
502
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

LETTER Special Section on Foundations of Computer Science — Algorithm, Theory of Computation, and their Applications —

A Simple Heuristic for Order-Preserving Matching

Joong Chae NA†, Nonmember and Inbok LEE††a), Member

SUMMARY Order preserving matching refers to the problem of report-
ing substrings in the text which are order-isomorphic to the pattern. In this
paper, we show a simple heuristic which runs in linear time on average,
based on finding the largest elements in each substring and checking their
locations against that of the pattern. It is easy to implement and experimen-
tal results showed that the running time grows linearly.
key words: string algorithm, range minimum query, order preserving
matching

1. Introduction

Order preserving matching refers to the problem of report-
ing substrings of the text which are order-isomorphic to the
pattern. Formally the problem can be defined as follows:

Problem 1: Given a text T [1, n] and a pattern P[1,m] over
an integer alphabet, a substring T [i, i+m− 1] and P have an
order-preserving matching if and only if there exists a per-
mutation π = (π1, π2, · · · , πm) on the set {1, 2, · · · ,m} such
that P[π1] < P[π2] < · · · < P[πm] and T [i + π1 − 1] <
T [i + π2 − 1] < · · · < T [i + πm − 1].

Example 1: Assume that T = (1, 3, 8, 5, 2, 6, 7, 9) and P =
(11, 23, 74, 43). In this case π = (1, 2, 4, 3) and we can see
that T [1, 4] = (1, 3, 8, 5) and P have an order-preserving
matching.

The problem is related to time series data analysis.
Recently there have been several works on this problem.
First the problem was considered in [1] and a KMP-style
O(n + m log m) algorithm was proposed. Order preserving
matching with multiple patterns was also considered. In [2],
order preserving matching with k mismatches was consid-
ered. Hasan et al. [3] studied the order-preserving string reg-
ularities. Cho et al. [4] proposed a Boyer-Moore approach
on this problem. Chhabra and Tarhio showed a filtration
method based on the orders between neighbouring charac-
ters in [5]. Kim et al. [6] considered the case when there
are ties in strings. Nakamura et al. [7] considered the case
where the text is not a simple string, but a tree or a DAG
(directed acyclic graph).

Manuscript received March 23, 2018.
Manuscript revised July 27, 2018.
Manuscript publicized October 30, 2018.
†The author is with Sejong University, Republic of Korea.
††The author is with Korea Aerospace University, Republic of

Korea.
a) E-mail: inboklee@kau.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2018FCL0004

2. Algorithm

We first begin with considering the brute-force method.
First we sort P and obtain the permutation π in O(m log m)
time. Once we know π, verifying whether two strings
P[1,m] and T [i, i+m−1] have an order-preserving matching
is straightforward. We will assume that there are no ties in
P[1,m] and any substring T [i, i+m−1]: they can be broken
using the method in [6]. Once we know π, we can check
whether T [i + π1 − 1] < T [i + π2 − 1] < · · · < T [i + πm − 1]
in O(m) time. As there are n − m + 1 substrings of length m
in T , the total time complexity is O(nm + m log m).

Our algorithm is based on one simple observation.

Observation 1: If two string P[1,m] and T [i, i+m−1] have
an order-preserving matching and the smallest (or, largest)
element of P[1,m] is P[j], then that of T [i, i+m− 1] should
be T [i + j − 1].

The correctness of Observation 1 is straightforward.
We can exploit it as follows. From π, we know that P[π1]
is the smallest element of P and P[πm] is the largest one.
Therefore, for each T [i, i + m − 1], we first check whether
T [i+π1−1] is its smallest element (or, whether T [i+πm−1]
is its largest one). If so, we check whether T [i, i+m−1] and
P have an order-preserving matching using the verification
procedure mentioned above. Otherwise, we can safely skip
it.

A brute-force implementation of reporting locations of
the smallest (or, the largest) elements in all substrings of
length m in T will take O(nm) time. But if we use the range
minimum query (RMQ) algorithm in [8], it can be done in
O(n) time, instead of O(nm). We first preprocess T in O(n)
time and for each substring T [i, i+m−1], a range minimum
(or, maximum) query asking the location of its smallest (or,
the largest, respectively) element takes O(1) time.

We can simplify the process based on the following
facts:

• the query range is always of length m,
• we ask only the location of the smallest (or, the largest)

element,
• and our queries are always in order from left to right.

We show a simple heuristic here. First we find the
largest element of T [1,m]. Then, assuming that we know
the largest element of T [i, i + m − 1], we check whether it
is T [i]. If so, we find the largest element of T [i + 1, i + m]

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

LETTER
503

Fig. 1 Reporting the largest elements of substrings of length 4 in T =
(1, 3, 8, 5, 2, 6, 7, 9).

by linear scanning. Otherwise, we check whether it is larger
than T [i+m]. If so, it is still the largest one of T [i+1, i+m].
Otherwise T [i + m] is. It takes O(n) time on average and
O(nm) in the worst case.

There is a well-known trick which takes O(n) time in
the worst case. Here we show how to report the largest el-
ements only, as the same idea can be applied to reporting
the smallest ones. We use a deque (double-ended queue) of
length m. We maintain that its head element will store the
largest element of the substring under consideration. Also,
values of elements in the deque are kept in descending order
and their indices in T are kept in ascending order.

• The base case T [1,m]: We first put T [1] into the empty
deque. For T [j] (2 ≤ j ≤ m), we eliminate elements
smaller than T [j] from the deque. We scan the deque
from the tail to the head and delete such elements, as
they cannot be the largest element of any substring.
Then we insert T [i] into the deque. It is easy to show
that the deque will keep the properties we mentioned
above. After handling T [m], the head element is the
largest in T [1,m].
• The step case T [i, i + m − 1] (2 ≤ i ≤ n − m + 1):

First we check whether the head element is T [i − 1]. If
so, it is removed from the deque. Then from the tail
to head, we again eliminate elements smaller than T [i]
and put T [i] at the tail. It is easy to show that the largest
elements of T [i, i+m− 1] will be at the head of deque.

It is easy to show that whole procedure runs in O(n) time, as
each T [i] enters the deque once and elements removed from
the deque are not considered again. Figure 1 is an example
of reporting the largest elements of substrings of length 4 in
T = (1, 3, 8, 5, 2, 6, 7, 9). Indices of elements in T is written
next to them.

Now we consider the time complexity. The worst case
happens when P = (1, 2, · · · ,m) and T = (1, 2, · · · , n) and it
takes O(nm) time.

Theorem 1: Our heuristic runs in O(n + m log m) time on
average.

Proof. The permutation π can be obtained in O(m log m)
time. For each T [i, i + m − 1], the verification is done only
when its largest element is T [i+π1]. Let X be the number of
positions in T where the largest element of some substring
of length m in T can appear. Then we will conduct the ver-
ification X times and the total number of character compar-
isons will be equal to or smaller than X · m, in addition to
O(n) comparisons to find the largest elements.

Let X1, X2, · · · , Xn−m+1 be indicator variables where
X1 = 1 and Xi+1 = 0 if the index of the largest element
in T [i, i + m − 1] is the same with that of T [i + 1, i + m] and
Xi+1 = 1 otherwise. Then, it is easy to show that

X = X1 + X2 + · · · + Xn−m+1

is the number of distinct positions in T that can correspond
to the largest elements of some substring of length m.

Now we calculate E[Xi+1]. There are two cases where
Xi+1 = 1:

• The maximum value of T [i, i + m − 1] was T [i], or
• that of T [i + 1, i + m] was at T [i + m].

Therefore, E[Xi+1] = Pr(Xi+1 = 1) = 1/m+1/m−1/m2. By
linearity of expectation, we get

E[X] = 1 +
n−m+1∑

i=2

E[Xi] = 1 + (n −m)

(
2
m
− 1

m2

)
≤ 2n

m
.

From the fact that the number of character comparisons is at
most X · m, we get

E[X · m] ≤ 2n
m
· m = 2n.

Therefore, the expected number of character comparison is
O(n). �

3. Experimental Results

We implemented our algorithm in C++ and performed on a
iMac machine with Intel Core i5 processor running macOS
10.13.3 and 4G RAM.

The first observation is that while the well-known trick
for finding the maximum elements of all the substrings of
length m runs in linear time, it is slower than the simple
heuristic in practice. Even though it may run in O(nm) time,
we think that the probability of facing the worst case is neg-
ligible for random texts and that the burden of maintaining
the deque is heavy for short patterns. Therefore we used the
simpler heuristic here.

We compared the performance of our heuristic against

504
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

Table 1 Search time (in seconds) with a random text of length 1,000,000
and 1,000 random patterns. The alphabet size is 10,000.

m = 5 m = 10 m = 15 m = 20

Ours 13.59 11.21 10.48 9.85
Filtration [5] 13.12 12.20 12.66 11.85
q-gram [4] 13.71 7.58 6.40 6.86

Table 2 Search time (in seconds) with a random text of length 500,000
and 1,000 random patterns. The alphabet size is 10,000.

m = 5 m = 10 m = 15 m = 20

Ours 6.82 5.30 5.32 4.97
Filtration [5] 6.17 5.39 5.96 5.91
q-gram [4] 7.14 3.19 3.30 3.03

two previous algorithms. One is based on the Horspool al-
gorithm with q-grams [4] and the other is based on filtra-
tion [5]. The source code of [4] was kindly provided by its
authors and we implemented the algorithm of [5] by our-
selves. Rabin-Karp fingerprinting was used to check the
equality of two binary strings.

Table 1 and 2 show the experimental results with ran-
dom texts and random patterns. Note that all three algo-
rithms are independent of the size of the alphabet. As the
length of the pattern grows bigger, the search time is re-
duced for all three algorithms we considered. In our algo-
rithm, the number of changes in the maximum elements will
be reduced with longer patterns. When m = 5, the q-gram
approach suffered from small shifts. For all the other cases it
was the fastest. As our heuristic is also based on filtration, it
is fair to compare its performance against that of [5]. Over-
all they showed similar search time but our implementation
of the algorithm in [5] may not be the same with that of its
authors.

4. Conclusion

We presented a simple heuristic for order-preserving match-

ing based on finding the smallest (or, the largest) elements
in substrings of length m. We showed that the expected run-
ning time is O(n). The proposed heuristic is easy to under-
stand and to implement.

Experimental results show the performance is on par
with the filtration approach in [5]. Also, one may devise
a faster hybrid heuristic by combining ours with previous
ones [4], [5]. We believe that our idea can be applied to
variations of order preserving matching, including multiple
pattern matching and wild card matching.

Acknowledgments

Joong Chae Na was supported by Basic Science Research
Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education(NRF-
2017R1D1A1B03029451).

References

[1] J. Kim, P. Eades, R. Fleischer, S.-H. Hong, C.S. Iliopoulos, K. Park,
S.J. Puglisi, and T. Tokuyama, “Order-preserving matching,” Theor.
Comput. Sci., vol.525, pp.68–79, 2014.

[2] P. Gawrychowski and P. Uznański, “Order-Preserving Pattern Match-
ing with k Mismatches,” CPM 2014, pp.130–139, 2014.

[3] M.M. Hasan, A.S.M.S. Islam, M.S. Rahman, and M.S. Rahman, “Or-
der preserving pattern matching revisited,” Pattern. Recogn. Lett.,
vol.55, pp.15–21, 2015.

[4] S. Cho, J.C. Na, K. Park, and J.S. Sim, “A fast algorithm for or-
der-preserving pattern matching,” Inf. Process. Lett., vol.115, no.2,
pp.397–402, 2015.

[5] T. Chhabra and J. Tarhio, “A filtration method for order-preserving
matching,” Inf. Process. Lett., vol.116, no.2, pp.71–74, 2016.

[6] J. Kim, A. Amir, J.C. Na, K. Park, and J.S. Sim, “On Representa-
tions of Ternary Order Relations in Numeric Strings,” Mathematics in
Computer Science, vol.11, no.2, pp.127–136, 2017.

[7] T. Nakamura, S. Inenaga, H. Bannai, and M. Takeda, “Order Preserv-
ing Matching on Trees and DAGs,” SPIRE 2017, pp.271–277, 2017.

[8] M.A. Bender and M. Farach-Colton, “The LCA problem revisited,”
LATIN 2000, vol.1776, pp.88–94, 2000.

http://dx.doi.org/10.1016/j.tcs.2013.10.006
http://dx.doi.org/10.1007/978-3-319-07566-2_14
http://dx.doi.org/10.1016/j.patrec.2014.11.013
http://dx.doi.org/10.1016/j.ipl.2014.10.018
http://dx.doi.org/10.1016/j.ipl.2015.10.005
http://dx.doi.org/10.1007/s11786-016-0282-0
http://dx.doi.org/10.1007/978-3-319-67428-5_23
http://dx.doi.org/10.1007/10719839_9

