
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019
499

LETTER Special Section on Foundations of Computer Science — Algorithm, Theory of Computation, and their Applications —

Exact Exponential Algorithm for Distance-3 Independent Set
Problem

Katsuhisa YAMANAKA†a), Member, Shogo KAWARAGI†b), Nonmember, and Takashi HIRAYAMA†c), Member

SUMMARY Let G = (V, E) be an unweighted simple graph. A
distance-d independent set is a subset I ⊆ V such that dist(u, v) ≥ d for
any two vertices u, v in I, where dist(u, v) is the distance between u and
v. Then, Maximum Distance-d Independent Set problem requires to com-
pute the size of a distance-d independent set with the maximum number of
vertices. Even for a fixed integer d ≥ 3, this problem is NP-hard. In this
paper, we design an exact exponential algorithm that calculates the size of
a maximum distance-3 independent set in O(1.4143n) time.
key words: exact exponential algorithm, independent set, distance-d inde-
pendent set, maximum distance-d independent set

1. Introduction

Let G = (V, E) be an unweighted simple graph with the ver-
tex set V and the edge set E. We denote by n the numbers of
vertices in G. An independent set of G is a subset I ⊆ V of
vertices such that {u, v} � E holds for all u, v ∈ I. Maximum
Independent Set problem (MaxIS for short) asks to calculate
the size of an independent set of G with the maximum num-
ber of vertices. This problem is one of the most fundamental
and important problems in theoretical computer science and
is a classic NP-hard problem.

In this paper, we deal with a generalization of an in-
dependent set. A distance between two vertices u, v of G,
denoted by dist(u, v), is the number of edges on a shortest
path between them. For an integer d ≥ 2, a distance-d in-
dependent set is a subset I ⊆ V such that dist(u, v) ≥ d
for any two vertices u, v ∈ I. Then, Maximum Distance-d
Independent Set problem (MaxDdIS for short) requires to
compute the size of a distance-d independent set with the
maximum number of vertices. Examples of distance-3 inde-
pendent sets are shown in Fig. 1.

Fig. 1 (a) A distance-3 independent set and (b) a maximum distance-3
independent set of the graph.

Manuscript received March 23, 2018.
Manuscript publicized October 30, 2018.
†The authors are with the Faculty of Science and Engineering,

Iwate University, Morioka-shi, 020-8551 Japan.
a) E-mail: yamanaka@cis.iwate-u.ac.jp
b) E-mail: ragi4405@kono.cis.iwate-u.ac.jp
c) E-mail: hirayama@kono.cis.iwate-u.ac.jp

DOI: 10.1587/transinf.2018FCL0002

When d = 2, MaxDdIS is equivalent to MaxIS. Hence,
it is obvious that MaxDdIS is NP-hard. Furthermore, for
a fixed integer d ≥ 3, MaxDdIS is NP-hard [1]. Hence, it
seems to be hard to give a polynomial-time algorithm for
MaxDdIS. As existing results, approximation algorithms for
MaxD3IS are presented by Eto et al. [2], [3].

In this paper, we focus on exact exponential algorithms
for MaxD3IS. For MaxIS, there are a lot of existing exact
exponential algorithms. However, to the best of our knowl-
edge, our algorithm is the first exact exponential algorithm
for the problem. Our algorithm calculates the size of a max-
imum distance-3 independent set of a graph in O(1.4143n)
time.

2. Algorithm and Its Running Time Analysis

Let G = (V, E) be a graph. We denote by N(v) = {u | {v, u} ∈
E} the set of the neighbors of v. We define Nd(v) = {u |
dist(v, u) ≤ d and u � v}. The notation Nd(v) is an extension
of the set of neighbors of v. For a subset V ′ ⊆ V , we denote
Nd(V ′) = {u | u ∈ Nd(v) for some v ∈ V ′ and u � V ′}

To solve MaxDdIS, let us define a restricted variant of
MaxDdIS. Suppose that we are given a graph G = (V, E),
a distance-d independent set I of G, and a subset X ⊆ V ,
where I ∩ X = ∅, the problem ResMaxDdIS asks for the
size of a maximum distance-d independent set of G in-
cluding I and excluding X. If we set I = ∅ and X =
∅, then ResMaxDdIS is equivalent to MaxDdIS. We say
that (G, I, X) is an instance of ResMaxDdIS. Let denote
by α(G, I, X) the size of a maximum distance-d indepen-
dent set of G including I and excluding X. We denote by
F = V \ (I ∪ X) and we say that a vertex in F is free.

Now, let us assume that d = 3. Let (G, I, X) be an in-
stance of ResMaxD3IS. First, we give the following simple
reduction.

Reduction D3IS. 1. Add all the vertices in N2(I) into X.

Let X′ be the subset obtained by applying Reduc-
tion D3IS. 1. Obviously, α(G, I, X) = α(G, I, X′) holds.

The second reduction is as follows.

Reduction D3IS. 2. Remove all the vertices of degree-1 in
X.

Let (G′, I, X′) be the instance obtained by applying Reduc-
tion D3IS. 2 to (G, I, X). Then, α(G, I, X) = α(G′, I, X′)
holds, because any distance-3 independent set of (G, I, X) is

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

500
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

also a distance-3 independent set of (G′, I, X′).
The third reduction is as follows.

Reduction D3IS. 3. Remove every edge between two ver-
tices in X.

Now, we prove that Reduction D3IS. 3 is correct.

Lemma 1: Let (G, I, X) be an instance of ResMaxD3IS,
and let (G′, I, X) be an instance obtained by applying Re-
duction D3IS. 3. Then, α(G, I, X) = α(G′, I, X) holds.

Proof. Since edges are removed from G, clearly
α(G, I, X)) ≤ α(G′, I, X)) holds. We assume for a contra-
diction that α(G, I, X) < α(G′, I, X) holds. Let I′M be a
maximum distance-3 independent set of (G′, I, X). Namely,
|I′M | = α(G′, I, X) holds. Let e = (u, v) be a removed edge
in the reduction. Recall that u, v ∈ X. If I′M has no vertex in
N(u)∩ F and I′M has no vertex in N(v)∩ F, then I′M is also a
distance-3 independent set of (G, I, X). Assume that I′M in-
cludes a vertex x in N(u) ∩ F. Again I′M is also a distance-3
independent set of (G, I, X), because, for every vertex y in
N(v), the length of any path from x to y along e is 3. Hence,
α(G, I, X) ≥ |I′M | = α(G′, I, X), which is a contradiction. �

The last reduction is as follows.

Reduction D3IS. 4. Remove all the isolated vertices in X.

Let (G′, I, X′) be the instance obtained by applying Re-
duction D3IS. 4. Clearly, we have α(G, I, X) = α(G′, I, X′).

Let (G′, I′, X′) be the instance obtained by exhaus-
tively applying Reduction D3IS. 1–4 for a given instance
(G, I, X) (actually I′ = I holds, however, we use I′ to unify
the notations). In (G′, I′, X′), we can observe that every
vertex in I′ is an isolated vertex in G′ and the other con-
nected components consist of free vertices and the vertices
in X′. For a vertex v, we denote by f (v) and # f (v) the set
and number of the free vertices in N2(v). A connected com-
ponent C is cyclic if C includes four or more free vertices
and # f (v) = 2 for every free vertex v in C. In what follows,
we show that ResMaxD3IS is polynomial-time solvable on
cyclic connected components. This is a key observation of
our algorithm.

Let C be a cyclic connected component in G′. We de-
fine a cyclic order (v1, v2, . . . , vk) among the free vertices in
C, as follows. Let v be any free vertex in C, and let u, w be
the two free vertices in N2(v). Then, it can be observed that
u and w are non-adjacent, because if u and w are adjacent,
C includes only three free vertices v, u, and w (recall that
f (v) = 2 for every free vertex v in C). Now, we choose v
as v1 and u as v2 (we can choose u or w arbitrary). Next,
let x be a free vertex in N2(u) except v. Then, we choose
x as v3. We repeat the same process. This process assigns
an order to each free vertex in C and ends up with w. We
call the obtained order a cyclic order of the free vertices in
C. In the cyclic order (v1, v2, . . . , vk), we denote by succ(vi)
the successor of vi for each i = 1, 2, . . . , k in C. Note that
v1 = succ(vk). We also denote succ(succ(vi)) by succ2(vi).

Now, let us have observations for two consecutive free

Fig. 2 (a) An adjacent pair, (b) a non-adjacent pair, and (c) an adjacent
pair. The white vertices are free vertices and the black vertices are vertices
in X.

vertices in the cyclic order. For a vertex vi and succ(vi), they
are adjacent (Fig. 2 (a)) or have one or more common ad-
jacent vertices in X (Fig. 2 (b)). They may be adjacent and
have one or more common adjacent vertices in X (Fig. 2 (c)).
We say that a pair (vi, succ(vi)) is adjacent if vi and succ(vi)
are adjacent and is non-adjacent if vi and succ(vi) are not
adjacent. Note that, if (vi, succ(vi)) is non-adjacent, vi and
succ(vi) have one or more common adjacent vertices in X,
that is dist(vi, succ(vi)) = 2. We have the following lemma.

Lemma 2: Let C be a cyclic connected component, and
let (v1, v2, . . . , vk) be a cyclic order of the free vertices in C.
Then, if a pair (vi, succ(vi)) is adjacent for some i, 1 ≤ i ≤ k,
then (succ(vi), succ2(vi)) is non-adjacent.

Proof. Assume for a contradiction that (succ(vi), succ2(vi))
is adjacent. Then, f (vi) = {succ(vi), succ2(vi)}, f (succ(vi)) =
{vi, succ2(vi)}, and, f (succ2(vi)) = {vi, succ(vi)}. This implies
that C includes only 3 free vertices, which contradicts the
definition of cyclic connected components. �
From the above lemma, two adjacent pairs do not appear
consecutively in a cyclic order. Hence, we immediately have
the following corollary.

Corollary 1: Let C be a cyclic connected component, and
let (v1, v2, . . . , vk) be a cyclic order of the free vertices in C.
Then, dist(vi, succ2(vi)) ≥ 3 holds.

Now, we are ready to prove the key lemma below.

Lemma 3: Let C be a cyclic connected component, and let
k be the number of free vertices in C. Then, the size of a
maximum distance-3 independent set of C is �k/2�.
Proof. First, we show that one can construct a distance-3
independent set IC with |IC | = �k/2�. Let S = (v1, v2, . . . , vk)
be a cyclic order of the free vertices in C. From Corollary 1,
dist(vi, succ2(vi)) ≥ 3 holds for each i. Hence, we can ob-
serve that the set {v2i−1 | i = 1, 2, . . . , �k/2�} is a distance-3
independent set of C.

Next, we prove that the size �k/2� is the maximum. Let
us assume for a contradiction that I′C is a distance-3 inde-
pendent set of C and |I′C | > �k/2�. Then, I′C contains two
consecutive free vertices on S . Hence I′C is not a distance-3
independent set of C. �

Now, we present our algorithm in Algorithm 1 and Al-
gorithm 2. Algorithm 1 is the main routine ResMaxD3IS
and Algorithm 2 is the subroutine Helper. We are given
an instance (G, I, X), ResMaxD3IS(G, I, X) returns the size
of a maximum distance-3 independent set of G including
I and excluding X. Note that ResMaxD3IS(G, ∅, ∅) returns
the size of a maximum distance-3 independent set of G. The

LETTER
501

Algorithm 1: ResMaxD3IS(G, I, X)
1 begin
2 Repeat to apply Reduction D3IS. 1–4 exhaustively, and let

(G′, I′, X′) be the obtained instance. Let F′ be the set of
free vertices of (G′, I′, X′).

3 if F′ = ∅ then
4 return |I′|
5 if ∃v ∈ F′ with # f (v) = 0 then
6 return ResMaxD3IS(G′, I′ ∪ {v}, X′)
7 if ∃v ∈ F with # f (v) = 1 then
8 Let u be the vertex in f (v).
9 return max {ResMaxD3IS(G′, I′ ∪ {v}, X′ ∪ {u}),

10 ResMaxD3IS(G′, I′ ∪ {u}, X′ ∪ N2(u))}
11 if ∃v ∈ F′ with # f (v) ≥ 3 then
12 return max {ResMaxD3IS(G′, I′ ∪ {v}, X′ ∪ N2(v)),
13 ResMaxD3IS(G′, I′, X′ ∪ {v})}
14 if ∀v ∈ F′ with # f (v) = 2 then
15 Let C1,C2, . . . ,C� be the connected components of G′

each of which contains free vertices and vertices in X′.
16 return |I′| +∑1≤i≤� Helper(Ci, I′ ∩ V(Ci), X′ ∩ V(Ci))

/* V(Ci) is the set of the vertices in
Ci */

Algorithm 2: Helper(G, I, X)
1 begin
2 if G has 3 or less free vertices then
3 Calculate α(G, I, X) using an exhaustive search.
4 return α(G, I, X)
5 else /* G is a cyclic connected component. */

6 return �V(G)/2�

algorithm is a branching algorithm. The algorithm repeats to
either select or discard each vertex in V . The set of selected
vertices is a distance-3 independent set of G and denoted by
I. The set of the discarded vertices is denoted by X.

First, the algorithm applies Reduction D3IS. 1–4 ex-
haustively. Let (G′, I′, X′) be the obtained instance. Let
IM(G′, I′, X′) be a maximum distance-3 independent set for
(G′, I′, X′). Let us assume that there is a free vertex v with
f (v) = 0 in (G′, I′, X′). Then, v is always included in
IM(G′, I′, X′). In this case, we always select v and recur-
sively call ResMaxD3IS(G′, I′∪{v}, X′). Next, let us assume
that there is a free vertex v with # f (v) = 1. Let u be the free
vertex in f (v). If we select v, then u is discarded into X. On
the other hand, if we discard v, we have to select u. Because
otherwise, v and u are both discarded, then we cannot ob-
tain a maximum distance-3 independent set for (G′, I′, X′).
In this case, the branching vector is (2, 2), since the num-
ber of free vertices decreases by 2 in each case. Then, its
branching factor is τ(2, 2) < 1.4143. Intuitively, this means
that the number of nodes in a search tree is bounded above
by τ(2, 2)n. (See [4] for the formal definitions of branch-
ing vectors and branching factors.) Next, let us assume that

there is a free vertex v with # f (v) ≥ 3. If we select v, then v
is selected and at least 3 vertices in f (v) are discarded. If we
discard v, then v is inserted into X′. Hence, the branching
vector is (4, 1) and its branching factor is τ(4, 1) < 1.3803.
Finally, let us assume that every vertex v holds # f (v) = 2. In
this case, one can compute α(G′, I′, X′) in polynomial time.
For each connected component C of G′, we compute the
size of a maximum distance-3 independent set of C using
Helper procedure. Let nC be the number of free vertices
in C. Helper procedure calculates the size of a maximum
distance-3 independent set of C in an exhaustive manner if
nC ≤ 3 holds. Otherwise, since C is a cyclic connected com-
ponent, the size of its maximum distance-3 independent set
of C is �nC/2� from Lemma 3. Hence, in this case, one can
obtain α(G′, I′, X′) in polynomial time.

Consequently, the worst case branching factor is
τ(2, 2) < 1.4143. Therefore, we obtain the main theorem
below.

Theorem 1: One can solve MaxD3IS in O(1.4143n) time.

By slightly modifying the algorithm, we also have the
following corollary.

Corollary 2: One can find a maximum distance-3 indepen-
dent set in O(1.4143n) time.

3. Conclusions

We have designed an algorithm that calculates the size of a
maximum distance-3 independent set of a given graph in
O(1.4143n) time, where n is the number of vertices. By
slightly modifying the algorithm, we can construct a max-
imum distance-3 independent set in O(1.4143n) time. Our
algorithm uses a basic technique, called branching, for de-
signing exact algorithms. Our future work includes design-
ing more efficient exact algorithms using other techniques.
For example, we may use the measure and conquer tech-
nique.

References

[1] H. Eto, F. Guo, and E. Miyano, “Distance-d independent set prob-
lems for bipartite and chordal graphs,” J. Comb. Optim., vol.27, no.1,
pp.88–99, 2014.

[2] H. Eto, T. Ito, Z. Liu, and E. Miyano, “Approximability of the dis-
tance independent set problem on regular graphs and planar graphs,”
Proc. 10th International Conference on Combinatorial Optimization
and Applications, Lecture Notes in Computer Science, vol.10043,
pp.270–284, 2016.

[3] H. Eto, T. Ito, Z. Liu, and E. Miyano, “Approximation algorithm for
the distance-3 independent set problem on cubic graphs,” Proc. 11th
International Conference and Workshops on Algorithms and Compu-
tation, Lecture Notes in Computer Science, vol.10167, pp.228–240,
2017.

[4] F.V. Fomin and D. Kratsch, Exact Exponential Algorithms, Texts in
Theoretical Computer Science, An EATCS Series, Springer, 2010.

http://dx.doi.org/10.1007/s10878-012-9594-4
http://dx.doi.org/10.1007/978-3-319-48749-6_20
http://dx.doi.org/10.1007/978-3-319-53925-6_18
http://dx.doi.org/10.1007/978-3-642-16533-7

