
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020
321

PAPER

Efficient Methods to Generate Constant SNs with Considering
Trade-Off between Error and Overhead and Its Evaluation

Yudai SAKAMOTO†a), Nonmember and Shigeru YAMASHITA††b), Senior Member

SUMMARY In Stochastic Computing (SC), we need to generate many
stochastic numbers (SNs). If we generate one SN conventionally, we need
a Stochastic Number Generator (SNG) which consists of a linear-feedback
shift register (LFSR) and a comparator. When we calculate an arithmetic
function by SC, we need to generate many SNs whose values are equal
to constant values used in the arithmetic function. As a consequence, the
hardware overhead becomes huge. Accordingly, there has been proposed
a method called GMCS (Generating Many Constant SNs from Few SNs)
to generate many constant SNs with low hardware overhead. However, if
we use GMCS simply, generated constant SNs are correlated highly with
each other. This would be a serious problem because the high correlation
of SNs make a large error in computation. Therefore, in this paper, we
propose efficient methods to generate constant SNs with reasonably low
hardware overhead without increasing errors. To reduce the correlations
of constant SNs which are generated by GMCS, we use Register based Re-
arrangement circuit using a Random bit stream duplicator (RRRD). RRRDs
have few influences on the hardware overhead because an RRRD consists
of three multiplexers (MUXs) and two 1-bit FFs. We also use a technique to
share random number generators with several SNGs to reduce the hardware
overhead. We provide some experimental results by which we can confirm
that our proposed methods are in general very useful to reduce the hardware
overhead for generating constant SNs without increasing errors.
key words: Stochastic Computing, Stochastic Number, correlation

1. Introduction

Stochastic computing (SC, hereafter) is an approximation
calculation method by using stochastic numbers (SNs, here-
after) which represent the ratio of 1 in bit strings [1]. There
has been a great interest in the research for SC because SC
can perform (especially) arithmetic operations with very low
hardware cost and power compared to the conventional cal-
culation methods based on binary radix encoding if we admit
some errors [2]. Indeed, there have been proposed various
applications of SC mainly in such as the area of image pro-
cessing and neural networks (e.g., [3]–[10]).

To generate an SN, the most popular way is to use a
linear-feedback shift register (LFSR) and a comparator for
each SN. Thus, if we need to generate many SNs, the hard-
ware overhead becomes huge. However, when we calculate
a function f (x) by SC, we may need two types of SNs; ones

Manuscript received December 20, 2018.
Manuscript revised September 18, 2019.
Manuscript publicized November 12, 2019.
†The author is with the Graduate School of Information Sci-

ence and Engineering, Ritsumeikan University, Kusatsu-shi, 525–
8577 Japan.
††The author is with the College of Information Science and En-

gineering, Ritsumeikan University, Kusatsu-shi, 525–8577 Japan.
a) E-mail: saicho@ngc.is.ritsumei.ac.jp
b) E-mail: ger@cs.ritsumei.ac.jp

DOI: 10.1587/transinf.2018EDP7435

are values of x, and the others are some constants (coeffi-
cients in the expression of f (x)). As for SNs whose values
are x, note that we need multiple different SNs for x to cal-
culate a power of x although their values are the same (as x).
This is because if we calculate x2 by multiplying exactly the
same two SNs for x in an SC manner, we get the value x not
x2, and so we need different SNs for x. More precisely as
will be explained later in Sect. 2, we need multiple different
SNs for x which are not correlated with each other.

Fortunately, there has been proposed a very efficient
method called RRR (Register based Re-arrangement cir-
cuit using a Random bit stream) duplicator (RRRD, here-
after) [11] which duplicates SNs to generate many SNs of
the same value which are not correlated highly with each
other by using few hardware.

However, it is not known how to reduce the hardware
overhead for generating many constant SNs (of the different
values), which we will focus in this paper. There proposed
a method to generate many SNs from very few SNs [12].
Thus, one may consider to use the method in [12] to reduce
the hardware overhead for generating many constant SNs.
However, that idea may not work well as we explained later
in this paper because the method in [12] produce SNs which
are highly correlated with each other and thus the calcula-
tion error may become huge. (This is because their motiva-
tion is not to generate coefficients in an expression of a func-
tion, but to generate SNs for another purpose which does not
need SNs with low correlation.)

Considering the above-mentioned problem, in this
paper, we propose two novel schemes to utilize the
method [12] by lowering the correlation. Then we propose
six methods in our schemes. We then confirm our proposed
schemes are useful by some experiments.

This paper is organized as follows. The following
Sect. 2 explains the basics for SC including how the cor-
relation between SNs affects the calculation, and how an
RRRD works. Section 3 explains our main idea to reduce
the hardware overhead to generate many constant SNs with-
out increasing errors too much. Then we propose our six
methods in the same section. After that, Sect. 4 shows some
experimental results which confirm that our proposal is in-
deed useful. Finally, Sect. 5 concludes the paper with our
future works.

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

322
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

Fig. 1 Stochastic Number Generator

Fig. 2 An AND gate as a stochastic multiplier.

2. Preliminaries and Previous Works

2.1 Stochastic Computing

In SC, a number is represented by a bit-stream in such a
way that the probability (ratio) of “1” in the bit-steam is in-
terpreted as the number itself [2]. For example, a bit-stream
“00101000” represents 1

4 because there are two “1” in the 8
bit-length. We refer to bit-streams of this type as stochas-
tic numbers (SNs). We also refer to the probability that a
stochastic number represents as its value. Thus, two bit-
streams that contain “1” with the same probability represent
the same number; we say that the values of the two stochas-
tic numbers are the same. For example, both “101100” and
“01010110” represents 1

2 , i.e., the values of the two stochas-
tic numbers are both 1

2 . We can increase the precision of the
represented number by making the bit-stream longer.

By using a stochastic number generator (SNG) as
shown in Fig. 1, we can generate an SN by comparing a
constant binary number and a random number generated by
Linear Feedback Shift Register (LFSR), etc. If we can use
an ideal random number, the probability of getting 1 from
such an SN can be controlled by the constant binary num-
ber. Thus, we can generate an SN representing any number
as we want.

An issue we should consider is the obvious fact that an
SN can represent only a real value in the range of [0, 1]. If
we need to perform operations on numbers out of the range,
we need to scale the inputs to fit into the range of [0, 1], and
then we need to scale again the final results appropriately
after the whole SC.

Here, we briefly explain how basic arithmetic opera-
tions can be done in SC. Indeed, many operations can be
done with very simple logic gates as we will see in the fol-
lowing. In SC, we can perform the multiplication of two
SNs by simply inputting the two bit-streams to an AND gate
as shown in Fig. 2. In the following, let P(X = 1) mean the
probability of getting 1 from the binary string X. If the two
SNs, A and B, are independent with each other, we have the
following: P(A and B = 1) = P(A = 1) × P(B = 1). From
this, it is easy to see that a simple AND gate can be used as
a stochastic multiplier. Indeed, in the example as shown in

Fig. 3 Multiplexer used as a scaled stochastic adder

Fig. 4 An AND gate of the two same input SNs

Fig. 2, we can surely get the correct result: C = A × B be-
cause P(A = 1) = 4

8 and P(B = 1) = 6
8 , and P(C = 1) = 3

8 .
In SC, as shown in Fig. 3, we can perform the addition

of two SNs by using a multiplexer (MUX) and an appropri-
ate scaling operation if necessary. If an SN S is independent
from both the two SNs, A and B, we have the following:
P(C = 1) = P(S = 1) × P(A = 1) + P(S = 0) × P(B = 1)
where C is the output of the MUX. Especially, when
P(S = 1) = 1

2 , P(C = 1) = 1
2 (P(A = 1) + P(B = 1)).

Thus, we get an SN C which represents a number for the
1
2 -scaled addition result. Indeed, in the example as shown
in Fig. 3, P(A = 1) = 5

8 , P(B = 1) = 3
8 , P(S = 1) = 4

8
and P(C = 1) = 4

8 . This means we can get the half-scaled
addition results. We may need to scale the result to get the
real addition result if necessary.

So far we have seen that an AND gate and an MUX
are enough to calculate the multiplication and addition of
two SNs, respectively in SC. However, it should be noted if
the two input SNs and/or the control input of a MUX (S in
Fig. 3) are correlated, the calculated result is generally incor-
rect. Also, the more the SNs are correlated, the more the re-
sult of SC calculation is incorrect in most cases. Thus, in the
research community, the value called “Stochastic Comput-
ing Correlation” (hereafter, SCC) [13] is often considered.
The SCC of two SNs expresses how the SNs are correlated
with each other. The range of SCC is from −1 to 1, and if the
value of SCC is near to 0, the two SNs are less correlated.

Let us consider an extreme case when the two input
SNs to the SC multiplication are exactly the same, i.e.,
highly correlated. Indeed, if the two SNs are exactly the
same, the SCC of the two SNs is 1. In such case, because
the AND of the two same SNs is the same as its inputs (i.e.,
the AND of A and A is A), we cannot get the correct mul-
tiplication values A2 although we want to multiply A and A
by an AND gate. For example, Fig. 4 shows a case when
the two inputs are the same. In general, we cannot get the
correct multiplication result by an AND gate when the in-
puts are correlated. Especially when the value of input SNs
to an AND gate is near to 1

2 , the absolute value of the er-
ror becomes large if there is a correlation of the two inputs.
Therefore, we usually generate each SNs independently by

SAKAMOTO and YAMASHITA: EFFICIENT METHODS TO GENERATE CONSTANT SNS
323

Fig. 5 Register based Re-arrangement circuit using a Random bit stream
duplicator

a different independent SNG as shown in Fig. 1.

2.2 SN Duplicators [11]

An SN duplicator refers to a generator that outputs an SN
with the same value as the input SN, but has a different bit
stream of the input SN. Therefore, an SN duplicator must
satisfy the following condition.

• The values of input SN D and output SN O must be
equal and the bit streams of them differ (D � O).

In [14], an SN duplicator using a single 1-bit flip-flop
(FF) has been proposed. However, in case of 1-bit FF-based
duplicators, we obtain an output SN that is exactly the same
bit stream when we input the same SN to them; this duplica-
tor can generate only one different SN from one SN. There-
fore, this duplicator cannot generate more than one different
SN. Indeed, an ideal SN duplicator requires the following
conditions.

• Even if the same input SN D is given, the bit stream of
its output SN O differs from each other every time the
duplicator duplicates its input SN.

As an ideal SN duplicator, Register based Re-
arrangement circuit using a Random bit stream duplicator
(RRRD) has been proposed in [11]. An RRRD is shown in
Fig. 5. An RRRD consists of three MUXs and two 1-bit FFs
(FF1 and FF2). In Fig. 5, the bit stored in FF2 is used as
its i-th output Oi, the i-th input bit Di is newly stored into
FF2, and the bit stored in FF1 is not changed when Ri = 0
(Ri is the i-th bit in R). In the same way, the bit stored in
FF1 is used as Oi, Di is newly stored into FF1, and the bit
stored in FF2 is not changed when Ri = 1. Normally, R
has a value of 1

2 . In case of RRR, even if we input the same
SN D to an RRRD, we obtain a different output SN O every
time because we use different R every time.

Also, all the bits in D are used as O except for the last
bit stored in FF1 and FF2. Instead, the initial bits stored
in the FFs are outputted at first. This means that the erro-
neous bit at duplication using an RRRD is no more than two
bits. Therefore, maximum duplication error of an RRRD is
2
|d| which is in inverse proportion to the bit length of the in-
put SN. In [11], RRRDs are used to duplicate input x when
calculating f (x).

3. Reducing the Overhead to Generate Constant SNs

Any function can be approximated by a polynomial based on
Maclaurin expansion. Then, the value of a polynomial can
be calculated in an SC way because we need only multipli-
cations (with AND gates) and additions (with MUXs with
appropriate scaling if necessary) to calculate the value of
a polynomial. Moreover, for many useful arithmetic func-
tions, such as sin x and cos x, we can calculate the function
by only AND and NOT (or NAND) gates by transforming
the functions by Horner’s method [14].

For example, sin x can be expressed as:

sin(x) � x − x3

3! +
x5

5! − x7

7! +
x9

9! − x11

11! +
x13

13! − x15

15! +
x17

17!

= x(1 − 1
6 x2(1 − 1

20 x2(1 − 1
42 x2(1 − 1

72 x2(1 − 1
110 x2

(1 − 1
156 x2(1 − 1

210 x2(1 − 1
272 x2)))))))). (1)

The above formula can be calculated by SC very easily be-
cause a single multiplication can be done by one AND gate,
and (1 − F) can be calculated from F by one NOT gate.

However, we need a lot of SNs (random bit strings);
for the above sin x, we need to generate eight different SNs
for the eight constant values, and we also need to duplicate
x to get x2 and then duplicate x2 seven times to generate
eight different SNs for x2. Note that we need eight different
SNs for x2 although we need the same values for them to
calculate the function accurately. (As we explained in the
previous section, the AND of the same two SNs (x2) gives
us x2, not x4. Thus we need different SNs for x2 to calcu-
late the above formula.) Accordingly, we need a substantial
amount of hardware resource to generate all the necessary
SNs which may diminish the advantage of SC. To reduce
the hardware overhead to produce SNs for multiple x’s, it is
shown that RRRDs [11] work very well as we explained in
the previous section.

However, RRRDs cannot be applied for the generation
of different constant values because RRRDs just duplicate
SNs and thus it cannot produce SNs of different values.
Thus, we still need to generate a different SN for each con-
stant value in the above formula. In the following, we pro-
pose an efficient scheme to decrease the overhead of gener-
ating SNs for constant values without increasing the error of
the calculation too much.

3.1 Generating Many Constant SNs from Few SNs

In our proposed method, we will utilize a method proposed
in [12] to generate many constant SNs from a small num-
ber of SNs. The idea in the method [12] is as follows:
suppose we have m SNs, r1, r2, · · · , rm, whose values are
R1,R2, · · · ,Rm. By using an AND gate whose inputs are ri

or the negation of ri, we can generate an SN whose value is
the multiplication of Ri or (1 − Ri). (Note that the negation
of ri is an SN whose value is (1 − Ri).)

For example, r1 · r2 · r3 generates an SN whose value
is R1 · (1 − R2) · R3. By ORing the outputs of such AND

324
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

gates, we can generate many SNs. Thus, intuitively, we can
generate exponentially many SNs from few SNs by adding
logic circuits. Indeed the paper [12] proves that if we want
to produce multiple SNs of the form M

1024 (1 ≤ M ≤ 1023)
at the same time, we need at most four input SNs. For
brevity, we call the above-mentioned method GMCS (Gen-
erating Many Constant SNs from Few SNs) in the follow-
ing. Specifically, when we consider to generate many SNs
of the form M

1024 (1 ≤ M ≤ 1023), GMCS can tell us how to
generate such SNs (i.e., the logic circuits generating SNs)
from four SNs whose values are 1

2 , 1
4 , 1

8 , 1
16 .

It seems that we can reduce the overhead for the con-
stant SNs for general SC by GMCS. However it is not true
by the following reason. Suppose we want to calculate a
function in an SC way, and so we need many constant SNs
whose values are coefficients (i.e., ai in the expression of
the above-mentioned sin x) used in the expression of the
function. If we use SNs produced by GMCS for each ai

(coefficients), we do not expect to get the correct function’s
value because there is a correlation between each ai gener-
ated by GMCS. For example, when a1 and a2 are generated
as r1 · r2 · r3 and r1 · r2 · r3, respectively, there is a strong
correlation between a1 and a2 because they use the same r1,
r2 and r3. Thus, we cannot utilize GMCS simply to reduce
the number of constant SNs.

Note that GMCS is proposed in [12] to generate the
constant SNs which are used for constant values in Binary
Combination Polynomial (BCP)-based SC [15]; the constant
SNs are only used as inputs of multiplexers in such a us-
age, and thus they are allowed to be correlated with each
other [16]. In contrast, in this paper, we use constant SNs
which are multiplied with each other. Thus we cannot sim-
ply use the idea of GMCS for our purpose.

3.2 Reducing the Correlation between SNs by RRRDs

Our main idea in this paper is to apply RRRDs to the inputs
of GMCS so that we can decrease the correlation between
SNs generated by GMCS. We explain our idea here.

Suppose we want to generate eight constant SNs,
a1, · · · , a8 to calculate some function in an SC manner. By
using GMCS, we can do so as follows: first we prepare four
SNs denoted by r1, · · · , r4. (Specifically, the values of r1,
r2, r3, r4 are set to 1

2 , 1
4 , 1

8 and 1
16 , respectively, in the pa-

per [12].) Then, GMCS can produce logic circuits that gen-
erates desired constant SNs (a1, · · · , am) at the same time
from four SNs (r1, · · · , r4) where ai =

M
1024 (1 ≤ M ≤ 1023).

Suppose that we can generate a1 as r1 · r2 · r3, and a2 as
r1 · r2 · r3. In this case, as mentioned above, the correlation
between a1 and a2 is high because they use the same r1, r2

and r3. Thus we duplicate ri by RRRDs to generate different
SNs whose values are the same as ri. Let us denote such du-
plicated SNs by r0

i (= ri), r j1
i , r j2

i , · · · , r jm
i when we duplicate

ri m times.
Here, we explain the meaning of jk in r jk

i in the above.
SNs with the same values of jk mean that they are duplicated
by RRRDs using the same input SN R in Fig. 5. (As will

be explained, we consider to share some SNs for RRRDs
in our proposed method.) Assume that Rk is the input SN
used to duplicate r jk

i . For example, r j
1 and rk

2 are duplicated
by RRRDs using the same input SN R if j and k are the
same. In such a case, the correlation between r j

1 and rk
2 may

become high. Therefore, when we generate a constant SN
by using GMCS and RRRDs, we need to use r j

1, r
k
2, r

l
3, · · ·

such that all the upper indexes j, k, l, · · · should be different.

Then we generate a1 as r0
1 · r1

2 · r2
3, and a2 as r2

1 · r0
2 · r1

3.
Then we can expect that the correlation between a1 and a2

is reduced.
We performed the following experiment to check the

validity of the above-mentioned our idea. In one trial, we
compare two methods: (Without RRRDs) we generate
eight random SNs from r1, r2, r3 and r4 by applying only
GMS simply, and (With RRRDs) we generate the same
eight random SNs by GMCS whose inputs are duplicated
by RRRDs for each ai as mentioned above. We performed
this trial 100 times, and calculated SCC between any pair of
ai and a j from eight generated SNs. The average SCC was
0.74 and 0.28 for (Without RRRDs) and (With RRRDs), re-
spectively.

In conclusion, we expect RRRDs would be useful to
increase the accuracy of SC when we use GMCS to reduce
the overhead of generating many constant SNs.

3.3 Sharing LFSRs

Our main idea presented above is to use RRRDs to reduce
the correlation of SNs generated by GMCS. However, if we
use RRRDs naively, we need large hardware overhead. This
is because an RRRD needs an SN which needs an SNG.
Therefore, we explain how to reduce this overhead in the
following.

To reduce the hardware overhead of RRRDs, we con-
sider to decrease the number of LFSRs; we try to share
LFSRs among many SNs. The idea taken from [16] is as
follows: when we generate two (or more) SNs, we share an
LFSR among the generation of multiple SNs. Of course,
if we share an LFSR simply, the generated SNs are corre-
lated highly with each other. To reduce the correlation, we
perform a circular shift (of different shift amount) on each
input of a comparator to generate an SN as Fig. 6 where we
generate two SNs, C1 and C2, from one LFSR.

We checked the relation between SCC and the shift

Fig. 6 Sharing an LSFR by Circular Shift

SAKAMOTO and YAMASHITA: EFFICIENT METHODS TO GENERATE CONSTANT SNS
325

Table 1 Average SCC (l = 8) for Different Shift Amount

Shift Amount S CC(C1,C2)

k = 0 1.000

k = 1 0.684

k = 2 0.451

k = 3 0.317

k = 4 0.274

k = 5 0.317

k = 6 0.451

k = 7 0.684

amount in the above scheme when the bit length of the
LFSR (l) is 8. Table 1 shows the result; it shows the
average value of S CC(C1,C2) among all the combination
of (a, b) (i.e., (1, 1), (1, 2), (1, 3), · · · , (255, 254), (255, 255),
which are 2552 = 65, 025 combinations in total) for different
shift amount (k).

From Table 1, we can observe that the correlation be-
tween C1 and C2 can indeed be reduced by the circular
shift, and the correlation becomes the lowest when the shift
amount, k, equals l

2 where l is the bit-length of the LFSR.
Thus, in our proposal in the following, we set the shift
amount as evenly as possible among the inputs of different
comparators which share an LFSR.

3.4 Proposed Methods to Reduce the Overhead for Con-
stant SNs

Now we are ready to explain our proposal in this paper to
reduce the overhead of generating constant SNs. Consider-
ing the above discussions, we propose the following scheme
as shown in Fig. 7. The figure shows how we can gener-
ate duplicated many SNs for x, and different constant SNs,
a1 · · · am, which are used to calculate sin x in an SC manner.

The figure shows a case in which we use eight constant
SNs, a1, · · · , a8, with the accuracy level 1

1024 , and thus we
need four SNs, r1, · · · , r4, for GMCS to produce the eight
constant SNs. In the figure, LFSR 1 is shared to generate
SNs that are used as x, and r1, · · · , r4. Then, as mentioned
above, we use RRRDs to duplicate ri to generate r0

i (= ri),
r1

i , r
2
i , · · · , r7

i . We generate ai as a logic circuit whose inputs
are r j1

1 , r j2
2 , r j3

3 , r j4
4 . (Each logic circuit realizing ai has four

input SNs whose values are the same as r1, · · · , r4, but the
correlation between the generated a1, · · · , a8 become lower
thanks to RRRDs as mentioned above. Note that SNs r j1

1 ,
r j2

2 , r j3
3 , r j4

4 are duplicated by RRRDs with the same input
SN R if the upper indexes are the same. Thus, these SNs
may be highly correlated if some of j1, j2, j3 and j4 are
the same. Therefore, we take j1, · · · , j4 from one of the
values from 0 to 7 such that they are all different.) In the
proposed scheme, we need one SN (a random bit string) for
each RRRDs; LFSR 3 are shared for generating all SNs used
for RRRDs that duplicate x, and LFSR 2 are shared for gen-
erating all SNs used for RRRDs that duplicate ri to generate
r0

i (= ri), r1
i , r2

i , · · · , r7
i .

Accordingly, for the implementation of our proposal

Fig. 7 Our Proposed Scheme to Perform Stochastic Computation

in Fig. 7, we need three LFSRs and five comparators and
some overhead for RRRDs and Bit Shifters. In this study,
we consider reducing the overhead of generating SNs. Thus,
we consider mainly LFSRs, comparators and RRRDs for the
overhead in the following.

Next, we seek a possibility that we may further reduce
the overhead; we consider to share the above three LFSRs.
We did a preliminary experiment to check the correlations
when we share the LFSR used by SNGs and the one used
by RRRDs. More concretely, we checked how SCC values
(between any pair of ai and a j) change if we share LFSR 1
and LFSR 2 in the above scheme. We calculated SCC val-
ues (between any pair of ai and a j) for generating randomly
selected a1, · · · , a8, and the average SCC values (between
any combination of pair of ai and a j) over 100 trials were
0.301 and 0.295 for with and without sharing LFSR 1 and
LFSR 2, respectively.

From the above preliminary experiment, we conclude
that there is maybe a small difference by sharing LFSRs in
our proposal depending on the situation. Therefore, we pro-
pose the following three methods: the difference between
the three methods is which LFSRs are shared, and we will
compare them by our experiment in the next section.

Method 1: In our proposed scheme, this method sepa-
rately uses LFSR 1, LFSR 2 and LFSR 3, that is, this method
needs three LFSRs.

Method 2: In our proposed scheme, this method shares
one LFSR for all RRRDs, i.e., we share LFSR 1 and
LFSR 2, that is, this method needs two LFSR.

Method 3: In our proposed scheme, this method shares
all of LFSR 1, LFSR 2 and LFSR 3, that is, this method
needs one LFSR.

In the above proposed scheme, we apply RRRDs to the
inputs of GMCS; RRRDs are placed before the logic cir-
cuits for GMCS as shown in Fig. 7. We can consider an-
other scheme as shown in Fig. 8 where RRRDs are placed
after GMCS. In this scheme, we use the same ri to produce
a1, a2, · · · , a8 by GMCS. It is obvious the outputs of the
eight GMCS circuits should be highly correlated. Thus, we
put an RRRD after each GMCS circuit generating a2, · · · , a8

to reduce the correlation. Obviously this scheme needs less
number of RRRDs than the first scheme as shown in Fig. 7
although the calculation error may be increased. There-

326
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

Fig. 8 Another Scheme by Changing the Location of RRRDs.

fore, we evaluate the both schemes in the next section. For
the second scheme, we consider three methods, Method 4,
Method 5 and Method 6 which correspond to Method 1,
Method 2 and Method 3, respectively, in the first scheme.

4. Experimental Results

In the previous section, we propose to use GMCS and
RRRDs to decrease the overhead of generating constant SNs
without increasing errors. Then we propose specifically
Method 1 to Method 3 in our proposed scheme as shown
in Fig. 7. Also, we propose Method 4 to Method 6 in the
similar scheme as shown in Fig. 8. Therefore, in the follow-
ing evaluation, we evaluated Method 1 to Method 6 as our
proposed methods.

To confirm the efficiency of our proposal, we consid-
ered other methods to be compared with our methods. More
concretely, we tried the following Method 7 to Method 11
in addition to our proposed six methods in our experiments.

In our experiments, we compared the errors when we
calculate sin x, cos x, log(x + 1) by our six methods and
the following five other methods. sin x is approximated as
Eq. (1). cos x is approximated as a series product of (1−aix2)
by Horner’s method [14] as mentioned in Sect. 3. log(x + 1)
is approximated as Eq. (1) in which x2 is replaced with x.
Thus, to calculate each function, we need eight constant
SNs.

Method 7: This method uses GMCS to reduce the nec-
essary constant eight SNs (i.e., a1, · · · , a8) into four con-
stant SNs (i.e., r1, · · · , r4) as our proposal as shown in Fig. 7.
However, this method does not use RRRDs as our proposal,
thus this does not use LFSR 2 in Fig. 7. This method uses
two LFSRs in total.

Method 8: This method is almost similar to Method 7,
but one LFSR is shared for the two LFSRs used in Method 7.
That is, this method uses only one LFSR.

Method 9: This method does not use GMCS, so it
needs to generate eight SNs (i.e., a1, · · · , a8), for which
we require eight comparators. Because this method does
not use GMCS, it does not use RRRDs for generating the
constant eight SNs (a1, · · · , a8), and thus this does not use
LFSR 2 in Fig. 7. This method uses two LFSRs; one is
shared for generating x and eight SNs (i.e., a1, · · · , a8) as

LFSR 1 in Fig. 7. The other LFSR is used for RRRDs which
duplicate x or x2.

Method 10: This method is almost similar to
Method 9, but one LFSR is shared for the two LFSRs used
in Method 9. That is, this method uses only one LFSR.

Method 11: In the above Method 7 to Method 10, one
LFSR (LFSR 1 in Fig. 7) is shared to generate x and the
eight constant SNs (i.e., a1, · · · , a8). In contrast, Method 11
prepares one dedicated LFSR separately for generating each
ai. (Thus, we do not need to use GMCS.) In this method, we
also have other two LFSRs; one is for generating x, and the
other is used for RRRDs which duplicate x or x2. Thus, this
method uses 10 LFSRs in total.

Note that in all the 11 methods, we use one LFSR
to be shared for generating the inputs, i.e., x and constant
SNs which are (a1, · · · , a8) or (r1, · · · , r4) when we use
GMCS to generate a1, · · · , a8 from r1, · · · , r4. Note also
that Method 11 should be the best in terms of accuracy of
the function output, but it needs huge hardware resource as
we see in the following.

In our experiment, we set the accuracy level as 1
1024 .

Thus, the bit-length of SNs is 1024 bits. Also, each LFSR
has 10 bits in our scheme, and so there are 210 − 1 = 1023
different initial values for one LFSR. For a method having
only one LFSR, it is enough to try only one (arbitrary) initial
value. The reason is that we get the same results even if we
change initial values for one LFSR. For a method having
two LFSRs, we tried 1023 cases. The initial value of one
LFSR is fixed to one value, and we tried 1023 initial values
of the other LFSR. However, for a method having more than
two LFSRs, we cannot do all the cases; we randomly select
1023 cases for initial values of all the LFSRs in the method.

A 10-bit LFSR outputs different values between 1 and
1023 one by one, and the output of the LFSR return to the
initial values after it outputs 1023 bits. Because we need
1024 bit strings in our experiment, we use the initial val-
ues twice to generate 1024 bits from a 10-bit LFSR in our
experiment.

There are 1024 values for x, i.e., 1
1024 ,

2
1024 , · · · , 1024

1024 . It
is very time consuming to try all 1024 values for x, so for
each case, we tried x from 2

1024 with increasing 50
1024 , i.e., we

tried x = 2
1024 ,

52
1024 ,

102
1024 , · · · , 1002

1024 .
Other than the above simple functions, we also tried

100 randomly generated formulas of Eq. (1) based on
Maclaurin expansion of sin x. Let each constant value in
Eq. (1) be ai. In the case of sin x, this means that a1 is 1

6 , a2

is 1
20 , · · · , a8 is 1

272 . We randomly change each constant ai

in the formula for sin x. We generated two different sets of
random formulas; (Random A) each constant ai is selected
from 1

1024 to 1023
1024 , and (Random B) each constant ai is se-

lected from 412
1024 to 612

1024 . The reason we did (B) is that the
effect of the correlation of two SNs for a stochastic multipli-
cation of the two SNs would be very large if one of the two
SNs is near to 1

2 .

SAKAMOTO and YAMASHITA: EFFICIENT METHODS TO GENERATE CONSTANT SNS
327

Table 2 The Hardware Overhead of Each Method In Terms of The Num-
ber of Gates Equivalent To NAND2

Method LFSRs comparators RRRDs Sum

1 131.50 (3) 685.99 (21) 480.96 (37) 1298.45

2 87.67 (2) 457.32 (14) 480.96 (37) 1025.95

3 43.83 (1) 424.66 (13) 480.96 (37) 949.11

4 131.5 (3) 685.99 (21) 207.98 (16) 1025.47

5 87.67 (2) 457.32 (14) 207.98 (16) 752.97

6 43.83 (1) 424.66 (13) 207.98 (16) 676.47

7 87.67 (2) 457.32 (14) 116.99 (9) 661.98

8 43.83 (1) 424.66 (13) 116.99 (9) 585.48

9 87.67 (2) 555.32 (17) 116.99 (9) 759.98

10 43.83 (1) 555.32 (17) 116.99 (9) 716.14

11 438.33 (10) 555.32 (17) 116.99 (9) 1110.64

4.1 Comparison of Hardware Overhead

First we compare the hardware overhead of the above-
mentioned 11 methods. We used Design Compiler with
Rohm 180 nm logic cell library to compile the three designs
for one RRRD, one comparator and one 10-bit-LFSR. Then,
the reported gate counts in NAND2 equivalents are as fol-
lows:

• RRRD: 12.99
• Comparator: 32.66
• 10-bit-LFSR: 43.83

By using these values, we could compare the hardware
overhead more accurately.

Table 2 shows the number of gates equivalent to
NAND2 for LFSRs, comparators, and RRRDs in each
method. The second, third, and fourth columns show the
total number of gates equivalent to NAND2 used in each
module. The fifth column shows the total number of gates
equivalent to NAND2. Each number in parentheses repre-
sents the number of used components of each module.

4.2 Comparison of Errors

Next, we compare the errors of the 11 methods. We evalu-
ated the average of the amount of the error of each method
by a software simulation. Table 3 reports the root mean
squared error between the accurate value and the simulated
result by each method.

The second and the third columns show the results for
randomly generated formulas. The second column is for the
case where the constant (ai) is chosen uniformly at random
(Random A). The third is for the case where the constant
(ai) is chosen at random only from 412

1024 to 612
1024 (Random B).

The forth, the fifth and the six-th columns are for sin x, cos x
and log(x + 1), respectively.

From Table 3, we can observe the following:

• Method 11 would be the best in terms of the accuracy
(the exception is the case of sin x; it is slightly worse
than some other methods.

Table 3 Average of The Root Mean Squared Error To The Accurate
Value (×10−2)

Method Random A Random B sin x cos x log(x + 1)

1 2.98 1.41 0.67 3.04 3.98

2 2.88 1.28 0.61 3.05 4.08

3 2.94 1.40 0.47 3.13 3.21

4 2.71 1.28 0.45 3.33 3.63

5 2.71 1.18 0.64 3.35 4.10

6 2.80 1.13 0.62 3.43 3.41

7 3.84 8.17 0.60 3.32 5.40

8 3.88 7.74 0.67 3.36 4.63

9 4.11 5.82 2.38 3.80 5.04

10 3.74 5.18 1.75 2.43 5.60

11 1.72 1.33 0.94 3.45 1.24

• Method 1 to Method 6 are not bad for all the cases.
• Method 1 to Method 6 are better than Method 7 and

Method 8 in case of Random A, Random B and log(x+
1).
• Our proposed methods (Method 1 to Method 6) are bet-

ter than Method 11 in case of sin x.

As we mentioned in Sect. 2.1, the correlation of the two
inputs to a multiplication would have a huge bad impact on
the result of the multiplication especially when the values of
inputs are near to 1

2 . Indeed, Method 7 to Method 10 suffer
from the correlation problem for Random B. However, it
should be noted that our proposed Method 1 to Method 6
can overcome the correlation problem even for Random B,
i.e., they work very well for Random B.

4.3 Discussion

From the experimental result, Method 1 to Method 6 give
good results in terms of accuracy among our proposed meth-
ods. However, Method 1 to Method 4 have relatively large
overhead. Considering the hardware cost, we came to a con-
clusion that Method 6 gives us a very good trade-off between
the accuracy and the hardware overhead.

Let us compare our proposed methods with other meth-
ods, i.e., Method 7 to Method 11, in the following. As
we expected, Method 11 seems to be the best in terms of
the accuracy, but it requires very large hardware overhead.
As for Method 9, our methods would be better than it in
terms of the both metrics, i.e., accuracy and the hardware
cost. Method 10 works well for cos x in terms of accuracy.
However, Method 10 would be worse in case of the other
functions. Moreover, the overhead of Method 10 is bigger
than Method 6. Method 7 and Method 8 would have smaller
hardware overhead than our methods. However, we consider
that Method 7 and Method 8 would become worse (in terms
of accuracy) than our methods for general cases, especially
when the constant values are near to 1

2 by judging from the
column “Random B.”

In conclusion, we consider that Method 6 would be a
good choice among the above 11 methods in general be-
cause they work well for most cases in terms of accuracy,

328
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

and the hardware overhead is reasonably small. Of course,
we do not claim that Method 6 is always good; other meth-
ods should be better than them for some specific cases.

5. Conclusion and Future Work

This paper has investigated various methods to generate
constant SNs considering the hardware overhead and errors
together. The main idea utilized in our proposed method
is to use GMCS to reduce the number of SNs to be gen-
erated and to use RRRDs to reduce the correlation caused
by GMCS. Our experimental results suggest that Method 6
would provide us a very good trade-off between the hard-
ware overhead and the increasing errors. From this, we can
conclude that in general our proposed scheme to generate
constant SNs works well considering the hardware overhead
and the increasing errors. For future work, we may try to
perform experiments on other functions, and collect more
results.

Our proposed scheme reduces the number of LFSRs
by sharing LFSRs with circular shifts. Although it needs
relatively small hardware overhead, it uses more RRRDs.
Therefore, we need to study how to reduce the number of
necessary RRRDs without increasing the error of the calcu-
lation too much. Also, we do not consider the initial val-
ues for LFSRs in this paper. It is known that such values
also may affect the calculation errors, thus we would like
to seek the effect of initial values of LFSRs in the future.
In addition, we consider that it is necessary to investigate
whether the calculation error and the correlation of SNs can
be tolerable when our proposed method is used in some real
practical applications.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
ber 15H02679.

References

[1] B. Gaines, “Stochastic computing systems,” Advances in informa-
tion systems science, pp.37–172, 1969.

[2] A. Alaghi and J.P. Hayes, “Survey of stochastic computing,” ACM
Trans. Embed. Comput. Syst., vol.12, no.2s, pp.92:1–92:19, May
2013.

[3] A. Alaghi, C. Li, and J.P. Hayes, “Stochastic circuits for real-time
image-processing applications,” Proceedings of the 50th Annual De-
sign Automation Conference, pp.136:1–136:6, 2013.

[4] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic ener-
gy-accuracy trade-off using stochastic computing in deep neural net-
works,” Proceedings of the 53rd Annual Design Automation Confer-
ence, pp.124:1–124:6, 2016.

[5] P. Li and D.J. Lilja, “Using stochastic computing to implement dig-
ital image processing algorithms,” Proceedings of the 2011 IEEE
29th International Conference on Computer Design, ICCD ’11,
Washington, DC, USA, pp.154–161, IEEE Computer Society, 2011.

[6] Z. Wang, N. Saraf, K. Bazargan, and A. Scheel, “Randomness meets
feedback: Stochastic implementation of logistic map dynamical sys-
tem,” Proceedings of the 52Nd Annual Design Automation Confer-
ence, DAC ’15, New York, NY, USA, pp.132:1–132:7, ACM, 2015.

[7] S. Iizuka, M. Mizuno, D. Kuroda, M. Hashimoto, and T. Onoye,
“Stochastic error rate estimation for adaptive speed control with
field delay testing,” Proceedings of the International Conference
on Computer-Aided Design, ICCAD ’13, Piscataway, NJ, USA,
pp.107–114, IEEE Press, 2013.

[8] Y. Liu and K.K. Parhi, “Computing hyperbolic tangent and sigmoid
functions using stochastic logic,” Conference Record of the 50th
Asilomar Conference on Signals, Systems and Computers, ACSSC
2016, pp.1580–1585, IEEE Computer Society, March 2017.

[9] B.D. Brown and H.C. Card, “Stochastic neural computation i:
Computational elements,” IEEE Trans. Comput., vol.50, no.9,
pp.891–905, Sept. 2001.

[10] V.C. Gaudet and A.C. Rapley, “Iterative decoding using stochastic
computation,” Electronics Letters, vol.39, no.3, pp.299–301, Feb.
2003.

[11] R. Ishikawa, M. Tawada, M. Yanagisawa, and N. Togawa, “Stochas-
tic number duplicators based on bit re-arrangement using random-
ized bit streams,” IEICE Trans. Fundamentals, vol.E101A, no.7,
pp.1002–1013, July 2018.

[12] R. Muguruma and S. Yamashita, “Stochastic number generation
with the minimum inputs,” IEICE Trans. Fundamentals, vol.E100A,
no.8, pp.1661–1671, 2017.

[13] A. Alaghi and J.P. Hayes, “Exploiting correlation in stochastic cir-
cuit design,” 2013 IEEE 31st International Conference on Computer
Design (ICCD), pp.39–46, Oct. 2013.

[14] K. Parhi and Y. Liu, “Computing arithmetic functions using stochas-
tic logic by series expansion,” IEEE Trans. Emerg. Topics Comput.,
vol.7, no.1, pp.44–59, 2019.

[15] Z. Zhao and W. Qian, “A general design of stochastic circuit and its
synthesis,” Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, pp.1467–1472, 2015.

[16] H. Ichihara, S. Ishii, D. Sunamori, T. Iwagaki, and T. Inoue, “Com-
pact and accurate stochastic circuits with shared random number
sources,” IEEE 32nd International Conference on Computer Design
(ICCD), pp.361–366, 2014.

Yudai Sakamoto received the B.E. degrees
in Information Science and Engineering from
Ritsumeikan University in 2018. He is currently
a graduate student of Graduate School of Infor-
mation Science and Engineering, Ritsumeikan
University, Shiga, Japan. His research interests
include Stochastic Computing, especially its de-
sign methodologies.

Shigeru Yamashita is a professor at
the Department of Computer Science, Col-
lege of Information Science and Engineering,
Ritsumeikan University. He received his B.E.,
M.E. and Ph.D. degrees in Information Science
from Kyoto University, Kyoto, Japan, in 1993,
1995 and 2001, respectively. His research in-
terests include new types of computation and
logic synthesis for them. He received the 2000
IEEE Circuits and Systems Society Transactions
on Computer-Aided Design of Integrated Cir-

cuits and Systems Best Paper Award, SASIMI 2010 Best Paper Award,
2010 IPSJ Yamashita SIG Research Award, and 2010 Marubun Academic
Achievement Award of the Marubun Research Promotion Foundation. He
is a senior member of IEEE, and a member of IPSJ.

http://dx.doi.org/10.1145/2465787.2465794
http://dx.doi.org/10.1145/2463209.2488901
http://dx.doi.org/10.1145/2897937.2898011
http://dx.doi.org/10.1109/iccd.2011.6081391
http://dx.doi.org/10.1145/2744769.2744898
http://dx.doi.org/10.1109/iccad.2013.6691105
http://dx.doi.org/10.1109/acssc.2016.7869645
http://dx.doi.org/10.1109/12.954505
http://dx.doi.org/10.1049/el:20030217
http://dx.doi.org/10.1587/transfun.e101.a.1002
http://dx.doi.org/10.1587/transfun.e100.a.1661
http://dx.doi.org/10.1109/iccd.2013.6657023
http://dx.doi.org/10.1109/tetc.2016.2618750
http://dx.doi.org/10.7873/date.2015.0564
http://dx.doi.org/10.1109/iccd.2014.6974706

