
1902
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.10 OCTOBER 2019

PAPER

An Efficient Parallel Triangle Enumeration on the MapReduce
Framework∗

Hongyeon KIM†a), Nonmember and Jun-Ki MIN†b), Member

SUMMARY A triangle enumerating problem is one of fundamental
problems of graph data. Although several triangle enumerating algorithms
based on MapReduce have been proposed, they still suffer from generating
a lot of intermediate data. In this paper, we propose the efficient MapRe-
duce algorithms to enumerate every triangle in the massive graph based on
a vertex partition. Since a triangle is composed of an edge and a wedge, our
algorithms check the existence of an edge connecting the end-nodes of each
wedge. To generate every triangle from a graph in parallel, we first split a
graph into several vertex partitions and group the edges and wedges in the
graph for each pair of vertex partitions. Then, we form the triangles ap-
pearing in each group. Furthermore, to enhance the performance of our al-
gorithm, we remove the duplicated wedges existing in several groups. Our
experimental evaluation shows the performance of our proposed algorithm
is better than that of the state-of-the-art algorithm in diverse environments.
key words: triangle enumeration, vertex partition, graph data, MapReduce

1. Introduction

A triangle enumeration problem is to generate every tri-
angle in a graph G consisting of a set of edges E and a
set of vertices V . A triangle is composed of three vertices
that are connected by three edges. The triangle enumera-
tion problem is interesting in diverse applications such as
k-truss [17], dense neighborhood graph [18] and clustering
coefficient [19]. A k-truss is a largest subgraph in a graph
such that each edge belongs to at least k − 2 triangles in
the subgraph where k is an integer greater than 2. Similar
to a k-truss, a dense neighborhood graph with a threshold
λ is a subgraph such that every vertex pair shares at least λ
common neighbors. In addition, as a well known measure-
ment, a clustering coefficient quantifies how well connected
are the neighbors of a vertex in a graph. Thus, the triangle
enumeration problem is important to obtain the meaningful
results from a graph.

As the well-known traditional algorithms to enumerate
every triangle in a graph, there are node-iterator and edge-
iterator [15] algorithms. Given a graph, the node-iterator al-
gorithm investigates every vertex and checks whether each
pair of neighbors for each vertex is connected by an edge
or not. Meanwhile, the edge-iterator algorithm investigates

Manuscript received December 11, 2018.
Manuscript revised April 27, 2019.
Manuscript publicized July 11, 2019.
†The authors are with Korea Univ. of Tech. & Edu., Korea.
∗This research was supported by Basic Science Research Pro-

gram through the National Research Foundation of Korea (NRF)
by the Ministry of Science and ICT (2019R1F1A1062511).

a) E-mail: zenweird@koreatech.ac.kr
b) E-mail: jkmin@koreatech.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2018EDP7421

every edge and identifies the common neighbors of each
edge’s end-nodes. However, since both traditional algo-
rithms are running on the single machine having the lim-
ited memory, it is hard to enumerate triangles in enormous
graphs such as Social Network Services (SNS) and World
Wide Web (WWW) [3], [6], [8].

In recent years, many parallel algorithms for triangle
enumeration utilizing MapReduce [2], [4], [10]–[13], [21]
are proposed in order to alleviate the problem of the tra-
ditional algorithms. As a programming model to handle
the massive data set, MapReduce [5] distributes the mas-
sive data set across several machines in a cluster. The
MapReduce algorithms for triangle enumeration can be cat-
egorized as follows: Partitioning graphs [16] and Iterating
multi-rounds [12], [21]. The partitioning algorithms divide
a given graph into several subgraphs and enumerate the tri-
angles for every subgraph in parallel. Meanwhile, the multi-
rounds algorithms consisting of several MapReduce rounds
divide a graph into several subgraphs each of which can be
handled in each MapReduce round and enumerate the trian-
gles in each subgraph.

Obviously, these parallel algorithms are more efficient
and scalable than the traditional serial algorithms since these
parallel algorithms use a cluster consisting of several ma-
chines. However, the MapReduce algorithms still suffer
from a critical problem such that a lot of intermediate results
are generated during parallel execution. These intermediate
results are not only sorted and merged but also written to and
read from the disks of the machines through the network.
Such massive intermediate results cause the excessive disk
I/O and the network congestion resulting in the performance
degradation of the parallel algorithms. Thus, in this paper,
we propose novel MapReduce algorithms, called PBTE and
EPBTE, based on a vertex partition to enumerate every tri-
angle in a massive graph efficiently.

To explain the features of our work, we first present a
basic parallel algorithm, called BTE. In BTE, every wedge
and edge in a graph are generated where a wedge is a length-
2 path between two vertices. Since a triangle is composed
of a wedge and an edge, we check whether the end-nodes of
each wedge are connected by an edge.

To improve the performance of triangle enumeration,
we devised PBTE in which the vertex set of a graph is split
into several disjoint vertex partitions. Then, since end-nodes
of a wedge (and an edge) belongs to different vertex parti-
tions, we group the wedges (and the edges) according to
each pair of vertex partitions. For each group containing the

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

KIM and MIN: AN EFFICIENT PARALLEL TRIANGLE ENUMERATION ON THE MAPREDUCE FRAMEWORK
1903

wedges and edges associated with each pair of vertex par-
titions, we generate the triangles in parallel. However, in
PBTE, the end-nodes of each wedge appear in several pairs
of vertex partitions redundantly. Thus, the size of intermedi-
ate results becomes large and the performance of PBTE may
be degraded. To alleviate such a problem, we implement
the enhanced parallel algorithm, called EPBTE in which we
minimize the size of intermediate results storing in the dis-
tributed file system. In EPBTE, we separate the end-nodes
of wedges into several groups according to vertex partitions
rather than vertex partition pairs and store them into sepa-
rate files. Then, for each pair of vertex partitions, we can
generate the wedges by merging the end-nodes stored in the
corresponding two files.

To show the efficiency and scalability of our proposed
algorithms PBTE and EPBTE, we implemented them and
compared with the state-of-the-art algorithm PTE [11] and
the multi-rounds algorithm CTTP [12]. Our experimental
results demonstrate that the performances of our algorithms
are superior to the state-of-the-art algorithms.

Contributions. Our main contributions are summa-
rized as follows:

• We propose the efficient MapReduce algorithms PBTE
and EPBTE to enumerate every triangle in a graph,
which split the graph into disjoint vertex partitions and
evaluate each pair of vertex partitions to enumerate the
triangles appearing in the pair of vertex partitions.
• We present how to compute the number of vertex par-

titions with respect to the available memory space of
each machine participated in the MapReduce frame-
work for our algorithms since the performances of
PBTE and EPBTE are affected by the number of ver-
tex partitions.
• We empirically evaluated the performances of our pro-

posed algorithms PBTE and EPBTE with the real-life
data sets to show the efficiency and scalability of them.

The rest of this paper is organized as follows: Sec-
tion 2 contains the properties of triangles and the details of
MapReduce. In Sect. 3, we review various MapReduce al-
gorithms for triangle enumeration. We describe the intuition
and the details of our algorithm in Sect. 4. In Sect. 5, we
show the results of our experiments. Lastly, we summarize
our work in Sect. 6.

2. Preliminaries

In this section, we first explain the properties of the triangles
in a graph and next briefly present MapReduce.

2.1 Properties of Triangles

Let G = (V, E) be an undirected and unweighted simple
graph where V is a set of vertices and E is a set of edges
such that E ⊆ V × V . For a pair of vertices u and v in V ,
if there exists an edge e = (u, v) in E, we say u is adjacent
to v. For each u ∈ V , N(u) = {v ∈ V : (u, v) ∈ E} is a set of

Fig. 1 An example for an oriented graph G�

u’s neighbors where a neighbor of u is a vertex adjacent to
u and the degree of a vertex u, denoted by deg(u), is defined
as |N(u)|.

A triangle, denoted by Δuvw, in a graph G is a complete
subgraph consisting of three vertices u, v and w. In other
words, when a triangle Δuvw appears in G, E contains three
edges e = (u, v), e′ = (u, w) and e′′ = (v, w). Given a graph
G, a set of all triangles in G is denoted by Δ(G) and the num-
ber of triangles in Δ(G) is denoted by |Δ(G)|. Meanwhile, a
wedge, denoted by ωuvw, is a subgraph of three vertices u,
v and w in V such that there are two edges e = (u, v) and
e′(u, w) in E. A wedge ωuvw can also be seen as a 2-length
path whose the end-nodes are v and w. For a wedge ωuvw

such that two edges e = (u, v) and e′ = (u, w) exist in E, if
an edge e′′ = (v, w) belongs to E, a triangle Δuvw is formed.

Similar to the most related literatures [7], [21], we
enumerate every triangle appearing in an oriented graph
G� = (V, E�) of a simple graph G since it is convenient
to work with G� rather than G. Given an oriented graph
G� = (V, E�) of G, E� is a set of these directed edges. To
explain an oriented graph G� of G, we first define a total
order ≺ on the vertex set V of G. For a pair of vertices u
and v in V , if (deg(u) < deg(v)) or (deg(u) = deg(v) and
id(u) < id(v)), u precedes v, denoted by u ≺ v, where id(u)
is the unique identifier of a vertex u in V . For each edge
e = (u, v) in E, if u ≺ v, there is a directed edge from u to v
in E� of G�.

To represent the neighbors of a vertex u ∈ V of G�

which are preceded by u, we define these neighbors of u as
follows:

Definition 1: Given an oriented graph G� = (V, E�) of a
simple graph G = (V, E), the set of out-neighbors of a vertex
u ∈ V is defined as N+(u) =

{
v : (u, v) ∈ E� where u ≺ v}.

For instance, given a simple graph G plotted in
Fig. 1 (a), the oriented version G� = (V, E�) of G is shown
in Fig. 1 (b) where the vertex set V consists of 7 vertices and
the directed edge set E� is composed of 11 directed edges.
The integer number at each vertex of G and G� shown in
Fig. 1 (a) and (b) represents the identifier of the vertex. The
edge (1, 4) in Fig. 1 (a) becomes the directed edge (4, 1) in

1904
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.10 OCTOBER 2019

Fig. 1 (b) since deg(4) < deg(1). In addition, there is a di-
rected edge from a vertex 1 to a vertex 6 in Fig. 1 (b) since
deg(1) = deg(6) and id(1) < id(6). Moreover, the out-
neighbor set of a vertex 4 is N+(4) = {1, 3, 6}.

Given an oriented graph G� = (V, E�) of a simple
graph G, we define a triangle enumeration problem on G�

as follows:

Definition 2: Let a set of every triangle appearing in a sim-
ple graph G be Δ(G). The problem of triangle enumeration
is to discover every triangle in Δ(G) one by one by exploring
the oriented graph G� of G.

For an oriented graph G� of a simple graph G, we now
define a wedge and a triangle, referred to as ω�uvw and Δ�uvw,
respectively. For each wedge ωuvw in G, there always exists
the unique total order among the vertices u, v and w. Assume
that u ≺ v ≺ w. Then, there always exist a pair of directed
edges (u, v) and (u, w) in E� which forms a wedge ω�uvw in
G�. Similarly, for each triangle Δuvw in G, there always ex-
ists a triangle Δ�uvw in G� consisting of three directed edges
(u, v), (u, w) and (v, w) where u ≺ v ≺ w. Moreover, for a
triangle Δ�uvw or a wedge ω�uvw in G�, a vertex u is called a
cone vertex and a directed edge (v, w) in Δ�uvw is called a pivot
edge, respectively.

For example, an oriented graph G� in Fig. 1 (b) has
eight wedges ω�136, ω�236, ω�237, ω�267, ω�413, ω�416, ω�436 and
ω�716 as shown in Fig. 1 (c) as well as four triangles Δ�267,
Δ�413, Δ�416 and Δ�716 as shown in Fig. 1 (d). In addition, the
vertex 2 is the cone vertex of Δ�267, ω�236, ω�237 and ω�267 as
well as the directed edge (7, 6) is the pivot edge of Δ�267.

2.2 MapReduce

Google developed the MapReduce [5] that enables the
users to easily develop large scale distributed applications.
MapReduce is a distributed and parallel processing model
as well as execution environment in the shared-nothing clus-
ter of multiple commodity machines. The machines partic-
ipated in the MapReduce framework are classified as a sin-
gle master and several slaves according to their roles. Slaves
process the data in parallel as well as a master manages the
processing for data in the slaves, the status of network and
the distributed data to prevent the system faults, the viola-
tion for data integrity and so on. Hadoop [1] is implemented
in the OpenSource community as the MapReduce frame-
work. In Hadoop, using the Hadoop Distributed File System
(HDFS), a large sized file is initially partitioned into several
fragments, called chunk, and stored in several machines re-
dundantly for reliability.

MapReduce consists of three phase such as map, shuf-
fle and reduce phases. In the map phase, a mapper (a.k.a. a
map instance) created by each machine takes a chunk from
the input data file and invokes several map functions. A map
function takes a key-value pair (key1; value1) as input, exe-
cutes some computation and may output a set of intermedi-
ate key-value pairs (key2; value2). The key-value pairs emit-
ted by all map functions are sorted and merged by each key

in the shuffle phase. In the reduce phase, a reducer (a.k.a.
a reduce instance) created by each machine invokes reduce
functions with each distinct key. The reduce function takes
the list of all values sharing the same key and may output
the key-value pairs.

3. Related Works

In this section, we briefly described the several algorithms
for triangle enumeration.

In [7], a serial algorithm called MGT (Massive Graph
Triangulation) was proposed. MGT enumerates every trian-
gle on single machine. Similar to node-iterator [15], MGT
travels all vertices in a memory and checks whether two
neighbors of each vertex are adjacent to each other. If two
neighbors are adjacent, a triangle can be formed. However,
MGT cannot handle the massive graph having a lot of ver-
tices due to a limited memory space of a single machine.

To solve the limited memory problem, MapReduce al-
gorithms for triangle enumeration have been proposed based
on the traditional algorithms such as node-iterator, edge-
iterator and graph partition. To count the number of trian-
gles in a graph based on MapReduce, Suri and Vassilvit-
skii proposed an efficient parallel algorithm called GP [16].
GP first splits the vertex set of the graph into ρ partitions
and counts the number of triangles for each 3-partition Gi, j,k

where 0 < i < j < k ≤ ρ. In GP, every triangle is classified
into one of three types as follows:

• Type 1: Three vertices of a triangle belong to the same
partition.
• Type 2: Two vertices of a triangle belong to the same

partition and the remaining vertex belong to a different
partition.
• Type 3: Three vertices are in the distinct partitions.

Then, triangles of type 1 and type 2 appear multiple
times by evaluating every possible 3-partition. Thus, to re-
duce the redundant computation of the duplicated triangles
in GP, another parallel counting algorithm called TTP [10]
was proposed. Similar to GP, TTP divides the vertex set
of the graph into ρ partitions. However, in contrast to GP,
TTP counts the numbers of triangles of type 1 and type 2
by investigating every 2-partition. Meanwhile, let an edge
(u, v) be an outer-edge when u and v are in different parti-
tions. Then, the number of triangles of type 3 is computed
by using 3

′
-partition which is a subgraph of a 3-partition

consisting of outer-edges only. To compute triangles, TTP
stores each edge ρ − 1 times [10].

Although the above triangle counting algorithms can
be adapted to the triangle enumeration algorithm, these al-
gorithms generate the duplicated triangles. Thus, for the
triangle enumeration problem, Park et al. [12] proposed the
CTTP (Colored TTP) algorithm which consists of multiple
MapReduce rounds to reduce the amount of intermediate
results required for each round. However, similar to TTP,
CTTP also stores each edge ρ − 1 times. In order to reduce
the intermediate results generated in TTP and CTTP, the pre-

KIM and MIN: AN EFFICIENT PARALLEL TRIANGLE ENUMERATION ON THE MAPREDUCE FRAMEWORK
1905

partitioned triangle enumeration algorithm called PTE [11]
was proposed recently. PTE splits the graph into ρ parti-
tions and stores the partitions into the separate files in a dis-
tributed file system. Since each edge is stored only once,
the number of intermediate results generated by PTE is less
than that of TTP and CTTP. However, to enumerate the tri-
angles appearing in each 3

′
-partition, PTE repeatedly reads

the edges stored in the multiple files for 3
′
-partitions.

4. Proposed Algorithms

In this section, we propose the parallel algorithms for the
triangle enumeration problem running on the MapReduce
framework. We first introduce the basic parallel algorithm
in order to explain the intuition of our proposed algorithms.
We next present the partition based algorithm to generate tri-
angles in a graph efficiently. Furthermore, to reduce the in-
termediate results generated by the partition based algorithm
and thus improve the performance by avoiding the overhead
caused by redundant intermediate results, we enhanced the
partition based algorithm to a novel algorithm called En-
hanced Partitioned Based Triangle Enumeration (abbrevi-
ated by EPBTE), which eliminates the duplicated interme-
diate results occurred in the partition based algorithm.

4.1 Basic Algorithm for Triangle Enumeration

We first present a basic MapReduce algorithm, called Basic
Triangle Enumeration (abbreviated by BTE), for enumerat-
ing all triangles in an oriented graph G�.

In an oriented graph G�, each triangle Δ�uvw is com-
posed of a wedge ω�uvw and a pivot edge (v, w). In other
words, if the end-nodes v and w of ω�uvw are connected by a
directed edge (v, w), a triangle Δ�uvw is formed. Thus, we first
enumerate every wedge in an oriented graph and then we
check whether the end-nodes of each wedge are connected
by a directed edge. To generate every wedge in an oriented
graph G�, we develop the following lemma.

Lemma 1: Given the oriented graph G� = (V, E�) of a
simple graph G = (V, E), every pair of vertices v and w in
the set of out-neighbors N+(u) of a vertex u ∈ V becomes
the end-nodes v and w of the wedge ω�uvw whose cone vertex
is u.

Proof. (By contradiction) For a wedge ω�uvw, assume that
two end-nodes v and w do not belong to N+(u). By definition
of a wedge ω�uvw in an oriented graph G�, a pair of directed
edges (u, v) and (u, w) exist in E�. Thus, v and w should
belong to N+(u). This contradicts the above assumption.
Thus, every pair of vertices v and w in N+(u) of u become
the end-nodes v and w of ω�uvw whose a cone vertex is u. �

By Lemma 1, we can enumerate every wedge by col-
lecting each out-neighbor set N+(u) of every vertex u and
then we can form each triangle in an oriented graph G� by
checking whether there is a directed edge between every pair
of vertices v and w in out-neighbor set N+(u).

For example, given an oriented graph G� in Fig. 1 (b),

the out-neighbor set N+(4) of a vertex 4 consists of three
vertices 1, 3 and 6 (i.e., N+(4) = {1, 3, 6}). Then, each pair
of vertices in N+(4) becomes the end-nodes of three wedges
ω�413, ω�416 and ω�436 by Lemma 1. Then, since there are
directed edges (1, 3) and (1, 6) in G�, triangles Δ�413 and Δ�416
are generated.

For the out-neighbor set N+(u) of a vertex u, the num-
ber of wedges whose cone vertex is u becomes

(|N+(u)|
2

)
=

|N+(u)| · (|N+(u)| − 1)/2. However, the number of out-
neighbors of u (i.e., |N+(u)|) is at most the degree of u (i.e.,
deg(u)). In addition, as mentioned in Sect. 2, to build an
oriented graph G� of a graph G, we define the total order
on the vertex set V of G such that, when there is a directed
edge (u, v) in E� of G�, the degree of u is at most that of v
(i.e., deg(u) ≤ deg(v)). Thus, each vertex in V having high
degree has a small number of out-neighbors. Furthermore,
for a wedge ω�uvw consisting of a pair of directed edges (u, v)
and (u, w), deg(u) is at most min(deg(v), deg(w)). Thus, a
vertex having high degree tends to not be a cone vertex of
a wedge in an oriented graph. Therefore, the number of
out-neighbors for every vertex in V of G� is relatively small
compared to the degree of every vertex in V of G.

After collecting the out-neighbor set N+(u) of each ver-
tex u, we check whether there is a directed edge between
every pair of vertices in N+(u) since each pair of vertices in
N+(u) becomes the end-nodes of a wedge whose cone ver-
tex is u by Lemma 1. Then, if the end-nodes of a wedge are
adjacent to each other, the wedge and the directed edge are
merged to form a triangle.

Our basic algorithm BTE consists of two MapReduce
rounds for enumerating triangles in an oriented graph. In
the first MapReduce round, each map function invoked with
a directed edge (u, v) in E� of an oriented graph G� emits a
key-value pair (u; v). During the shuffle phase, the key-value
pairs emitted by all map functions are sorted and grouped by
each key u. Thus, each reduce function called with each key
u taking the out-neighbor set N+(u) = {o1, . . . , o|N+(u)|} of u
outputs the vertex u and its N+(u) as a list 〈u, o1, . . . , o|N+(u)|〉
when |N+(u)| ≥ 2 since u cannot be a cone vertex of a wedge
if |N+(u)| is less than two. Moreover, the reduce function
called with u also outputs every directed edge (u, v) as a list
〈u, v〉 for each out-neighbor v ∈ N+(u) since (u, v) can be a
pivot edge of another triangle.

In the second round, each map function takes a list gen-
erated at the previous round. As mentioned above, since
each reduce function of the first round generates a list 〈u, v〉
for a directed edge (u, v) as well as a list 〈u,N+(u)〉 when
|N+(u)| ≥ 2, it is easy to distinguish between directed edge
and out-neighbor set of u according to the number of en-
tries in the list. Note that, by adopting the total order, we
obtain the oriented graph of a simple graph. However, it is
hard to preserve the total order among all vertices in N+(u)
since the degree of every vertex is needed to calculate the to-
tal order among them. Furthermore, to check whether two
end-nodes of a wedge are adjacent or not, the direction of
the directed edge is irrelevant. Thus, for an out-neighbor set

1906
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.10 OCTOBER 2019

Fig. 2 The behavior of BTE algorithm

N+(u) of a vertex u, the map function emits every pair of ver-
tices in N+(u) as a key-value pair (oi ∈ N+(u), o j ∈ N+(u); u)
where id(oi) < id(o j). In addition, for a directed edge (v, w),
the map function simply emits a key-value pair (v, w; ∗) if
id(v) < id(w), (w, v; ∗) otherwise. In this case, a sign ′∗′
means that (v, w) exists in E of G.

The key-value pairs emitted by all map functions are
grouped by their key in the shuffle phase. Thus, the wedges
whose end-nodes are v and w as well as the edges (v, w)
are grouped during the shuffle phase. After shuffle phase,
each reduce function takes a key (v, w) and a value list L.
If the value list L contains ′∗′ and |L| is at least two, since
|L| − 1 wedges whose end-nodes (v, w) are adjacent to each
other, the reduce function enumerates |L| − 1 triangles each
of whose pivot edge is (v, w) and cone vertex belongs to L.
Otherwise, the reduce function does not generate any trian-
gle.

The following example illustrates the behavior of BTE
algorithm.

Example 1: Given an oriented graph consisting of 7 ver-
tices and 11 directed edges in Fig. 1 (b), in the first round,
each map function taking a directed edge (u, v) emits (u; v) as
a key-value pair. For instance, the map function called with
(1, 6) emits a key-value pair (1; 6) as shown in Fig. 2 (a).
The key-value pairs having the same keys are grouped by
the shuffle phase. Thus, each reduce function takes a vertex
u as a key and its out-neighbor set N+(u) as a value list.
Then, each reduce function outputs 〈u,N+(u)〉 as well as
〈u, v〉 where v ∈ N+(u). For example, as shown in Fig. 2 (a),
the reduce function invoked with a key 1 and a value list
〈6, 3〉 outputs 〈1, 6, 3〉 as well as 〈1, 6〉 and 〈1, 3〉.

In the second round, each map function taking a list
formed 〈v, w〉 emits a key-value pair 〈v, w; ∗〉. Meanwhile,
each map function taking 〈u,N+(u)〉 emits every pair of ver-
tices in N+(u) as a key and u as a value. For instance, as
shown in Fig. 2 (b), the map function taking 〈1, 6〉 emits

(1, 6; ∗) and the map function with a list 〈7, 6, 1〉 emits
(1, 6; 7). During shuffle phase, the emitted key-value pairs
are grouped by their key. Then, each reduce function takes a
key (v, w) and a value list L to generate triangles. For exam-
ple, the reduce function called with a key (1, 6) and a value
list 〈4, 7, ∗〉 outputs two triangles Δ�416 and Δ�716 since there
is an edge (1, 6) and two wedges ω�416 and ω�716.

4.2 Partition Based Algorithm for Triangle Enumeration

In this section, we introduce a parallel algorithm for the tri-
angle enumeration problem, called Partition Based Triangle
Enumeration (abbreviated by PBTE), in which every out-
neighbor set of each vertex is partitioned with respect to
their identifiers.

In our basic algorithm BTE consisting of two MapRe-
duce rounds, the reduce function of the second round is in-
voked for each vertex pair which represent an edge or the
end-nodes of a wedge. Thus, due to the function call over-
head caused by the large number of edges and wedges, the
overall performance of BTE is degraded. To improve the
performance to generate triangles, in PBTE, wedges and
edges are split into several groups and then each reduce
function generates triangles in each group.

4.2.1 Overview of PBTE

The motivation of PBTE is that a set of vertices V of an ori-
ented graph G� = (V, E�) is split into ρ disjointed partitions
p1, p2, . . . , pρ and then, for each pair of vertex partitions pi

and p j with 1 ≤ i ≤ j ≤ ρ, directed edges (v, w) and wedges
ω�uvw are grouped and stored into a file on HDFS where v is
in pi and w is in p j (or v is in p j and w is in pi).

Then, we evaluate the edges and wedges stored in each
file to enumerate triangles appearing in each pair of vertex
partitions. To explain our partition based parallel algorithm
PBTE, we first define some notations as follows:

Definition 3: Given an oriented graph G� = (V, E�) and an
integer ρ, a vertex partition for the vertex set V , denoted by
pi, is a subset of V such that pi ∩ p j = ∅ where 1 ≤ i, j ≤ ρ
and

⋃
i=1,...,ρ pi = V .

Definition 4: Given an oriented graph G� = (V, E�) and
ρ number of vertex partitions p1, p2, . . . , pρ for V , an edge
partition, denoted by E�i, j, is defined as E�i, j = {(v, w) ∈ E� :
(v ∈ pi, w ∈ p j) or (v ∈ p j, w ∈ pi)} where 1 ≤ i ≤ j ≤ ρ.

In the above definition, we do not define the edge par-
tition E�j,i with i < j since E�j,i is equal to E�i, j.

Definition 5: Given ρ number of vertex partitions p1,
p2, . . . , pρ for the vertex set V of an oriented graph G� =
(V, E�), the out-neighbor set of a vertex u ∈ V on a vertex
partition pi with 1 ≤ i ≤ ρ, referred to as N+i (u), is defined
as N+i (u) = {v : v ∈ N+(u) and v ∈ pi}. Furthermore, the
out-neighbor set of a vertex u ∈ V on a pair of vertex par-
titions pi and p j with 1 ≤ i ≤ j ≤ ρ, denoted by N+i, j(u), is

KIM and MIN: AN EFFICIENT PARALLEL TRIANGLE ENUMERATION ON THE MAPREDUCE FRAMEWORK
1907

Fig. 3 The PBTE algorithm

defined as N+i, j(u) = N+i (u)∪N+j (u). Then, a wedge partition,
denoted as N+i, j, is defined as

⋃
∀u∈V N+i, j(u).

By splitting V into ρ vertex partitions, every vertex
u ∈ V belongs to one of ρ vertex partitions. For a pivot
edge (v, w) of a triangle Δ�uvw, let us assume that v is in pi and
w is in p j. Then, the pivot edge (v, w) exists in an edge parti-
tion E�i, j. Furthermore, for the wedge ω�uvw composing Δ�uvw,
the end-nodes v and w of ω�uvw exist in the wedge partition
N+i, j since v is in pi and w is in p j. Thus, by investing the
edge partition E�i, j and wedge partition N+i, j together, we can
construct the triangle Δ�uvw. From the above observation, we
have the following lemma.

Lemma 2: Given an oriented graph G� = (V, E�) and ρ
number of vertex partitions for a vertex set V , let Pi, j be the
union of a wedge partition N+i, j and an edge partition E�i, j for
a pair of vertex partitions pi and p j with 1 ≤ i ≤ j ≤ ρ.
Then, each triangle Δ�uvw in G� appears only in a single Pi, j

where v is in pi and w is in p j or v is in p j and w is in pi.

Proof. Given an oriented graph G� = (V, E�), a triangle
Δ�uvw in G� is composed of a wedge ω�uvw whose cone vertex
is u and a pivot edge (v, w). Let us assume that the vertices v
and w belong to the vertex partition pi and p j, respectively,
where 1 ≤ i ≤ j ≤ ρ. Then, by Definition 4, the pivot edge
(v, w) of Δ�uvw appears in a single edge partition E�i, j only.
Furthermore, by Lemma 1, the end-nodes v and w of the
wedgeω�uvw belong to the out-neighbor set N+(u) of u. Then,
by Definition 5, v is in N+i (u) and w is in N+j (u) according to
our assumption. Thus, v and w belong to the wedge partition
N+i, j since N+i, j(u) = N+i (u) ∪ N+j (u) and N+i, j =

⋃
∀u∈V N+i, j(u).

Therefore, a triangle Δ�uvw appears only in a single Pi, j com-
posed of N+i, j and E�i, j. �

For each pair of vertex partitions pi and p j for the ver-
tex set V with 1 ≤ i ≤ j ≤ ρ, we denote the union of an edge
partition E�i, j and a wedge partition N+i, j as a partition pair
Pi, j. By Lemma 2, we can generate every triangle in an ori-
ented graph G� by investigating each partition pair without
duplications. Thus, we developed the MapReduce algorithm
PBTE based on Lemma 2. In Fig. 3, we present the pseudo-
code of PBTE which consists of Partition round (line 1 in
Fig. 3) and Enumeration round (line 2 in Fig. 3). We will
present the details of Partition round and Enumeration round
in Sect. 4.2.2 and Sect. 4.2.3, respectively.

4.2.2 Partition Round of PBTE

The pseudo-code of the Partition round of PBTE is presented

Fig. 4 Partition round of PBTE

in Fig. 4. In the Partition round of PBTE, we generate every
partition pair Pi, j each of which consists of a wedge partition
N+i, j and an edge partition E�i, j where 1 ≤ i ≤ j ≤ ρ based on
Definitions 3, 4 and 5.

In the map phase of the Partition round, each map func-
tion takes a directed edge (u, v) and emits the key-value pair
(u; v) (line 1 of Partition.map in Fig. 4). Let h(u) be a pair-
wise independent hash function which returns an integer
number within [1, ρ] such that the hash value i of a vertex u
indicates that u belongs to the vertex partition pi for the ver-
tex set V . To find the corresponding edge partition for each
directed edge (u, v), the map function taking (u, v) applies
the hash function h() to each vertex of (u, v) (line 2 of Parti-
tion.map). Let h(u) be i and h(v) be j, respectively. Then, by
Definition 4, (u, v) belongs to E�i, j if i ≤ j. Otherwise, (u, v)
belongs to E�j,i (lines 3-4 of Partition.map).

During the shuffle phase, all values having the same
key are grouped. Thus, each reduce function takes a ver-
tex u as a key with its out-neighbor set N+(u) as the value
list L. To generate every wedge partition N+i, j, the reduce
function for a vertex u next splits L representing N+(u) into
N+i (u)s with 1 ≤ i ≤ ρ (lines 1-3 of Partition.reduce) and
calculate every N+i, j(u) with 1 ≤ i ≤ j ≤ ρ since the wedge
partition N+i, j consists of N+i, j(u)(= N+i (u) ∪ N+j (u))s of every
vertex u by Definition 5 (lines 4-9 of Partition.reduce). The
out-neighbor set N+i (u) of a vertex u is the subset of the out-
neighbor set N+(u) whose elements belong to pi. At line 2
of Partition.reduce, we already calculate the partition id of
each vertex v in L by using the hash function h(). Thus, the
reduce function records each vertex v ∈ L to N+i (u) where
h(v) is i (line 3 of Partition.reduce). Then, for every pair of
N+i (u) and N+j (u) with 1 ≤ i ≤ j ≤ ρ, the reduce function
generates N+i, j(u) by merging N+i (u) and N+j (u) (lines 4-7 of

1908
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.10 OCTOBER 2019

Fig. 5 Enumeration round of PBTE

Partition.reduce). If N+i (u) or N+j (u) is an empty set, it means
there is no wedge ω�uvw such that one of its end-nodes be-
longs to pi and the other is in p j. Thus, the triangles whose
cone vertices are u do appear in Pi, j. From this observation,
we build N+i, j(u) only when both N+i (u) and N+j (u) are not
empty (line 6 of Partition.reduce). Since we have to evalu-
ate every vertex pair in N+i, j(u) at the next round to form a
triangle, we sort the vertices in N+i, j(u) in increasing order
by their id to access every pair of vertices in N+i, j(u) without
redundancy (line 8 of Partition.reduce). Then, in the wedge
partition N+i, j, the reduce function stores N+i, j(u) with u as a
list to denote that u is the cone vertex for every pair of ver-
tices in N+i, j(u) (line 9 of Partition.reduce).

4.2.3 Enumeration Round of PBTE

After the Partition round of PBTE, the edge partition E�i, j
and the wedge partition N+i, j of every partition pair Pi, j with
1 ≤ i ≤ j ≤ ρ are generated. Thus, at the Enumeration
round of PBTE, we generate the triangles appearing in each
Pi, j based on Lemma 2.

The pseudo-code of the Enumeration round is pre-
sented in Fig. 5. In the map phase of the Enumeration round,
each map function takes the id of a partition pair Pi, j as a
key. Then, for each N+i, j(u) kept in N+i, j stored at the Parti-
tion round, the map function takes N+i, j(u) and then emits the
key-value pair ((i, j); 〈u,N+i, j(u)〉) where (i, j) denotes the id
of the partition pair Pi, j (lines 1-2 of Enumeration.map).

During the shuffle phase, all values having the same
key are grouped. After that, in the reduce phase of the Enu-
meration round, ρ · (ρ+1)/2 reduce functions each of which
handles a single partition pair Pi, j are invoked since there
are ρ +

(
ρ
2

)
= ρ · (ρ + 1)/2 partition pairs where ρ and

(
ρ
2

)
are

for Pi, j when i = j and i < j, respectively.
At the reduce phase of the Enumeration round, for each

pair of vertices v and w in N+i, j(u) of N+i, j where id(v) < id(w),
if v and w are adjacent to each other, a triangle Δ�uvw is
formed. Thus, we have to find the edge (v, w) in E�i, j effi-

ciently. To do so, we sort all directed edges e ∈ E�i, j (line 1
of Enumeration.reduce) as follows: Since the direction of a
directed edge is irrelevant to check whether a pair of vertices
are adjacent, we first transform each directed edge e = (v, w)
in E�i, j into the edge e′ such that e′ = e if id(v) < id(w), oth-
erwise e′ = (w, v). Thus, in the rest of this section, we regard
that every edge e = (v, w) in E�i, j satisfies that id(v) < id(w).
Then, all edges e = (v, w) in E�i, j are sorted in increasing
order of id(v) and, in the case of tie, we sort them in in-
creasing order of id(w). For instance, given three directed
edges (1, 6), (1, 4) and (2, 3) in E�i, j, the sorting result be-
comes (1, 4), (1, 6) and (2, 3).

To form a triangle in Pi, j, an end-node of a wedge be-
longs to the vertex partition pi and the other is in p j. How-
ever, since N+i, j(u) of N+i, j is the union of N+i (u) and N+j (u),
some pairs of vertices in N+i, j(u) are included in a single ver-
tex partition pi or p j. Thus, for each pair of vertices v and
w in N+i, j(u) where id(v) < id(w), we first check whether v
and w belong to the vertex partitions pi and p j, respectively,
or p j and pi, respectively (lines 2-4 of Enumeration.reduce).
Then, if two vertices v and w satisfy the condition, since all
edges in E�i, j are sorted, we can find the edge for each ver-
tex pair v and w in N+i, j(u) by performing the binary search
with (v, w) (line 5 of Enumeration.reduce). Finally, a trian-
gle Δ�uvw whose cone vertex is u is output when v and w are
adjacent (line 6 of Enumeration.reduce).

The following example illustrates the behavior of
PBTE algorithm.

Example 2: Reconsider the oriented graph G� shown in
Fig. 1 (b). At the Partition round of PBTE, each map func-
tion taking a directed edge (u, v) emits a key-value pair (u; v)
as well as keeps (u, v) to the corresponding edge partition
E�i, j where h(u) = i (or j) and h(v) = j (or i). Let us assume
that the number of vertex partitions ρ is 2 and a hash func-
tion is h(u) = (id(u) mod ρ) + 1. Then, the map function
taking a directed edge (2, 6) keeps (2, 6) to the edge parti-
tion E�1,1. The other map functions keep 10 directed edges
to their edge partitions as shown in Fig. 6 (a) and (b). The
key-value pairs emitted by all map functions are grouped by
the same keys during the shuffle phase as shown in Fig. 6 (c).
Thus, each reduce function taking a key u and N+i (u) as a
value list L splits L into N+i (u)s, merges each pair of N+i (u)
and N+j (u) into N+i, j(u), sorts the vertices in N+i, j(u) in in-
creasing order by their id and stores each sorted N+i, j(u) into
N+i, j of the partition pair Pi, j. For instance, the reduce func-
tion taking a key 2 splits L = {6, 3, 7} into N+1 (2) = {6}
and N+2 (2) = {3, 7} and generates N+1,2(2) = {3, 6, 7} and
N+2,2(2) = {3, 7} by merging N+1 (2) and N+2 (2). Then, N+1,2(2)
and N+2,2(2) are stored into N+1,2 and N+2,2, respectively. How-
ever, the reduce function taking a key 5 with L = {3} does
not generate N+1,2(5) since N+1 (5) = ∅. The other reduce
functions with 1, 4 and 7 store N+1,2(4), N+1,2(1), N+1,2(7),
N+2,2(2) and N+2,2(4), respectively, as shown in Fig. 6 (d).

At the Enumeration round of PBTE, each map function
takes the id (i, j) of a partition pair Pi, j and reads N+i, j. Then,
the map function emits the key-value pair ((i, j); 〈u,N+i, j(u)〉)

KIM and MIN: AN EFFICIENT PARALLEL TRIANGLE ENUMERATION ON THE MAPREDUCE FRAMEWORK
1909

Fig. 6 The behavior of PBTE algorithm

for every N+i, j(u) in N+i, j. For instance, a map function
taking (1, 2) reads N+1,2. Then, the map function emits
((1, 2); 〈1,N+1,2(1)〉), ((1, 2); 〈2,N+1,2(2)〉), ((1, 2); 〈4,N+1,2(4)〉)
and ((1, 2); 〈7,N+1,2(7)〉). The other map function with (2, 2)
emits ((2, 2); 〈2,N+2,2(2)〉) and ((2, 2); 〈4,N+2,2(4)〉) as shown
in Fig. 6 (e). The key-value pairs are grouped by the same
keys during the shuffle phase as shown in Fig. 6 (f). Thus,
for a partition pair Pi, j, each reduce function outputs the tri-
angles appearing in Pi, j. For instance, in Fig. 6 (g), a reduce
function for the partition pair P2,2 outputs a triangle Δ�413
since the vertex pair 1 and 3 in N+2,2(4) appears in E�2,2 as an
edge (1, 3). Similarly, the reduce function for P1,2 outputs
three triangles Δ�267, Δ�416 and Δ�716.

4.3 Enhanced PBTE Algorithm

In Sect. 4.2, we proposed a PBTE algorithm consisting of
the Partition and Enumeration rounds. However, each re-
duce function at the Partition round of PBTE invoked with a
vertex u ∈ V and its out-neighbor set N+(u) stores the ver-
tices in N+(u) into several partition pairs redundantly. For
instance, given an oriented graph G� in Fig. 1 (b), as shown
in Fig. 6 (d), two vertices 3 and 7 in N+2 (2) are stored in both
N+1,2 and N+2,2. Precisely, the cone vertex u is stored at most
ρ · (ρ + 1)/2 times since the number of out-neighbor sets
N+i, j(u) generated from N+(u) is at most ρ+

(
ρ
2

)
= ρ ·(ρ+1)/2.

Furthermore, let a vertex v ∈ N+(u) belong to a vertex
partition pi where 1 ≤ i ≤ ρ (i.e., v ∈ N+i (u)). Then,
since the out-neighbor set N+i, j(u) is the union of N+i (u) and
N+j (u) by Definition 5, N+i (u) is the subset of N+a,i(u) where
1 ≤ a ≤ i and N+i,b(u) where i < b ≤ ρ. Thus, each vertex
v ∈ N+(u) is stored at most ρ times. Therefore, each re-
duce function at the Partition round of PBTE stores at most
ρ · (ρ+1)/2+ρ · |N+(u)| vertices. These numerous duplicated
out-neighbors on every partition pair results in the perfor-
mance degradation at the reduce phase of the Partition round
of PBTE.

To alleviate the drawback of PBTE, we devised an en-
hanced MapReduce algorithm, called Enhanced PBTE (ab-
breviated by EPBTE). In Fig. 7, we present the pseudo-
code of EPBTE. Similar to PBTE, our enhanced algorithm
EPBTE consists of two MapReduce rounds: the PartitionEN

Fig. 7 The EPBTE algorithm

(line 1 in Fig. 7) and the EnumerationEN rounds (line 2 in
Fig. 7). At PartitionEN of EPBTE, every directed edge (v, w)
in E� is stored into an edge partition E�i, j like PBTE. How-
ever, in contrast to the Partition round of PBTE in which
all out-neighbor sets N+i, j(u) are stored in the wedge parti-
tion N+i, j, we store all out-neighbor sets N+i (u) of all vertice
u into a single file with 1 ≤ i ≤ ρ.

In the EnumerationEN round of EPBTE, for each pair
of N+i (u) and N+j (u) stored in the individual files, we check
whether a pair of vertices (v ∈ N+i (u), w ∈ N+j (u)) is in
E�i, j to form a triangle Δ�uvw appeared in a partition pair Pi, j

by Lemma 2. Before explaining the details of EPBTE, we
define a set of N+i (u)s as follows:

Definition 6: Given ρ number of vertex partitions p1,
p2, . . . , pρ for the vertex set V of an oriented graph G� =
(V, E�), an end-node partition on a vertex partition pi, re-
ferred to as N+i , is defined as N+i =

⋃
∀u∈V N+i (u).

The details of PartitionEN round and EnumerationEN

round will be presented in Sect. 4.3.1 and Sect. 4.3.2, respec-
tively.

4.3.1 PartitionEN Round of EPBTE

At the PartitionEN round of EPBTE, based on Definitions 4
and 6, we generate every edge partition E�i, j and every end-
node partition N+i where 1 ≤ i ≤ j ≤ ρ. The pseudo-code of
the PartitionEN round is presented in Fig. 8. Since the behav-
ior of PartitionEN .map is identical to that of Partition.map of
PBTE, we omit the explanation for PartitionEN .map.

Each reduce function invoked with a vertex u ∈ V
taking a value list L records each vertex v ∈ L to N+i (u)
where h(v) is i (lines 1-3 of PartitionEN .reduce in Fig. 8).

1910
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.10 OCTOBER 2019

Fig. 8 PartitionEN round of EPBTE

Then, the reduce function stores N+i (u) with u as a list into
an end-node partition N+i where 1 ≤ i ≤ ρ (lines 4-6 of
PartitionEN .reduce). If N+i (u) is an empty set, it means that
there is no wedge ω�uvw such that either of the end-nodes be-
longs to a vertex partition pi. Thus, the triangles whose cone
vertex u do not appear in

⋃
1≤a≤i Pa,i and

⋃
i<b≤ρ Pi,b. There-

fore, the reduce function does not store N+i (u) if |N+i (u)| = 0.
Note that, in both algorithms PBTE and EPBTE, since

each directed edge is stored only once in the proper edge
partition E�i, j, the total number of stored edges becomes |E�|.
However, in contrast to the Partition round of PBTE, the
reduce function of the PartitionEN round of EPBTE stores
each out-neighbor set N+i (u) with the cone vertex u into the
end-node partition N+i on the vertex partitions pi by split-
ting N+(u). Since the number of out-neighbor sets N+i (u)
is at most ρ, the cone vertex u is stored at most ρ times.
Furthermore, since N+(u) =

⋃
1≤i≤ρ N+i (u), the reduce func-

tion stores |N+(u)| out-neighbors. Therefore, the number of
the vertices (=ρ+ |N+(u)|) stored at the PartitionEN round of
EPBTE is significantly smaller than that (=ρ · (ρ+ 1)/2+ ρ ·
|N+(u)|) at the Partition round of PBTE.

4.3.2 EnumerationEN Round of EPBTE

At the EnumerationEN round of EPBTE, for every vertex
u, we first combine N+i (u) ∈ N+i and N+j (u) ∈ N+j having
the same cone vertex u in order to generate every wedge
ω�uvw where v in N+i (u) and w in N+j (u). And then, we check
whether the end-nodes v and w of ω�uvw are adjacent to gen-
erate a triangle Δ�uvw.

Given a pair of end-node partitions N+i and N+j , we have
to look up every pair of 〈u,N+i (u)〉 and 〈u,N+j (u)〉 stored in
N+i and N+j respectively. This process is identical to the equi-
join operation with the candidate key as a join attribute since
a cone vertex u appears only once in N+i and N+j respectively.
In our implementation, we find every such pair in a sort-
merge join fashion [9] since the nested loop join operation is

Fig. 9 EnumerationEN round of EPBTE

too slow and the hash join operation consumes much mem-
ory to maintain a hash table. On the contrary of other join
operations, the sort-merge join operation is relatively effi-
cient. Furthermore, the sort-merge join operation requires
the space for a pair of entries coming from two operands
during join processing when the candidate key is a join at-
tribute. This results in the minimum memory usage.

The pseudo-code of the EnumerationEN round is pre-
sented in Fig. 9. In the map phase, each map function is
invoked with the id i for the vertex partition pi. Then,
the map function for pi sorts N+i in increasing order by
id of the cone vertex u and stores sorted N+i (lines 1-2 of
EnumerationEN .map) in order to perform a merge join at the
reduce phase.

At the reduce phase, each reduce function invoked by
the reducer with an integer pair (i, j) which represents the id
of the partition pair Pi, j first sorts the directed edges in E�i, j
(line 1 of EnumerationEN .reduce). Then, we find every pair
of N+i (u) and N+j (u) having the same cone vertex u in N+i and
N+j (line 2 of EnumerationEN .reduce). As mentioned above,
we find such pairs scanning N+i and N+j sequentially follow-
ing the sort-merge join fashion. For each pair of vertices
v ∈ N+i (u) and w ∈ N+j (u), we check whether v and w are
adjacent by performing the binary search on E�i, j and gener-
ate a triangle Δ�uvw when (v, w) are adjacent like PBTE (lines
3-7 of EnumerationEN .reduce). To conduct binary search on
E�i, j, we swap ids of v and w if id(v) > id(w) since every
edge e = (v, w) in E�i, j satisfies id(v) < id(w) (lines 4-5 of
EnumerationEN .reduce).

The following example illustrates the behavior of
EPBTE algorithm.

Example 3: Reconsider the oriented graph G� shown in
Fig. 1 (b). Since the behaviors of the map and shuffle phases
of the PartitionEN round of EPBTE is identical to those of
the Partition round of PBTE, we omit the explanation to
Figs. 10 (a), (b) and (c). Then, each reduce function tak-
ing a key u and a value list L splits L into N+i (u)s and stores
N+i (u)s to an end-node partition N+i . Let ρ be 2 and a hash
function be h(u) = (id(u) mod ρ) + 1, respectively. Then, as

KIM and MIN: AN EFFICIENT PARALLEL TRIANGLE ENUMERATION ON THE MAPREDUCE FRAMEWORK
1911

Fig. 10 The behavior of EPBTE algorithm

shown in Fig. 10 (d), the reduce function taking a key 2 splits
L = {6, 3, 7} into N+1 (2) = {6} and N+2 (2) = {3, 7} and then,
stores N+1 (2) and N+2 (2) into N+1 and N+2 , respectively. The
other reduce functions with 1, 4, 5 and 7 also store N+1 (1),
N+1 (4) and N+1 (7) into N+1 as well as N+2 (1), N+2 (4), N+2 (5)
and N+2 (7) into N+2 . In the EnumerationEN round, each map
function invoked with a vertex partition pi sorts N+i in in-
creasing order by id of cone vertex and stores the sorted N+i .
For instance, as shown in Fig. 10 (e), the map function for
p1 sorts N+1 and stores N+1 . After that, each reduce function
for a partition pair Pi, j outputs the triangles appearing the
Pi, j. For instance, the reduce function for P1,2 outputs three
triangles Δ�267, Δ�416 and Δ�716 by using N+1 , N+2 and E�1,2 as
well as the reduce function for P1,1 outputs a triangle Δ�413
by using N+1 and E�1,1 as shown in Fig. 10 (f).

4.4 Analysis of Our Parallel Algorithms

In this section, we provide how to obtain the number of ver-
tex partitions ρ since the performances of PBTE and EPBTE
are affected by ρ. Of particular, the performances at the
Enumeration round and EnumerationEN round of both algo-
rithms are mainly affected by ρ since each reduce function
at both rounds is invoked with the id (i, j) for each partition
pair Pi, j where 1 ≤ i ≤ j ≤ ρ. The number of reducers
(and reduce functions) is equal to the number of partition
pairs ρ · (ρ + 1)/2. Thus, as the number of vertex parti-
tions ρ increases, the performances of both algorithms will
be degraded due to the large number of reducers. In con-
trast, when ρ is too small, the reduce phase at these rounds
may not work since each reduce function has to take a large
volume of an edge partition E�i, j resulting in out of memory.
Therefore, we derive the min imum ρ with respect to the
memory usage.

Note that the memory usage at the Partition round and
PartitionEN round of PBTE and EPBTE, respectively, is not
affected by ρ since each map function at both rounds simply
takes a directed edge as well as the reduce function takes
the out-neighbor set N+(u) of a vertex u. Let dM be the
maximum degree of vertices in V . Then, the memory us-
age of each map and reduce functions at these rounds is at
most dM . However, since dM is much smaller than the mem-

ory usage at the Enumeration and EnumerationEN rounds,
we can ignore the memory usage at the Partition round and
PartitionEN rounds.

As described in Figs. 5, each map function of PBTE’s
Enumeration round simply stores each N+i, j(u) (=N+i (u) ∪
N+j (u)) in N+i, j with (i, j) one by one. The expected number of
vertices in N+i, j(u) is at most 2·dM/ρ since |N+i (u)| and |N+j (u)|
stochastically are less than dM/ρ, respectively. In addi-
tion, each map function of EPBTE’s EnumerationEN round
simply sorts N+i in increasing order by the id of cone ver-
tex. Thus, we can also ignore the memory requirement for
each map function at the Enumeration and EnumerationEN

rounds.
In the reduce function at the Enumeration round and

EnumerationEN round, the space for loading E�i, j is required
since each reduce function loads an edge partition E�i, j to
perform sorting and binary search on it efficiently. Thus, in
our implementation, the space for E�i, j is required. In ad-
dition, for each pair of vertices v and w in N+i, j(u), a binary
search on E�i, j is performed by the reduce function. Thus, at
most 2 · dM/ρ space is required for N+i, j(u). However, since
|N+i, j(u)| (=2 · dM/ρ) is much smaller than |E�i, j|, we only con-
sider the size of E�i, j for the memory consumption of the re-
duce function at the Enumeration round and EnumerationEN

round.

Lemma 3: Given an oriented graph G� = (V, E�) and the
number of vertex partitions ρ for the vertex set V , the ex-
pected number of directed edges in each edge partition E�i, j
becomes 2 · |E�|/(ρ · (ρ + 1)).

Proof. Each vertex u ∈ V is partitioned by a hash function
h() which is randomly chosen from a pairwise independent
family of functions. The pairwise independence of h() guar-
antees that directed edges are evenly distributed over edge
partitions E�i, j with 1 ≤ i ≤ j ≤ ρ. Since the number of edge

partitions is ρ +
(
ρ
2

)
= (ρ · (ρ + 1))/2 where ρ and

(
ρ
2

)
are for

Pi, j when i = j and i < j respectively, the expected num-
ber of directed edges in each edge partition E�i, j becomes
|E�|/((ρ · (ρ + 1))/2) = 2 · |E�|/(ρ · (ρ + 1)). �

Let M be the number of edges kept in the available
memory of each machine participated in a MapReduce

1912
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.10 OCTOBER 2019

framework. Then, we calculate the proper value of ρ for
the reduce phase at the Enumeration round of PBTE and the
EnumerationEN round of EPBTE as follows:

Lemma 4: Given an oriented graph G� = (V, E�) and the
number of edges M kept in available memory space of each
machine, the number of vertex partitions ρ for the reduce
phase at the Enumeration round and the EnumerationEN

round is
⌈√

2·|E� |
M + 1

4 − 1
2

⌉
.

Proof. By Lemma 3, the expected number of directed edges
in each edge partition E�i, j becomes 2· |E�|/(ρ·(ρ+1)). Then,
each reduce function at the Enumeration round of PBTE and
EnumerationEN round of EPBTE has to keep 2 · |E�|/(ρ · (ρ+
1)) edges for E�i, j. Thus, under the restriction of the number
of edges M kept in memory space, we get

2 · |E�|
ρ · (ρ + 1)

≤ M.

Then, we have following inequalities.

2 · |E�|
M

≤ ρ2 + ρ

2 · |E�|
M

≤
(
ρ +

1
2

)2

− 1
4

2 · |E�|
M

+
1
4
≤

(
ρ +

1
2

)2

√
2 · |E�|

M
+

1
4
≤ ρ + 1

2√
2 · |E�|

M
+

1
4
− 1

2
≤ ρ

Therefore, the minimum integer number of ρ becomes⌈√
2·|E� |

M + 1
4 − 1

2

⌉
. �

Since the memory usage of each reduce function at the
Enumeration round of PBTE and the EnumerationEN round
of EPBTE is dominant, the ρ for PBTE and EPBTE becomes⌈√

2·|E� |
M + 1

4 − 1
2

⌉
.

5. Experiments

5.1 Experimental Environments

To show the efficiency and scalability of our algorithms
PBTE and EPBTE, we empirically evaluated the perfor-
mances of our proposed algorithms by comparing with the
previous parallel algorithms [11], [12] including the state-
of-the-art algorithm PTE.

All experiments were performed on the cluster com-
posed of one master node and 30 slave nodes. The master
node is equipped with an Intel Xeon E3-1220 V2 CPU and
16 Gbyte of memory size. Meanwhile, each slave node has
an Intel Core i5-3470 CPU, 4 Gbyte of memory size and
1 Tbyte of disk size. Every machine is running on Linux

Table 1 Implemented triangle enumeration algorithms

Algo. Description

CTTP Multi-rounds parallel algorithm proposed in [12].
PTE State-of-the-art algorithm proposed in [11].
BTE Our basic parallel algorithm.

PBTE Our partition based parallel algorithm.
EPBTE Our enhanced parallel algorithm.

Table 2 Data sets

Data set |V | |E� | |Δ(G�)| Link density (d) Size

LiveJournal 4.8M 69M 286M 3.0 · 10−6 1 G
Orkut 3.0M 111M 628M 1.2 · 10−5 1.7 G
Brain 0.7M 171M 24B 3.5 · 10−4 2.4 G

BrainLarge 0.7M 267M 42B 5.4 · 10−4 3.8 G

(Ubuntu 12.04.4). In our experiments, the number of ma-
chines, denoted as m, is varied from 10 to 30 and the default
number of machines is 30. We used Hadoop 2.7.3 for the
MapReduce framework implementation obtained from [1].
The implementations of all algorithms presented in Table 1
were compiled by Javac 1.8. Among the implemented algo-
rithms, we used the source codes of CTTP [12] and PTE [11]
obtained from the web pages provided by the authors. In our
experiments, we used the base version of PTE, PTEBAS E ,
among three versions of PTE.

Data Sets. To evaluate the proposed algorithms, we
used the real-life data sets: LiveJournal, Orkut, Brain and
BrainLarge. The LiveJournal data set is the graph for a free
on-line community [16] and the Orkut data set is the graph
for a free on-line social network [20]. Both data sets Brain
and BrainLarge are the networks for the collections of brain
networks [14]. The statistics of data sets are summarized in
Table 2. In Table 2, the link density d of each data set is
calculated using the equation |E�|/(|V | · (|V | − 1)). As shown
in Table 2, LiveJournal and Orkut contain small number of
edges compared to number of vertices whereas Brain con-
tains the largest number of edges. In other words, the link
densities of LiveJournal and Orkut are much smaller than
that of Brain.

The default data set used in our experiments is Brain
since it contains moderate number of edges. By using algo-
rithm proposed in [4], we preprocessed each data set to ob-
tain the corresponding oriented graph. In our experiments,
we ran all algorithms three times and report the average run-
ning time of each algorithm. In addition, we do not report
the running times which exceed 3 hours.

5.2 Experimental Results

In this section, we present our experimental results on the
real-life data sets.

Varying the number of vertex partitions ρ: We plot-
ted the running times of PBTE and EPBTE for varying the
number of vertex partitions ρ from 6 to 20 on the default
data set Brain in Fig. 11.

KIM and MIN: AN EFFICIENT PARALLEL TRIANGLE ENUMERATION ON THE MAPREDUCE FRAMEWORK
1913

Fig. 11 The running times of PBTE and EPBTE varying the number of
vertex partitions ρ on Brain data set

Table 3 Comparison between the actual ρ for our proposed algorithms
and the value of ρ calculated by Lemma 4 on every data set

Data sets ρ of PBTE ρ of EPBTE Calculated ρ

LiveJournal 8 8 7
Orkut 8 9 9
Brain 12 12 11

BrainLarge 15 15 14

When ρ = 6, the out of memory violation occurs in
PBTE and EPBTE due to the large size of E�i, j processed at
the Enumeration round and EnumerationEN round. At the
Enumeration round of PBTE and the EnumerationEN round
of EPBTE, as the number of vertex partitions ρ increases,
the size of each edge partition E�i, j handled by each reduce
function decreases. Thus, the running times of PBTE and
EPBTE become improved as ρ increases from 8 to 12. How-
ever, when ρ becomes greater than 12, the performances
of both algorithms become degraded due to the large num-
ber of the reduce functions at the Enumeration round and
EnumerationEN round. Thus, when the number of vertex
partitions ρ is 12, the performances of PBTE and EPBTE
are the best on the default data set Brain.

Although we also evaluated the running times of PBTE
and EPBTE on the other data sets varying ρ, we do not show
the results of the other data sets because the patterns are very
similar. Instead, we report the actual ρ of PBTE and EPBTE
showing the best performance on each data set in our ex-
periment and the calculated ρ obtained by Lemma 4 in Ta-
ble 3. To compute ρ by Lemma 4, we set the available mem-
ory space to 350Mbyte since, although the maximum heap
memory size provided by the java virtual machine running
on each slave node is about 500Mbyte, we have to preserve
some space for keeping environment variables.

In this experiment, to compute ρ by Lemma 4, we
set M be 2.91M obtained by letting the size of an edge
be 120 byte which is the double of vertex size (60 byte)
used in the source code of PTE. For example, for a data
set Orkut including 111M directed edges, the ρ becomes⌈√

2·111·1024·1024
2.91·1024·1024 +

1
4 − 1

2

⌉
= 9. As reported in Table 3, for

each data set, the actual ρ of each algorithm is slightly dif-
ferent from the calculated ρ. This result indicates that the

value of ρ obtained from Lemma 4 is sufficient to use as the
number of vertex partitions.

Varying the data sets: We next evaluated the execu-
tion time of each algorithm on all data sets. In this experi-
ment, for PBTE and EPBTE, we used the calculated ρ as the
number of vertex partitions. In Figs. 12(a)-(d), we plot the
execution time of each algorithm except CTTP by splitting
the partitioning round time and the enumerating round time
on each data set since CTTP does not distinguish between
the partitioning round and enumerating round.

As shown in Fig. 12(a)-(d), the execution time of each
algorithm increases with increasing the size of data set. Our
basic algorithm BTE shows the worst performance since
each reduce function at the second round is invoked with
each edge or the end-nodes of each wedge. In particular, the
running times of BTE on two data sets Brain and BrainLarge
exceed 3 hours since both data sets contain a large number
of edges. In addition, the performance of CTTP is worse
than those of PTE, PBTE and EPBTE since CTTP iterates
many MapReduce rounds.

As shown in Figs. 12(a)-(d), on each data set, the par-
titioning rounds of PTE, PBTE and EPBTE show the simi-
lar performance. However, the execution times of all algo-
rithms’ enumerating rounds are different. This means that
an effective technique for identifying triangles in each par-
tition is required to solve the triangle enumeration problem
efficiently.

At the enumerating rounds, our algorithms PBTE and
EPBTE sort each edge partition E�i, j and perform a binary
search with (v, w) ∈ N+i, j(u) on E�i, j whereas PTE simply
evaluates whether the end-nodes of every edge in each par-
tition have a common neighbor. Thus, when the number of
edges is small compared to the number of vertices (i.e., the
link density is small), PTE shows the better performance
than our proposed algorithms PBTE and EPBTE. There-
fore, for LiveJournal and Orkut data sets, the execution time
PTE is smaller than those of PBTE and EPBTE as shown
in Fig. 12 (a) and (b) since the overhead for sorting E�i, j is
larger than its gain. Meanwhile, when the link density be-
comes large (i.e., Brain and BrainLarge data sets), the gain
of binary search compensates the overhead for sorting E�i, j
since the number of vertex pair in N+i, j(u) also becomes large.
Thus, the performances of our proposed algorithms are bet-
ter than that of PTE.

Since both LiveJournal and Orkut data sets contain
small number of edges, the number of wedge partitions N+i, j
derived from |E�| is small and the size of each wedge par-
tition is also small. In this case, PBTE storing each wedge
partition N+i, j is more efficient than EPBTE storing the end-
node partitions N+i and N+j separately and performing join
them as shown in Figs. 12 (a) and (b). Meanwhile, when the
number of edges becomes large (i.e., Brain and BrainLarge
data sets), the number of wedge partitions also is large and
PBTE stores numerous duplicated out-neighbors into sev-
eral wedge partitions as mentioned in Sect. 4.3. Thus, the
performance of EPBTE becomes better than that of PBTE

1914
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.10 OCTOBER 2019

Fig. 12 The running times of all algorithms on each data set

Table 4 The sorting overhead over execution time of EPBTE

Data sets Sorting (sec) Execution (sec) Ratio

LiveJournal 14.32 184.56 7.76%
Orkut 22.11 319.68 6.92%
Brain 36.16 628.43 5.75%

BrainLarge 38.25 984.59 3.88%

as shown in Figs. 12 (c) and (d).
In order to show the sorting overhead over execution

time of EPBTE, we measured the cumulative time of sorting
E�i, j on each machine since several reduce functions invoking
the procedure sortEdgeSet(E�i, j) are executed on each ma-
chine. In Table 4, we reported the maximum among the cu-
mulative sorting times of all machines as well as the execu-
tion time and the ratio of sorting time to execution time. As
reported in Table 4, the sorting times of the data sets with the
high link density such as Brain and BrainLarge are greater
than those of the data set with low link density (i.e., Live-
Journal and Orkut) since the numbers of edges in Brain and
BrainLarge is larger than those in LiveJournal and Orkut.
However, the ratio of sorting time to execution time tends to
decrease as the link density becomes large. This result con-
firms the above analysis such that the gain of binary search
compensates the overhead for sorting E�i, j when the link den-
sity becomes large.

Varying the number of machines m: In order to eval-
uate four algorithms CTTP, PTE, PBTE and EPBTE with
regard to machine scalability, we run the algorithms on the
default data set Brain varying the number of machines m
from 10 to 30. As shown in Fig. 13, the running time of
each algorithm decreases as the number of machines m in-
creases. Especially, our proposed algorithm EPBTE shows

Fig. 13 The running times of CTTP, PTE, PBTE and EPBTE varying the
number of machines m

the best scalability regardless of the number of machines m.

6. Conclusion

In this paper, we proposed the parallel algorithms PBTE and
EPBTE for triangle enumeration in the massive graph. Both
PBTE and EPBTE split the graph into several vertex par-
titions and stores the directed edges and out-neighbor sets
for the partition pairs separately to generate the triangles
appearing in each partition pair. Especially, EPBTE does
not store the duplicated out-neighbors in contrast to PBTE
to improve the performance to generate triangles. Further-
more, we proved that the proper number of vertex parti-
tions ρ with respect to the maximum number of edges M
kept in available memory space of each machine becomes⌈√

2·|E� |
M + 1

4 − 1
2

⌉
for our proposed algorithms. Then, the

minimum ρ is sufficient to use as the number of vertex par-
titions. Our experiments confirm the effectiveness and scal-
ability of our proposed algorithms.

KIM and MIN: AN EFFICIENT PARALLEL TRIANGLE ENUMERATION ON THE MAPREDUCE FRAMEWORK
1915

References

[1] Apache, Apache hadoop, http://hadoop.apache.org, 2010.
[2] A. Azad, A. Buluç, and J. Gilbert, “Parallel triangle counting and

enumeration using matrix algebra,” 2015 IEEE International Par-
allel and Distributed Processing Symposium Workshop (IPDPSW),
pp.804–811, IEEE, 2015.

[3] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener, “Graph structure in the web,”
Computer networks, vol.33, no.1, pp.309–320, 2000.

[4] J. Cohen, “Graph twiddling in a mapreduce world,” Computing in
Science & Engineering, vol.11, no.4, pp.29–41, 2009.

[5] J. Dean and S. Ghemawat, “Mapreduce: simplified data process-
ing on large clusters,” Communications of the ACM, vol.51, no.1,
pp.107–113, 2008.

[6] M. Girvan and M.E.J. Newman, “Community structure in social and
biological networks,” Proceedings of the national academy of sci-
ences, vol.99, no.12, pp.7821–7826, 2002.

[7] X. Hu, Y. Tao, and C.-W. Chung, “Massive graph triangulation,”
Proceedings of the 2013 ACM SIGMOD international conference
on Management of data, pp.325–336, ACM, 2013.

[8] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?,” Proceedings of the 19th international
conference on World wide web, pp.591–600, ACM, 2010.

[9] P. Mishra and M.H. Eich, “Join processing in relational databases,”
ACM Computing Surveys (CSUR), vol.24, no.1, pp.63–113, 1992.

[10] H.-M. Park and C.-W. Chung, “An efficient mapreduce algorithm for
counting triangles in a very large graph,” Proceedings of the 22nd
ACM international conference on Information & Knowledge Man-
agement, pp.539–548, ACM, 2013.

[11] H.-M. Park, S.-H. Myaeng, and U. Kang, “Pte: Enumerating tril-
lion triangles on distributed systems,” Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp.1115–1124, ACM, 2016.

[12] H.-M. Park, F. Silvestri, U. Kang, and R. Pagh, “Mapreduce triangle
enumeration with guarantees,” Proceedings of the 23rd ACM Inter-
national Conference on Conference on Information and Knowledge
Management, pp.1739–1748, ACM, 2014.

[13] M.K. Rasel, Y. Han, J. Kim, K. Park, N.A. Tu, and Y.-K. Lee,
“Itri: Index-based triangle listing in massive graphs,” Information
Sciences, vol.336, pp.1–20, 2016.

[14] R.A. Rossi and N.K. Ahmed, “The network data repository with in-
teractive graph analytics and visualization,” Proceedings of the 29th
AAAI Conference on Artificial Intelligence, 2015.

[15] T. Schank, “Algorithmic aspects of triangle-based network analysis,”
Ph.D. thesis, University of Karlsruhe, 2007.

[16] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the
last reducer,” Proceedings of the 20th international conference on
World wide web, pp.607–614, ACM, 2011.

[17] J. Wang and J. Cheng, “Truss decomposition in massive networks,”
Proceedings of the VLDB Endowment, vol.5, no.9, pp.812–823,
2012.

[18] N. Wang, J. Zhang, K.-L. Tan, and A.K. Tung, “On triangulation-
based dense neighborhood graph discovery,” Proceedings of the
VLDB Endowment, vol.4, no.2, pp.58–68, 2010.

[19] D.J. Watts and S.H. Strogatz, “Collective dynamics of ‘small-world’
networks,” nature, vol.393, no.6684, pp.440–442, 1998.

[20] J. Yang and J. Leskovec, “Defining and evaluating network commu-
nities based on ground-truth,” Knowledge and Information Systems,
vol.42, no.1, pp.181–213, 2015.

[21] H. Zhang, Y. Zhu, L. Qin, H. Cheng, and J.X. Yu, “Efficient trian-
gle listing for billion-scale graphs,” 2016 IEEE International Con-
ference on Big Data (Big Data), pp.813–822, IEEE, 2016.

Hongyeon Kim was born in 1986. He
is currently pursuing the Ph.D. degree in com-
puter science and engineering from Korea Uni-
versity of Technology and Education, Republic
of Korea. He received the M.S. degree from
the School of Computer Science and Engineer-
ing, Korea University of Technology and Edu-
cation, in 2013. His main research interests in-
clude indexing, triangle enumeration, Big data,
and MapReduce.

Jun-Ki Min was born in 1972. He re-
ceived the BS degree in computer science from
SoongSil University, in 1995, and the MS and
PhD degrees in computer science and electri-
cal engineering from the Korea Advanced In-
stitute of Science and Technology (KAIST), in
1998 and 2002, respectively. He is currently a
professor with the Korea University of Technol-
ogy and Education (KoreaTech), Korea. Before
that, he was a member of senior researcher in the
Electronics and Telecommunications Research

Institute (ETRI). He also served as a PC member for PAKDD, DASFAA,
VLDB, ICDE, and WWW conferences. He has written and published sev-
eral articles in international journals and conference proceedings. His cur-
rent research interests include query processing and optimization, sensor
data management, and stream data processing, XML, and parallel query
processing.

http://dx.doi.org/10.1109/ipdpsw.2015.75
http://dx.doi.org/10.1016/s1389-1286(00)00083-9
http://dx.doi.org/10.1109/mcse.2009.120
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1145/2463676.2463704
http://dx.doi.org/10.1145/1772690.1772751
http://dx.doi.org/10.1145/128762.128764
http://dx.doi.org/10.1145/2505515.2505563
http://dx.doi.org/10.1145/2939672.2939757
http://dx.doi.org/10.1145/2661829.2662017
http://dx.doi.org/10.1016/j.ins.2015.12.006
http://dx.doi.org/10.1145/1963405.1963491
http://dx.doi.org/10.14778/2311906.2311909
http://dx.doi.org/10.14778/1921071.1921073
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1007/s10115-013-0693-z
http://dx.doi.org/10.1109/bigdata.2016.7840674

