each execution of a 3 x 1 convolution will generate 1-
dimensional data, and execution of three times will generate
three 1-dimensional data. The corresponding convolution
kernel uses [[a1], [b1], [c11], [[a2], [b2], [e2]], [[as], [b3], [c3]]
indicated. The output value of data fusion layer can be cal-
culated by Eq. (9), where i = 1,2, 3.

DF_Output = o(xa; + yb; + zc;) )

Concatenate the data in the data fusion layer by row.
Then do the convolution operation to get the value repre-
sented by the orange box. This value can be obtained by
Eq. (10).

SCM-FD_Output = o((xa; + yby + zc1)fi
+ (xaz + yby + z62) f>
+ (xaz + ybs + z¢3)f3) (10)

Comparing Eqgs. (8) and (10), it can be seen that x in
Eq. (8) corresponds to xa + yb + zc in Eq. (10). That is, the
raw sensor data corresponds to the fused data containing the
hidden relations between the axes. Therefore, the output of
Eq. (10) has more possibilities, which means that the CNN
can extract more useful information than the baseline algo-
rithm after adding the single-channel data fusion method.

4. Experiments

For experiments using the WISDM dataset [37], a stochastic
gradient descent is used to train the deep activity recognition
models. A 10-fold cross-validation (CV) method is used to
evaluate our approach. If the number of iterations is less
than 1000, the learning rate is 0.005. If the number of itera-
tions is greater than 3000, the learning rate is 0.0005. Oth-
erwise, the learning rate is 0.001. The specific parameters
of the experiments are shown in Table 3.

For experiments using the UCI dataset [38], we take
the average of 10 experiments as the final result. If the num-
ber of iterations is less than 180, the learning rate is 0.0005.
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Table 3  The detailed information of parameter setting of WISDM ex-
periments.
Parameter Value
The size of input vector 200
The number of convolutional layers 2
Number of filter 50
Pooling size 1x2
The probability of dropout 0.9
Momentum 0.9
Weight decay le-6
L2 norm regularizations 0.0015
The size of minibatches 128
Maximum epochs 4000

Activation function ReLU (rectified linear units)

Table 4 The detailed information of parameter setting of UCI experi-
ments.
Parameter Value
The size of input vector 200
The number of convolutional layers 2
Number of filter 100
Pooling size 1x2
The probability of dropout 0.9
L2 norm regularizations 0.01
The size of minibatches 32
Maximum epochs 200
Optimizer Adam

Activation function ReLU (rectified linear units)

Otherwise, the learning rate is 0.0001. The specific param-
eters of the experiments are shown in Table 4.

4.1 Dataset Description

In this paper, we use the WISDM Actitracker dataset and
UCI dataset to evaluate the efficiency of our approach. A
total of 1,098,213 samples for 29 users are included in
WISDM dataset. This dataset contains 6 types of human
activities, which are walking, jogging, upstairs, downstairs,
sitting and standing. The sampling rate is 20 Hz. We divide
the samples by sliding a window of size 200 on the data.
Figure 8 shows the acceleration data for each activity after
regularization, which is used to train the model. The UCI
dataset contains triaxial acceleration, estimated body accel-
eration and triaxial angular velocity. Since the goal of this
paper is to explore the hidden relations between axes inside
the sensor, the data from a single sensor is used as the in-
put of the experiment. The triaxial acceleration in the UCI
dataset is used to verify the proposed methods.

4.2 Influence of the Number of Fused Data

In this section, to fairly compare the accuracy of the model,
the number of filters is set to 50, and all experiments were
performed under this condition. The number of fused data is
an important factor which will affect the final classification
accuracy. If the number of fused data is too small, it may
result in not containing enough information. In contrast, if
the number is too large, it may cause part of the data to be
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redundant and increase the number of parameters, even re-
sulting in overfitting or a decrease in accuracy.

Figure 9 shows the effect of increasing the number of
fused data on the accuracy of the MCM-FRD, MCM-FD
and SCM-FD. It can be seen from Fig. 9 (a) that the curve
of the SCM-FD is above the curves of other two models
except when the number of the fused data is 1. After the
MCM-FD and SCM-FD generate the fused data, they only
extract the features of the fused data instead of the fused
data and the raw sensor data. Therefore, they cannot extract
sufficient information to compare with the MCM-FRD when
the number of fused data is 1.

When the data are in a multichannel format, we observe
the two curves of the MCM-FRD and MCM-FD. We found
that the two curves as a whole show a trend of rising first and
then decreasing. The accuracy of the MCM-FRD is lower
than that of the MCM-FD, except that the number of the
fused data is 8, 9 and 10. In the other cases, the curve of
the MCM-FRD is either higher than the curve of the MCM-
FD or intersects it. When the number of fused data is 7, the
accuracy of the MCM-FRD reaches a maximum of 98.07%.

When the number of the fused data is 5, the accuracy of
the MCM-FD reaches a maximum of 97.92%. The highest
accuracy of the MCM-FRD exceeds the highest accuracy of
the MCM-FD. It is proved that the MCM-FRD with raw data
outperforms the MCM-FD without raw data.

When the number is 3, 6 or 7, the accuracy of the
MCM-FRD is 98%, 98.05% and 98.07%, respectively. In
fact, there is not much difference in accuracy. If we only
consider the accuracy, we can choose the number of fused
data to be 7. If we consider both accuracy and the number of
parameters, the number of fused data can be chosen to be 3.
In this section, we mainly consider the accuracy. Therefore,
we choose the number of fused data for the MCM-FRD to
be 7.

For the single-channel format of the sensor data, when
the number of the fused data is 1, the curve reaches the low-
est point and its value is 97.16%, which means that the fused
data do not contain sufficient useful information. When the
number of the fused data is between 2 and 5, the accuracy
of the model still slightly increases from 98.54% to 98.83%.
When the number of the fused data is between 4 and 9, the
accuracy of the model fluctuates slightly. From Fig.9 (a)
we can see that when the number of the fused data is 5, the
SCM-FD reaches the highest accuracy of 98.83%. How-
ever, a continuous increase in the number of the fused data
will not cause an increase in accuracy but will increase the
number of parameters, which may lead to overfitting.

Figure 9 (b) shows the experimental results when in-
creasing the number of fused data on the UCI dataset. It
can be seen from Fig.9 (b) that the three curves on the
whole show at first a ascending trend and then a descending
one. There are fluctuations during the decreasing process.
When the number of fused data is less than 3, the curve of
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Fig.10  Comparison of the accuracy and the number of parameters of
five models on the WISDM dataset.

MCM-FED is above the curve of MCM-FRD and SCM-FD.
When the number of fused data is 2, the accuracy of MCM-
FD reaches a maximum of 89.49%. The curve of MCM-
FRD reaches the highest point when the number of fused
data is 3. The accuracy of the highest point is 8§7.87%. For
the single-channel format of the sensor data, when the num-
ber of the fused data is 2, the curve reaches the highest point
and its value is 87.37%. By comparing the highest points of
the three curves, it can be found that MCM-FD works best
on the UCI dataset.

4.3 Comparison with Baseline Algorithm

In this section, the performance of the model is considered
from three aspects: accuracy, the number of parameters and
the dependency on the amount of training data. We have two
purposes: (1) Determine whether the data fusion method is
effective by comparing the accuracy of the five models; and
(2) Determine which data fusion method works better by
considering the dependency on the amount of training data
and the number of parameters.

Figure 10 (a) shows the comparison of the accuracy
of the five models on the WISDM dataset. The MC-BA
and SC-BA are baseline algorithms; the former’s input data
are expressed as a multichannel format, and the latter’s in-
put data are expressed as a single-channel format. The
MCM-FRD and the MCM-FD use a multichannel data fu-
sion method, and the SCM-FD uses a single-channel data
fusion method. First, we compare the MC-BA and SC-BA
with different input data formats. The MC-BA uses a 1-
dimensional convolution kernel, while the SC-BA uses a 2-
dimensional convolution kernel. We find that the accuracy
of the SC-BA is 1.15 percentage points higher than that of
the MC-BA, indicating that the effect of the SC-BA is better
than that of the MC-BA.

When the data are in a multichannel format, the accu-
racy of the MCM-FRD and the MCM-FD are 0.57 and 0.44
percentage points higher than that of the MC-BA, respec-
tively. When the data are in a single-channel format, the
accuracy of the SCM-FD using a single-channel data fusion
method achieves 98.83%, which is 0.18 percentage points
higher than that of the SC-BA.

According to the analysis above, we know that both
the single-channel data fusion method and the multichannel
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Fig.11  Comparison of the accuracy and the number of parameters of
five models on the UCI dataset.

data fusion method can increase the accuracy of the model.
Both data fusion methods are effective.

The number of parameters in the five models is shown
in Fig. 10 (b). We can see from Fig. 10 (b) that the MC-BA
and the SC-BA have the same parameters, even though they
have different numbers of rows and channels. The num-
ber of parameters is 32,156. Considering Fig. 10(a) and
Fig. 10 (b) comprehensively, we know that the MCM-FRD,
MCM-FD and SCM-FD have higher accuracy and more pa-
rameters than do the MC-BA and SC-BA.

When the data are in multichannel format, the accuracy
of the MC-BA is 97.50% and the number of parameters is
32,156. We compare the MCM-FRD and MCM-FD with the
MC-BA. The number of parameters in the MCM-FRD and
MCM-FD are 2,478 and 1,428 more than that in the MC-
BA, respectively. The MCM-FRD has the highest accuracy
of 98.07%, but it also has the largest number of parame-
ters, which is 34,634. When the data are in a single-channel
format, we compare the SC-BA and SCM-FD. We can find
that the SCM-FD has 720 more parameters than the SC-BA
does but that the accuracy has increased by 0.18 percentage
points. For the MCM-FRD, MCM-FD and SCM-FD, the
SCM-FD has the least number of parameters but the highest
accuracy, and the accuracy of the SCM-FD is up to 98.83%.

Figure 11 (a) shows the comparison of the accuracy
of the five models on the UCI dataset. When the data are
in multichannel format, the accuracy of MCM-FD reaches
89.49%, which is 1.01 percentage points higher than that of
MC-BA. The accuracy of MCM-FRD is lower than that of
MC-BA. However, the accuracy of MCM-FRD is the high-
est on the WISDM dataset, indicating that the effects of
MCM-FD and MCM-FRD are related to the dataset. When
the data are in a single-channel format, the accuracy of
SCM-FD is 1.1 percentage points higher than the accuracy
of SC-BA.

Figure 11 (b) shows the number of parameters of the
five models on the UCI dataset. The number of parameters
in MC-BA and SC-BA is kept the same as 148,406. The
number of parameters in MCM-FD is 692 less than that in
MC-BA. The number of parameters in SCM-FD is the same
as that in MCM-FD. Considering Fig. 11 (a) and Fig. 11 (b)
comprehensively, it can be seen that MCM-FD and SCM-
FD have fewer parameters and higher accuracy than MC-BA
and SC-BA.
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The effect of the different amounts of training data on
model accuracy is shown in Fig. 12. In Fig. 12 (a), when
the amount of training data is greater than or equal to 25%,
the accuracy of the model using a multichannel data fu-
sion method is higher than that of the baseline algorithm.
In Fig. 12 (b), the curve of the SCM-FD stays above the
curve of the SC-BA. The result shows that the data fusion
method is able to improve the accuracy. Overall, the SCM-
FD achieved the highest accuracy, regardless of the amount
of training data.

Based on the above analysis of single-channel and mul-
tichannel scenarios on the WISDM dataset, we know that
the accuracy of the SCM-FD is the highest, but the added
parameters are the fewest in the three models. With only
a few parameters added, a high accuracy can be achieved,
which proves that our single-channel data fusion method
works better than the multichannel data fusion method do.

Since the accuracy of MCM-FRD is lower than that of
MC-BA, only four models are compared in this section. Fig-
ure 13 shows the accuracy of the four models under differ-
ent numbers of training data. In Fig. 13 (a), it can be clearly
seen that the curve of the MCM-FD is above the curve of the
MC-BA. In Fig. 13 (b), when the number of training data is
between 25% and 50%, the accuracy of SCM-FD exceeds
that of SC-BA. As the amount of training data increases, the
SCM-FD curve is above the SC-BA curve.

Based on the above analysis of single-channel and mul-
tichannel scenarios on the UCI dataset, we know that the
accuracy of the MCM-FD is the highest. The number of
parameters decreases but the accuracy increases, which

models on the WISDM dataset occurs with the SCM-FD. To
prove the effectiveness of our proposed approach, we com-
pare it with some existing methods. The results are pre-
sented in Table 5. The author in [39] combined the J48, lo-
gistic regression and multi-layer perceptron algorithms used
in [14] to propose an ensemble of classifiers approach. Ex-
periments show that the ensemble of classifiers approach
achieves better performance than that of the above three
standalone algorithms. The result in [27] proved that the
deep model can effectively improve the accuracy and does
not require hand-engineering of the features. The author
in [40] found that the features derived from a deep learn-
ing method are sometimes less discriminatory than those of
shallow features, which may be due to resource constraints
and simple design methods. Therefore, they combined the
shallow features and deep learnt features. In comparison
with the model using only features extracted by deep learn-
ing [41], the accuracy was improved to 98.6%. The SCM-
FD does not manually extract features with human domain
knowledge but uses a CNN for feature extraction and clas-
sification, which is different from the methods above.

From Table 5, it is evident that the single-channel data
fusion-based CNN approach improves the accuracy. Com-
pared with the existing methods, our approach improves
the accuracy by 0.23 percentage points. Our approach is
relatively uncomplicated but achieves the highest accuracy,
which indicates that it is an effective approach for HAR.

Figure 14 is the confusion matrix of the method we pro-
posed. The proposed method is compared with the method
of obtaining the highest accuracy in Table 5. Table 6 shows
the classification accuracy of each activity under the two
methods. The last line of the Table 6 is the difference in
accuracy between the two methods, clearly indicating which
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Table 6 Comparison of our proposed method against state-of-the-art

method. The last line is the difference of accuracy between the two meth-
ods.

Method Classification accuracy (%)

Downstairs Jogging Sitting Standing Upstairs Walking

Ravietal. [40] 94.44 99.64 97.85 98.15 9552  99.37
ours 95.87 99.65 99.34 9958 9592 9943
1.43 0.01 1.49 1.43 0.40 0.06

method achieves higher accuracy and which activity im-
proves recognition accuracy more. From Table 6, we can
find that the accuracy of the three activities of Downstairs,
Sitting and Standing has increased by more than 1.4%, while
the accuracy of Jogging and Walking has only slightly im-
proved. As can be seen from Fig. 8, there are many places
where the x-, y-, z-axis curves of Jogging and Walking inter-
sect. On the contrary, the x-, y-, z-axis curves of Standing
and Sitting intersect only a few places. When the triaxial
data differs greatly, the recognition accuracy of the activity
is increased more. When the triaxial data differs little, the
accuracy of the activity changes very little. We can con-
clude that the proposed method is more suitable for solving
the problem of activity recognition with a large difference in
triaxial data.

5. Conclusions

In this paper, we proposed a data fusion-based CNN ap-
proach that uses convolution to fuse sensor triaxial data.
Two data fusion methods are proposed due to the differences
in the data format of sensor. One is a single-channel data
fusion method, and the other is a multichannel data fusion
method. The proposed approach is designed to make good
use of the hidden relations between axes inside the sensor.
The results show that our approach is effective and that our
approach have an advantage over the baseline algorithm. At
the same time, when the single-channel data fusion method
is used, the accuracy of our approach even exceeds that of
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the state-of-the-art methods. The proposed method is more
suitable for solving the problem of activity recognition with
large difference in triaxial data. For using a single sensor, we
have demonstrated that making good use of the hidden rela-
tions between axes can improve the accuracy of the model.
With multiple sensors, how to use the relations between axes
is still a problem worth exploring.
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