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PAPER

Robust Label Prediction via Label Propagation and Geodesic
k-Nearest Neighbor in Online Semi-Supervised Learning

Yuichiro WADA†, Student Member, Siqiang SU††, Wataru KUMAGAI†††, Nonmembers,
and Takafumi KANAMORI†††,††††a), Member

SUMMARY This paper proposes a computationally efficient offline
semi-supervised algorithm that yields a more accurate prediction than the
label propagation algorithm, which is commonly used in online graph-
based semi-supervised learning (SSL). Our proposed method is an offline
method that is intended to assist online graph-based SSL algorithms. The
efficacy of the tool in creating new learning algorithms of this type is
demonstrated in numerical experiments.
key words: semi-supervised learning, label propagation, manifold learn-
ing, online learning, geodesic distance

1. Introduction

Semi-supervised learning (SSL) involves both labeled and
unlabeled data in the learning process. Given that this learn-
ing paradigm can solve many real-world problems, it has
been intensively studied in recent years [28].

We consider the case in which a few manually labeled
data points are provided before the arrival of continuously
streamed unlabeled data points. The goal of this study is to
predict the label of the newly arrived data point correctly and
quickly under severe memory constraints. These problems
often occur in the real world [8], [13], [23], and are known
as online graph-based SSL problems.

Online graph-based SSL is a relatively new alternative
to traditional SSL. Although many online SSL algorithms
have been proposed, most of them [11], [19] do not consider
the processing time and severe memory constraints. Conse-
quently, runtime and memory demands are increasing func-
tions Ω(T ) of streaming size T . Studies that account for
processing time and memory constraints [21]–[23] adopt a
similar overall strategy. At each time, the data adjacency
graph is recompressed after incorporating a newly arrived
data point. Thereafter, the new data point on the graph is
assigned a predicted label. The first and second steps are
called graph compression and offline graph-based SSL, re-
spectively. The second step employs the label propagation
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(LP) algorithm [29], [30].
We propose an offline graph-based SSL algorithm as a

core tool for building online algorithms. Our approach mod-
ifies the LP algorithm and combines it with the geodesic k-
nearest neighbor (GkNN) algorithm [3], [17]. The proposed
method yields a more accurate prediction with less compu-
tational cost then LP. Consequently, we can construct more
sophisticated online graph-based SSL algorithms than exist-
ing studies.

The remainder of this paper is organized as follows.
Section 2 briefly introduces existing SSL studies. Section 3
proposes a learning method for SSL and analyzes its time
complexity. Section 4 shows the utility of our algorithm in
building an efficient online algorithm for SSL. Section 5 is
devoted to numerical experiments. In this section, we show
that our method has better prediction accuracy with efficient
runtime than some existing methods. Section 6 contains
concluding remarks.

2. Related Works

We introduce the three popular SSL algorithms, i.e., La-
bel Propagation (LP) [29], [30], GkNN [3], [17], and online
quantized LP (online QLP) [22]. The first two methods are
mainly used in offline settings, whereas the last third method
is adopted in online learning.

In the offline scenario of the SSL algorithm, the labeled
data set L = {(xi, yi)}li=1 and the unlabeled data set U =

{xi}l+u
i=l+1 are observed, where xi ∈ Rp is the feature vector,

and yi ∈ {1, . . . , S} is its label. The total sample size l + u is
denoted by n. Let us define the set Lx as the feature vectors
in L, i.e., Lx = {xi}li=1, and Û as the predicted dataset over

U, i.e., Û = {(xi, ŷi)}l+u
i=l+1, where ŷi is the predicted label

of xi. The goal is to obtain the accurate prediction Û =

{(xi, ŷi)}l+u
i=l+1 over U. Table 1 shows the other notations used

throughout this paper.

2.1 Label Propagation

LP attempts to propagate the label information along with
the data adjacency graph, which is often defined by the k-
nearest neighbor (k-NN) graph. The LP algorithm is out-
lined below.

1. Define the weighted directed graph G, which comprises
a set of vertices Lx ∪ U and a set of directed edges E

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers
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Table 1 Abbreviations and notations.

LP Label propagation
GkNN k-Nearest neighbor with geodesic distance

(Online) QLP (Online) Quantized LP
RLP Robust label prediction

(Online) QRLP (Online) Quantized robust label prediction
d A metric

dG Geodesic distance on graph G
kv #Samples in the majority vote of GkNN in RLP
nc Maximum number of nodes in compressed graph

m, m Multiplicity and its vector representation
H, h Hub set and its size

defined by k-NN on the basis of a metric d. Suppose
that each edge ei j ∈ E has a non-negative weight wi j.

2. Denote the n × n graph Laplacian D −W on G by L,
where W = (wi j)i, j, and D is the diagonal matrix whose
entries are given by dii =

∑
j wi j.

3. Compute Yu as follows: let Yl be the l×S matrix whose
(i, j) element is one for yi = j and zero otherwise.
Then, Yu = (Yis) is given by

Yu = L−1
uu WulYl, (1)

where the matrices with the subscript u or l denote
the block matrix corresponding to unlabeled or labeled
data.

4. Estimate the labels of the unlabeled data by ŷi =

argmax
1≤s≤S

Yis.

The label prediction Û by the LP is denoted by Û =
LP(L,U, d, k, w). In our numerical experiments, the metric d
was assumed as the commonly used Euclidean metric.

Remark 1. The weight is commonly defined by the
Gaussian kernel,

wi j =

⎧⎪⎪⎨⎪⎪⎩exp(−‖xi − x j‖2/σ2), ei j ∈ E,

0, ei j � E,
(2)

The bandwidth σ is selected by the median or mean heuris-
tics [20].

Remark 2. A class of extended Gaussian kernels is also
employed in graph-based methods; see [15], [31].

Let us consider the time complexity of LP. Suppose that
the metric d is the Euclidean metric and a Euclidean distance
is computed in O(p) time, where p is the dimension of the
feature vector. Thereafter, for the weight w defined by the
Gaussian kernel, the time complexity is

O
(
pn2 + u3

)
. (3)

The first and second terms in Eq. (3) are contributed by the
brute-force construction of the k-NN graph [5] and the cal-
culation of the u × u inverse matrix in (1), respectively. The
edge weights wi j must be properly defined in LP because
they largely affect the final prediction accuracy [12]. In prac-
tice, the edge weights are computed by rather simple strate-
gies such as Eq. (2). However, the time complexity given by

(3) is a serious issue, particularly when l � u.

2.2 Geodesic k-Nearest Neighbor

In GkNN with k = kv, the label is predicted by major-
ity voting among the geodesic kv-nearest labeled neighbors
on the weighted data adjacency graph, whose vertices are
Lx ∪ U. Given that only the observed data are available,
the exact geodesic distance on the true data manifold cannot
be computed. Therefore, the geodesic distance should be
approximated.

Let us consider the time complexity of the GkNN. As-
sume the graph is defined by k1-NN on the basis of the
Euclidean metric. When the geodesic distance is approxi-
mated by the shortest path distance on the graph, the time
complexity is expressed as follows:

O
(
pn2 + kv(log n + k1)n

)
, (4)

where the cost of computing a Euclidean distance is O(p).
The first and second terms in (4) are contributed by the
brute-force construction of the k1-NN graph [5] and by al-
gorithm 1 of [17], respectively. In this case, GkNN is com-
putationally more efficient than LP. Moreover, the hyperpa-
rameter kv can be efficiently chosen by heuristics [3], [17].

In our numerical experiments, we employ the k-NN
graph and Euclidean metric for computational efficiency.

2.3 Online Quantized LP

Online QLP [22] combines label prediction by QLP with an
online graph compression method called the doubling algo-
rithm (DA) [4]. The QLP is conducted on the compressed
graph.

The purpose of DA is to construct a compressed graph
from the original neighbor graph G0, where each node in G0

corresponds to a point in Euclidean space. The DA algo-
rithm is detailed in [4]. Let us now define the compressed
graph G of G0. The node in the compressed graph is called
the centroid, and is chosen from the nodes in G0. The cen-
troid v has a vertex multiplicity that is defined as the number
of nodes represented by v. More precisely, the multiplicity
is the number of nodes that fall in the ball at center v with
a predefined radius R. Each node in G0 is arranged to con-
tribute to the multiplicity of only one centroid. Hence, the
sum of the multiplicities equals the total number of nodes in
G0. This is again mentioned in Definition 1.

Let us consider the online QLP of an online data
stream. Let Ct−1 be the set of centroids at time t − 1, and
Rt−1 > 0 be the radius at time t − 1. The maximum size
of the compressed graph is denoted as nc. Suppose that a
new data point xt is observed at time t. The vertex multi-
plicities at time t − 1 is compiled into a vector mt−1 with the
dimension |Ct−1|. The DA algorithm is the iterative function

(Ct,mt,Rt) = DA(xt,Ct−1,mt−1,Rt−1, nc).

The size of Ct is bounded above by nc.
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When an unlabeled data xt is observed at time t, DA
provides the compressed graph. The QLP algorithm then
predicts the label of xt on the compressed graph. In label
prediction by QLP, the multiplicities are incorporated into a
weight matrix Ŵ as detailed in [22].

Let us consider the time complexity of online QLP.
At each time, the time complexity of DA [4] based on the
Euclidean distance is bounded by

O
(
pnc log nc

)
. (5)

The time complexity of QLP [15] is the time complexity
of LP (defined by (3)) over the compressed graph. There-
fore, the worst-case time complexity of QLP is O

(
pn2 + n3

c

)
,

where n = l + nc. By summing up both time complexities,
the time complexity of online QLP at each time is bounded
by O

(
pn2 + n3

c

)
. Note that when deriving the above com-

plexity, we assumed only unlabeled data in the data stream.
The disadvantage of online QLP is non-robust against

outliers [15].

3. Robust Label Prediction Methods

3.1 Proposed Algorithm

We now propose our label prediction method, which is
called robust label prediction (RLP). Our algorithm consists
of three steps. On the basis of the neighbor graph, RLP
first selects some unlabeled samples that represent the global
structure of the data manifolds. The second step assigns la-
bels to selected unlabeled samples by using LP. The third
step predicts the labels on the remaining unlabeled samples
by using GkNN.

The unlabeled samples selected by the algorithm are
collected into the hub dataset, which is denoted as H ⊂ U.
The vertices selected for H are those with many neighbors
on the graph G. The hub dataset H is formally defined
below.

Definition 1. Let L and U be the labeled and unlabeled sets.
On the graph G = (Lx ∪ U, E), let N j be the set of adjacent
nodes of x j ∈ Lx ∪ U. Suppose that the multiplicity m(xi)
is assigned to each node xi in G. Let us define |N j|0 as the
total multiplicity at x j, i.e.,

|N j|0 =
∑

xi∈N j

m(xi). (6)

For a natural number h, the hub set H is defined as the col-
lection of nodes that ranked in the top-h total multiplicity in
U. They are arranged in descending order of |N j|0.

In the above definition, generally |N j|0 is not the cardi-
nality of N j over G, but the cardinality of the neighborhood
over the uncompressed graph G0 in practice.

Algorithm 1 and Fig. 1 show the pseudo code and
working mechanism of RLP, respectively. The details of the
algorithm are given below.

Algorithm 1 : RLP
Input: Labeled and unlabeled data sets L and U. Number of neighbors
k1, k2. Size of the hub dataset h. Size of the majority vote kv.

1: Construct the directed graph G = (Lx ∪ U, E), where E is defined by
k1-NN with the Euclidean distance.

2: Build the hub dataset H on the graph G such that |H| = h. Thereafter,
define H̄ by U \ H.

3: Replace all directed edges in G with undirected ones.
4: Define the geodesic metric dG by computing the shortest path distance

on graph G.
5: Estimate the labels of H as follows: Construct Ĥ by LP, by com-

puting LP(L,H, dG , k2, w2), where the weight w2(xi, x j) is defined by
exp(−dG(xi, x j)2/σ2).

6: L← L ∪ Ĥ.
7: Estimate the labels of H̄ by implementing GkNN on G with k = kv and

the labeled set L. Let ̂̄H be the labeled set of H̄.
Output: Ĥ ∪ ̂̄H.

Fig. 1 This figure explains the working mechanism of the RLP algo-
rithm. (a) The labeled and unlabeled data (black squares/triangles and
black dots, respectively) are given in R2. The number of classes is two.
The two banana shapes delineate the true data manifolds. (b) Line 2 of the
RLP algorithm. The star symbols and the black dots denote the hub data
and non-hub data, respectively, where h = 11. (c) After line 5 of RLP al-
gorithm, the hub data are assigned labels and are considered new labeled
data. The labels of H̄ are predicted by k-NN (k = 1) with the computed
geodesic distance of line 4. As an example, the circled black dot is labeled
(by GkNN), with the square symbol indicated in the left banana shape.

• Line 1: Given L and U, construct a directed weighted
graph G by k1-NN with a Euclidean metric. k1 is set to
a small number such as three, four or five. The graph
construction uses all feature vectors, Lx ∪U to capture
the global structure of the data manifolds.

• Line 2: Remove outliers prior to LP in line 5. By defi-
nition, the hub set H is expected to exclude outliers by
the appropriate setting of h. The appropriate number of
h is obtained by cross-validation.

• Line 3: When approximating the geodesic distance on
true data manifolds by the shortest path distance on G,
the directed graph G should be converted to an undi-
rected graph.

• Line 4: Define the geodesic metric dG. The distances
are determined from the Euclidean distances defined
on the edges of G. However, among all geodesic dis-
tances, we need only to compute the distances required
in line 5 and 7. The efficient algorithms are available
for this purpose [9], [17].
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• Line 5: Estimate the labels of the non-outliers (i.e.,
the elements in H) by running LP on Lx ∪ H. The
small k1 and Euclidean distance are useful for approx-
imating the geodesic distances between nodes in high-
density regions, but the nodes in Lx ∪ H are sparse on
Lx ∪U. Thus, we vary the number of neighbors k2 and
the geodesic metric dG rather than fixing the number of
neighbor k1 and the Euclidean metric. The appropriate
number of k2 is obtained by cross-validation.

• Line 6: Augment the labeled dataset by L∪ Ĥ. Consid-
ering that Ĥ should be a well estimated set, the updated
L is expected as a reliable labeled dataset.

• Line 7: Predict the labels on the remaining unlabeled
data set H̄ by GkNN by using the updated labeled data
set L ∪ Ĥ. The updated labeled set is expected to sta-
bilize the prediction performance of GkNN. Recall that
the geodesic distance was calculated in line 4. Here,
the GkNN is employed for two reasons. First, GkNN
runs faster than LP on H̄, particularly when |H̄| 
 1.
Second, in our observations, GkNN predicted the labels
of H̄ more robustly than LP.

Remark 3. For h = u (resp. h = 0), RLP is reduced to the
LP with geodesic distance dG (resp. GkNN).

Remark 4. In line 1 and 4 of algorithm 1, the geodesic dis-
tance dG is defined by the k-NN graph and the Euclidean
metric (because this pair is commonly used). However,
when defining dG, we can apply several graph construc-
tion methods with different metrics depending on the given
dataset; see [3], [17].

Remark 5. GkNN is more robust than LP. The non-hub
dataset H̄ may include noisy data or outliers. In the LP al-
gorithm, which predicts the label of a point that uses all data
points, the outliers may degrade the prediction accuracy of
all data in H̄. On the contrary, GkNN uses only the k ad-
jacent labeled points in the prediction, thus locally limiting
the influence of the outliers.

3.2 Some Properties of RLP

This section discusses the hyperparameters of RLP, and the
time and space complexity of the RLP algorithm.

Proposition 1. Let |L| and |U | be l and u, respectively. For
the given k1, k2, h and kv, the time complexity of RLP in al-
gorithm 1 is expressed as follows:

O
(
h3 + pn2 + k(k1 + log n)n

)
, (7)

where n = l + u, and k = max{k2, kv}.

Proof. The time complexity is contributed by three lines in
algorithm 1: line 1 computes the Euclidean distance matrix
and identifies the k1-nearest neighbors of each vertex, line
4 computes the geodesic metric, and line 5 labels the hub
data. For instance, if the time cost of computing a single
Euclidean distance is O(p) time, line 1 consumes O(pn2)

time. Line 4 consumes O(k(log n + k1)n) time, with k =
max{k2, kv} (see [9], [17] for details), and line 5 requires
O(h3) time for computing the h × h inverse matrix. �

The space complexity is of order n2 because the n-node
graph G should be maintained.

3.3 Hyperparameter Tuning

The RLP has four hyperparameters, namely, k1, k2, h and kv.
Hyperparameters k1 and kv in line 1 and 7 of algorithm 1 do
not require tuning. We confirmed that k1-NN with a small
k1 efficiently detects the outliers and obtains an appropriate
hub set in our algorithm. The label prediction on H̄ with
GkNN is based on majority voting among the kv-nearest la-
beled samples in terms of geodesic distance. Hence, when
kv is large, GkNN fails to exploit the local structure of the
data manifold. We experimentally demonstrated that a small
kv such as three, four or five is a good choice for label
prediction.

Let us consider the tuning of hyperparameters k2 and h.
The parameter h ranges from one to u. As h approaches u,
the complexity of RLP approaches that of LP, thus rendering
our method impractical. To avoid this problem, we upper-
bound h by hmax.

Corollary 1. Let kmax
2 be the upper bound of k2 in algo-

rithm 1. Fix k1, kv, and k2 such that 1 ≤ k2 ≤ kmax
2 . There-

after, define the upper bound of h as follows:

hmax = min
{(

pn2 + κ(k1 + log n)n
) 1

3 , u
}
, (8)

where n = l + u and κ = max{kmax
2 , kv}. In this case, for

all h such that 0 ≤ h ≤ hmax, the time complexity of RLP is
bounded by the following:

O
(
pn2 + κ(k1 + log n)n

)
. (9)

Moreover, suppose that hyperparameters k2 and h are tuned
by K-fold cross-validation in the ranges 1 ≤ k2 ≤ kmax

2
and 0 ≤ h ≤ hmax, respectively. Let c be the number of
candidates for hyperparameters. The total time complexity
of RLP, including the time consumed by cross-validation, is
bounded by the following:

O
(
K pn2 + cKκ(k1 + log n)n

)
. (10)

Proof. We first consider the worst-case time complexity of
(7) in the range 1 ≤ k2 ≤ kmax

2 . In this case, the time com-
plexity of RLP is bounded by the following:

O
(
h3 + pn2 + κ(k1 + log n)n

)
. (11)

By raising both sides of Eq. (8) to the third power, we obtain
the following inequality for all h in 0 ≤ h ≤ hmax:

h3 ≤ (hmax)3 ≤ pn2 + κ(k1 + log n)n. (12)
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By combining (11) and (12), the time complexity (9) is de-
rived. Finally, given that there are c × K iterations of cross-
validation, the time complexity (10) follows from the worst-
case time complexity (9). Note that the choice of the hyper-
parameters h and k2 does not affect the computation cost of
k1-NN in line 1 of algorithm 1. Hence, the order pn2 is kept
unchanged. �

In our numerical experiments of RLP, we conduct a
five-fold cross-validation by using the hmax of Eq. (8) and
the kmax

2 set to 20.

Remark 6. In the numerical experiments of Sect. 5, we ob-
served that the prediction accuracy of RLP was not nega-
tively affected by limiting the upper bound of h in the cross-
validation. The hub set with a large h tended to include
noisy data that deteriorated the prediction accuracy on the
hub set.

Remark 7. Corollary 1 guarantees that the time complex-
ity of RLP with hyperparameter hmax is comparable with
that of GkNN. The computational efficiency of RLP can be
improved by approximating the k-NN graph. According to
[24] and [27], the time complexity of constructing the ap-
proximated k-NN graph is O(pn log n). Consequently, the
computational cost of the RLP with an approximated k-NN
is reduced to O((p + κ)n log n + κk1n).

4. Application of RLP to Online Scenario

In this section, we incorporate the RLP into online SSL.

4.1 Quantized RLP

The QLP predicts the labels of the unlabeled samples on
compressed graph using LP. The proposed online method re-
places LP with RLP, which performs equivalently to QLP on
compressed graphs. We refer this RLP as the quantized RLP
(QRLP). QRLP and RLP differ only by their inclusion and
exclusion of the vertex multiplicities, respectively. Thus, the
QRLP algorithm is used to rewrite the input, line 5, line 7 of
the algorithm 1 as follows.

• Input: The inputs to QRLP are the labeled and unla-
beled datasets (L and U, respectively), the vertex mul-
tiplicities m of U, the numbers of neighbors k1 and k2,
the size of the hub data set h, and the size of the major-
ity vote kv.

• Line 5: Estimate the labels of H as follows: Con-
duct QLP on the directed weighted compressed graph
G1 = (Lx ∪ H, E1, w1), where E1 is defined by k2-
NN with dG. The weight w1(xi, x j) is defined by
exp(−dG(xi, x j)2/σ2). The estimated hub set is denoted
by Ĥ.

• Line 7: Estimate the labels of H̄ by GkNN on G with
k = kv by using the updated labeled set L. Note that, if
xi ∈ H is one of the kv-labeled nearest neighbors with
x j ∈ H̄, the vote from xi to x j is counted as m(xi) and

not as one. Let ̂̄H be the labeled set of H̄.

The output Û of the QRLP algorithm is expressed as
follows:

Û = QRLP(L,U,m, k1, k2, h, kv).

Remark 8. Although we did not rewrite to line 2 of the
algorithm 1, the vertex multiplicities are considered when
building the hub set; see Eq. (6) of definition 1.

Remark 9. When m = 1, QRLP reverts to RLP.

The QRLP has four hyperparameters, namely, k1, k2, h
and kv. Similar to that in the RLP, k1 and kv can be chosen
by efficient heuristics. On the compressed graph, the time
complexities of QRLP and RLP are the same.

4.2 Online Quantized RLP

The online QRLP is obtained by combining DA and QRLP.
The pseudo code is presented in algorithm 2, and the details
are presented below.

• Pretuning and initialization: If an initial labeled data
set L0 and an unlabeled data set U0 are obtained before
the data stream arrives, pretuning and initialization are
desired. As discussed before, QRLP has two tunable
hyperparameters, namely, k2 and h. Moreover, given
that the graph is compressed by DA, its size |Ct | may
change at each time. Accordingly, k2 and h should be
tuned with |Ct | at each time step; this process is time
intensive. Prior to streaming, we prepare appropriate
sizes of k2 and h on the basis of L0, U0, and the max-
imum size of the compressed graph nc. This prepara-
tion maintains the small time complexity of the online
QRLP at each time. By setting the cardinality of U0 to
nc, the pretuning is performed as described below.

1. Input L0, U0, number of neighbors k1, majority
vote size kv, and maximum size of the compressed
graph nc.

2. Define the upper bound of the number of neigh-
bors k2 as kmax

2 . By using |L0|, |U0|, kmax
2 , and kv,

calculate hmax by Eq. (8). Given an integer I, we
define nci by �nc/I�i for i ∈ {1, 2, . . . , I}, and de-
note U(i)

0 as a set of randomly sampled nci -data
from U0. For each i, find the pair (k2, h) that
maximizes the accuracy of the RLP output via the
cross-validation by using L0, U(i)

0 , k1 and kv. The
cross validations with k2 and h ranged through
1 ≤ k2 ≤ kmax

2 and 1 ≤ h ≤ min{hmax, nci }, respec-
tively. Denote the most accurate pair by (k(i)

2 , h
(i))

for the fixed i. Denote {(k(i)
2 , h

(i), nci ) ; i ∈ I} by T .
3. Output T .

Let us denote the above procedure by

T = PreTune(L0,U0, k1, kv, nc).

To implement the pretuning process, we must acquire
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unlabeled data before the stream arrives.
Furthermore, we must initialize the starting set of cen-
troids C0, the starting vertex multiplicities m0 of C0,
and the starting radius R0. Here, we assign C0 ← U0,
m0 ← 1, and R0 ← ε, where ε is a small positive real
number.

• Line 1: If the labeled data is observed at time t, the
labeled dataset is updated without updating the com-
pressed graph.

• Line 2: If the observed data is unlabeled, the centroid
set, its vertex multiplicities, and the radius are updated
by DA. Then, QRLP is conducted on the compressed
graph with vertices (Lt)x ∪ Ct. Note that when the ap-
propriate pair (k(i∗)

2 , h
(i∗)) is chosen from T , the size dif-

ference between nci and |Ct | is minimized.

Let us now consider the time complexity, space com-
plexity, and choice of the hyperparameters in online QRLP.

Proposition 2. Suppose that algorithm 2 does not detect
labeled data. Let L0 and U0 be the labeled and unlabeled
datasets obtained before the stream, respectively. Fix the
number of neighbors k1, the size of majority vote kv, and
the maximum size of compressed graph nc. Let the num-
ber of neighbors k2 be upper bounded by kmax

2 , and run
PreTune(L0,U0, k1, kv, nc) to obtain T . Then, the time com-
plexity of online QRLP at each time is upper bounded by

O
(
pn2 + κ(k1 + log n)n

)
, (13)

where κ = max{kmax
2 , kv}, n = l + nc, l = |L0|.

Proof. The time complexity (13) follows by summing time
complexity (5) and (9). �

In practical situations, nc cannot be large; therefore,
if the dimension of the feature vector is excessive, online
QRLP will not be faster than online QLP. However, online
QRLP runs faster than online QLP on low-dimensional fea-
ture vectors. Online QRLP has five hyperparameters. Hy-
perparameters k1 and kv do not require tuning, whereas k2

and h are tuned in the pretuning stage of algorithm 2. To
ensure a fast prediction in the online scenario, nc must be

Algorithm 2 : Online QRLP
Input : At time t ≥ 1, a new data point, a labeled data set Lt−1, a
set of centroids Ct−1, the vertex multiplicities mt−1 for Ct−1, the radius
Rt−1, the number of neighbors k1, the size of majority vote kv, the max-
imum size of the compressed graph nc, and the result of pretuning T
by computing PreTune(L0,U0, k1, kv, nc) (See Sect. 4.2 [pretuning and
initialization])

1: If the new data point is a labeled data (xt , yt), then Ct ← Ct−1, mt ←
mt−1, Rt ← Rt−1, Lt ← Lt−1 ∪ {(xt , yt)}.

2: If the new data point is an unlabeled data xt , first update the labeled
data set by Lt ← Lt−1. Then, build the (Ct ,mt,Rt) of a newly com-
pressed graph by computing DA(xt ,Ct−1,mt−1,Rt−1, nc). Then, esti-
mate the labels of Ct by computing QRLP(Lt ,Ct,mt , k1, k

(i∗)
2 , h

(i∗), kv),
where i∗ = argmin

1≤i≤I

∣∣∣nci − |Ct |
∣∣∣ with T . Set the QRLP output to Ĉt .

Finally, determine ŷt from Ĉt.
Output: ŷt .

set to a small value.
Given that the graph on (Lt)x∪Ct should be maintained

in online QRLP, the space complexity of the algorithm is
O
(
max{p(|Lt | + nc), (|Lt | + nc)2}

)
. Note that in practical sit-

uations, |Lt | cannot be large.

Remark 10. Our online SSL algorithm combines QRLP
with DA. Other online SSL algorithms can be constructed
by incorporating online graph compressing methods such
as [1] into QRLP.

5. Numerical Experiments

The performance of our methods was evaluated in of-
fline and online scenarios. Experiments were per-
formed on eight real-world datasets, namely, Yale
(Yale Face Database B) [7], ORL, UMNIST [25], COIL
(COIL-20) [18], Vowel [2], MNIST [16], optdigits [2], and
USPS [25]. Table 2 shows the properties of each dataset.

5.1 Offline Experiments

We compared the performances of three methods (LP,
GkNN, and RLP) on the eight real-world datasets described
in Table 2. All experiments were conducted 20 times with
different random seeds, and the performances were averaged
to obtain the final results. Table 3 shows the prediction accu-
racy and their standard deviations on the different datasets.
Also, the dependency of the prediction accuracy on the un-
labeled data size was evaluated on the MNIST dataset. The
unlabeled data size varied from 100 to 19900 (in uneven in-
crements), and the size of the labeled data was fixed at 100.
Table 4 shows the results. In all tables, the most accurate
prediction is highlighted in bold font. The hyperparameters

Table 2 Properties of the data sets, where p, S, and # denote the di-
mension of feature vector, the number of classes, and the sample size,
respectively.

Yale ORL UMNIST COIL
p 1024 10304 10304 16384
S 15 40 20 20
# 165 400 575 1439

Vowel MNIST optdigits USPS
p 12 784 64 256
S 2 10 2 10
# 1456 70000 5216 11000

Table 3 The averaged prediction accuracy with the standard deviation on
unlabeled data in eight real-world datasets. In each dataset, l and u denote
the number of labeled and unlabeled data with l = 4S, respectively.

(l, u) RLP LP GkNN

Yale (60,115) 0.538(0.035) 0.474(0.038) 0.471(0.027)
ORL (160,240) 0.915(0.021) 0.894(0.025) 0.832(0.021)
UMNIST (80,495) 0.896(0.024) 0.857(0.035) 0.762(0.042)
COIL (80,1220) 0.774(0.016) 0.738(0.027) 0.727(0.020)
Vowel (8,1392) 0.967(0.002) 0.967(0.001) 0.959(0.030)
MNIST (40,2960) 0.712(0.040) 0.466(0.086) 0.670(0.035)
optdigits (8,2998) 0.999(0.000) 0.994(0.011) 0.972(0.006)
USPS (40,3960) 0.671(0.038) 0.444(0.072) 0.618(0.031)
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Table 4 The prediction accuracy with the standard deviation on the
MNIST dataset. The number of labeled data is fixed to 100, and the number
of unlabeled data u varies from 100 to 19900.

u RLP LP GkNN

100 0.728(0.066) 0.698(0.055) 0.685(0.036)
200 0.740(0.027) 0.689(0.046) 0.692(0.039)
400 0.759(0.040) 0.705(0.036) 0.694(0.023)
900 0.783(0.020) 0.700(0.039) 0.730(0.026)
1900 0.801(0.020) 0.703(0.037) 0.747(0.016)
2900 0.825(0.020) 0.683(0.057) 0.770(0.018)
19900 0.877(0.020) 0.490(0.080) 0.802(0.017)

Table 5 The averaged prediction accuracy with the standard deviation
on unlabeled data in the Vowel dataset. In the table, l and u denote the
number of labeled and unlabeled data with l = 4S, respectively.

(l, u) RLP LP GkNN

(100, 1300) 0.995(0.005) 0.968(0.005) 0.874(0.028)

in each method were chosen as described below.

• In RLP, hyperparameters k1 and kv were set to four and
three, respectively, and k2 and h were determined by the
five-fold cross-validation as mentioned above. Hyper-
parameter k2 was chosen from {5, 10, 20}, and the range
of h was {hi | 1 ≤ i ≤ 5, i ∈ N}, where hi = i×�hmax/5�;
see Eq. (8). The candidates of k2 were decided through
preliminary experiments.

• In LP, the number of neighbors k was set to five, and the
weight function w was defined as Gaussian kernel. The
bandwidth σ was determined by the mean heuristics.

• In GkNN, the number of neighbors and majority votes
were set to five and three, respectively.

As confirmed in Table 3, our method outperformed the
other methods on all datasets except Vowel. The Vowel
dataset is a two-class dataset with a heavy bias (97% class
1 membership). Accordingly, if all unlabeled data are la-
beled as class 1, the prediction accuracy is approximately
97%. When only eight labeled data are provided, we can
conclude that all methods fail to learn. However, when more
labeled data are provided (Table 5), the learning succeeds in
RLP but continues to fail in LP and GkNN. Therefore, em-
pirically speaking, the prediction accuracy of our method
exceeds those of LP and GkNN. Furthermore, because our
RLP method captures the structure of the data manifolds, its
accuracy improves with the increasing number of unlabeled
data points (Table 4). GkNN exhibits a similar tendency but
is less efficient than RLP. Meanwhile, LP cannot capture the
structure of the data manifolds even when u is large.

Tables 6 and 7 show the averaged runtime with the stan-
dard deviation. The problem settings are the same as the
experiments in Tables 3 and 4, respectively. Both tables in-
dicate that the RLP and GkNN tend to outperform the LP
when unlabeled data set gets bigger. This result matches (3)
and (9). The GkNN and RLP are comparable in terms of
the computational cost. This result agrees to the theoretical
analysis in (4) and (9). In Table 7, the difference between
the three methods is not large when u is small to medium
size. This is because the term pn2 including the coefficient is

Table 6 The averaged runtime (sec.) with the standard deviation for the
experiments in Table 3.

(l, u) RLP LP GkNN

Yale (60,115) 0.090(0.003) 0.092(0.001) 0.093(0.002)
ORL (160,240) 5.062(0.034) 4.971(0.012) 5.092(0.045)

UMNIST (80,495) 10.32(0.007) 10.17(0.027) 10.33(0.094)
COIL (80,1220) 88.32(2.321) 89.17(1.575) 87.83(2.966)
Vowel (8,1392) 0.568(0.005) 0.352(0.004) 0.519(0.005)

MNIST (40,2960) 21.72(1.317) 23.00(1.137) 21.52(0.739)
optdigits (8,2998) 4.118(0.086) 4.981(0.018) 3.979(0.059)

USPS (40,3960) 16.32(0.306) 20.48(0.668) 17.08(0.533)

Table 7 The averaged runtime (sec.) with the standard deviation for the
experiments in Table 4.

u RLP LP GkNN

100 0.113(0.000) 0.100(0.001) 0.110(0.001)
200 0.238(0.006) 0.211(0.000) 0.232(0.005)
400 0.643(0.004) 0.585(0.010) 0.640(0.028)
900 2.445(0.022) 2.248(0.017) 2.427(0.009)
1900 9.734(0.050) 10.66(0.111) 10.81(0.223)
2900 21.46(0.693) 22.23(0.648) 21.04(0.798)

19900 1044.55(10.13) 2005.96(9.442) 1172.37(43.87)

Table 8 The averaged prediction accuracy with the standard deviation on
unlabeled data in eight real-world data streams. In each dataset, l denotes
the number of labeled data obtained before the arrival of each stream of
size T .

(l,T ) Online QRLP Online QLP

Yale (75,85) 0.528(0.046) 0.471(0.048)
ORL (80,220) 0.722(0.029) 0.656(0.058)

UMNIST (60,240) 0.637(0.028) 0.544(0.059)
COIL (80,120) 0.660(0.034) 0.592(0.062)
Vowel (100,1300) 0.969(0.004) 0.966(0.002)

MNIST (100,1900) 0.679(0.021) 0.663(0.019)
optdigits (10,4990) 0.971(0.002) 0.961(0.031)

USPS (100,1900) 0.700(0.020) 0.612(0.050)

thought to be dominant in the computational cost in this set-
ting. For small datasets, all methods efficiently work, while
the RLP maintains high prediction accuracy. Moreover, the
RLP outperforms GkNN and LP for large u in terms of both
prediction accuracy and computational cost. The prediction
accuracy of the LP tends to be degraded for large u due to
the noisy unlabeled data. Such phenomenon is commonly
observed in semi-supervised learning [26].

5.2 Online Experiments

In this experiment, the performances of online QLP and the
proposed online QRLP were compared over the eight real-
world datasets. Table 8 shows the averaged prediction ac-
curacy with the standard deviation for two algorithms. The
results are the averages of 10 experiments with nc = 50 on
different data streams. The labeled dataset was assumed to
be given before the stream arrived, and the stream included
only unlabeled data. We also assumed that the data distribu-
tion remained unchanged during the observation.

The hyperparameters in each method were tuned as
follows:
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Table 9 The averaged prediction accuracy with the standard deviation
on the MNIST data stream. The number of labeled data before the stream
arrival was set to 100 and the size of the data stream was set to 1900. In the
table, nc denotes the maximum size of the compressed graph.

nc Online QRLP Online QLP

50 0.679(0.021) 0.663(0.019)
100 0.714(0.015) 0.684(0.020)
150 0.720(0.017) 0.679(0.022)

Table 10 The averaged prediction accuracy with standard deviation on
the USPS data stream. The number of labeled data before the stream arrival
was set to 120, and the size of the data stream was fixed at 1880. In the
table, nc denotes the maximum size of the compressed graph.

nc Online QRLP Online QLP

50 0.700(0.020) 0.612(0.050)
100 0.687(0.023) 0.662(0.040)
150 0.732(0.021) 0.666(0.029)

• In online QRLP, hyperparameters k1 and kv were set to
four and three, respectively. According to the pretuning
procedure in Sect. 4.2, kmax

2 was set to 20, and hmax was
computed by Eq. (8). The integer I was set to three. For
each i, five-fold cross-validation was conducted in the
ranges k2 ∈ {5, 10, 20} and h ∈ {h j | 1 ≤ j ≤ I, j ∈ N},
where h j = j × �min{hmax, nci }/I�.

• In online QLP, the number of neighbors k was set to
five, and the weight w was defined by the Gaussian ker-
nel. The band width σ was determined by the mean
heuristics.

Table 8 shows that overall our method outperformed the
online QLP. However, learning in both methods failed on
the Vowel dataset. The most accurate predictions of online
QRLP and online QLP are highlighted in bold font.

Tables 9 and 10 compare the performance of online
QRLP and online QLP on the MNIST and USPS data
streams, respectively, on different size nc. The proposed
method outperformed the existing one. Online QRLP with
large nc was the most accurate predictor, though larger nc

is computationally infeasible in the online scenario. Hence,
the trade-off between the computational cost and prediction
accuracy must be properly balanced when choosing nc.

5.3 Relationship to Deep Neural Networks

From several viewpoints, we discuss about the relationship
between online QRLP and deep neural networks (DNNs) in
the online SSL scenario.

In terms of the required memory size in the learning
process, online QRLP is more efficient than DNNs. DNNs
such as CNNs or ResNets [10], [14] typically have more
than a million of parameters, while online QRLP needs only
O(max{p(nc + l), (nc + l)2}) memory space.

As for the prediction accuracy, online QRLP is thought
to be comparable to DNNs when the number of labeled
data is small. [6] reported that the prediction accuracy of
the CNN was 0.683 when only 100 labeled samples of the
MNIST dataset were used. This accuracy was achieved by

the intensive search of the network structure out of 7103
candidates. On the other hand, the online QRLP achieves
0.679 as shown in Table 9, though the problem setting was
slightly different. In our experiments, additional 50 unla-
beled samples were available. Note that the online QRLP
was not tailored to image classification tasks, unlike CNNs.

Finally, concerning runtime, the learning of DNNs
commonly requires much more computational cost than on-
line QRLP, since DNNs have an enormous number of pa-
rameters to be learned. The computation time for the predic-
tion depends on the size of DNNs or the number of centroids
in online QRLP. The number of unlabeled data in the of-
fline setting corresponds to the number of centroids. Hence,
Tables 4 and 7 indicate that the online QRLP with a small
number of centroids is expected to be computationally effi-
cient and not to occur severe deterioration of the prediction
accuracy.

6. Conclusion

We proposed a generic graph-based SSL algorithm, called
RLP. We confirmed that RLP is robust against noisy data
and provides more accurate predictions than LP and GkNN.
The computational efficiency of RLP matches that of GkNN.
Furthermore, we confirmed the power of RLP as a core
technique in the online SSL framework. In the online sce-
nario, the proposed method has two tunable hyperparame-
ters, namely k2 and h. Future works should focus on the
choice of hyperparameter h. In this paper, the upper bound
hmax of h was determined by considering the computational
cost. The prediction accuracy when hmax is based on other
criteria should also be examined. Furthermore, an adaptive
method that determines both hyperparameters would be use-
ful for practical online learning.
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