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The Complexity of Induced Tree Reconfiguration Problems

Kunihiro WASA†a), Katsuhisa YAMANAKA††b), and Hiroki ARIMURA†††c), Members

SUMMARY Given two feasible solutions A and B, a reconfigura-
tion problem asks whether there exists a reconfiguration sequence (A0 =

A, A1, . . . , A� = B) such that (i) A0, . . . , A� are feasible solutions and (ii)
we can obtain Ai from Ai−1 under the prescribed rule (the reconfiguration
rule) for each i ∈ {1, . . . , �}. In this paper, we address the reconfiguration
problem for induced trees, where an induced tree is a connected and acyclic
induced subgraph of an input graph. We consider the following two rules as
the prescribed rules: Token Jumping: removing u from an induced tree and
adding v to the tree, and Token Sliding: removing u from an induced tree
and adding v adjacent to u to the tree, where u and v are vertices of an input
graph. As the main results, we show that (I) the reconfiguration problem
is PSPACE-complete even if the input graph is of bounded maximum de-
gree, (II) the reconfiguration problem is W[1]-hard when parameterized
by both the size of induced trees and the length of the reconfiguration se-
quence, and (III) there exists an FPT algorithm when the problem is param-
eterized by both the size of induced trees and the maximum degree of an
input graph under Token Jumping and Token Sliding.
key words: reconfiguration problem, induced trees, PSPACE-complete,
W[1]-hard, FPT

1. Introduction

A reconfiguration problem can be expressed as follows:
given two feasible solutions A and B for a search prob-
lem P , ask whether there exists a reconfiguration sequence
(A0 = A, A1, . . . , A� = B) such that (i) A0, . . . , A� are fea-
sible solutions for P and (ii) we can obtain Ai from Ai−1

under the prescribed rule (reconfiguration rule) for each
i ∈ {1, . . . , �}. In this decade, the reconfiguration varia-
tions of many NP-complete problems have been shown to
be PSPACE-complete [9], [11], [13], [15]. However, inter-
estingly, we cannot determine the computational complexity
of the reconfiguration version of P based on the complex-
ity of P . For example, the 3-coloring problem for a general
graph is NP-complete, but it is known that the 3-coloring
reconfiguration problem [2] is in P. By contrast, the shortest
path problem is in P, but the shortest path reconfiguration
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problem [1] is PSPACE-complete.
There are some notable results in terms of the complex-

ity of reconfiguration problems. Gopalan et al. [6] inves-
tigated the st-connectivity problem of 3SAT and proposed
a dichotomy theorem for the problem. This problem asks,
the following question: given two feasible solutions s and
t of a Boolean formula, by repeatedly flipping the value
of a variable, can t be obtained from s? Mouawad
et al. [16] proposed the trichotomy theorem for the shortest
st-reconfiguration problem of 3SAT, asking whether there
exists a reconfiguration sequence with length less than a
given value. From the view point of combinatorial games,
Hearn and Demaine [8] showed that sliding-block puzzles
such as Klotski puzzles are PSPACE-complete. They solved
the problem put forth by Martin Gardner [5], which had rem-
ined since 1964.

For reconfiguration problems of vertex-subset prob-
lems on graphs, in which feasible solutions are subsets of
the vertex set of input graphs, the following three reconfig-
uration rules are usually considered. For the current fea-
sible solution F and two vertices u ∈ F and v � F, (1)
Token Sliding (TS [8]): Removing u from F and adding
v adjacent to u to F. (2) Token Jumping (TJ [15]): Re-
moving u from F and adding v to F. (3) Token Addi-
tion / Removal (TAR [10]): Removing u from F or adding
v to F Satisfying a coustraint on the size of F. Kamiński
et al. [14] showed that the problem of finding the shortest re-
configuration sequence for the shortest path is NP-hard even
when the sequence is known to have polynomial length un-
der TJ. Mouawad et al. [17] proposed a meta-theorem for
the hardness of reconfiguration problems associated with
graphs having hereditary properties under TAR. In addi-
tion, reconfiguration problems for independent sets [15],
cliques [13], dominating sets [7], list L(2, 1)-labelings [12],
subset sums [9], list edge-colorings [11], and swapping la-
beled tokens [20] have been studied. However, there are
few results for reconfiguration problems for graphs having a
connected hereditary property.

In the present paper, we address the induced tree re-
configuration problem ITReconf under various settings. An
induced tree is a connected and acyclic induced subgraph in
an undirected graph (see Fig. 1), and, it is well known as a
vertex-subset with a connected hereditary property. An in-
formal description of ITReconf is as follows: Suppose that
we are given two distinct induced trees S and T of an input
graph, and each vertex of S has a token. The task is to ob-
tain T from S by changing the positions of a few tokens of
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Fig. 1 Example of a reconfiguration sequence for the induced tree reconfiguration problem. The
above figure shows that there exists a reconfiguration sequence π(S 1,T1) = (S 1, S 2, S 3, S 4 = T1)
between two induced trees S 1 = {v2, v3, v5, v6, v7, v9} and T1 = {v1, v4, v5, v7, v8, v9} on an input graph
G1, where S 2 = f (S 1, v6, v8), S 3 = f (S 2, v2, v1), and S 4 = f (S 3, v3, v4).

S according to the given reconfiguration rule. In the present
paper, we first show that ITReconf is PSPACE-complete un-
der TS and TJ even if the input graph is bounded maximum
degree. This is the first hardness result for the induced tree
reconfiguration problem. Next, we investigate the problem
from the viewpoint of the parameterized complexity. We
prove that ITReconf is W[1]-hard when parameterized by
both the size of the induced trees and the length of the re-
configuration sequences under TJ and TS, and it is fixed pa-
rameter tractable when parameterized by both the size of the
induced trees and the maximum degree of an input graph un-
der TS and TJ.

2. Preliminaries

An undirected graph G = (V(G), E(G)) is a pair of a vertex
set V(G) and an edge set E(G) ⊆ V(G)2. In the present
study, we assume that G is simple and finite. For any two
vertices u and v in V(G), u and v are adjacent in G if (u, v) ∈
E(G). NG(u) = {v ∈ V(G) | (u, v) ∈ E(G)} denotes the set of
vertices adjacent to u in G. We define the degree dG(u) of
u ∈ V(G) as the number of vertices adjacent to u. For any
vertex subset S ⊆ V(G), NG(S ) =

(⋃
u∈S NG(u)

)\S . In what
follows, we omit subscript G if it is clear from the context.

Suppose that, for any two vertices u and v in V(G),
π(u, v) = (v1 = u, . . . , v j = v) is a sequence of vertices.
π(u, v) is a path from u to v if the vertices of π(u, v) are dis-
tinct and for every i = 1, . . . , j − 1, (vi, vi+1) ∈ E(G). The
length |π(u, v)| of a path π(u, v) is the number of edges in
π(u, v). The distance between u and v is defined by the short-
est length of a path between u and v. π(u, v) is called a cycle
if |π(u, v)| ≥ 3, u = v, vertices of π(u, v) are distinct other
than u and v, and (vi, vi+1) ∈ E(G) for every i ∈ {1, . . . , j − 1}.
We say that G is acyclic if G has no cycle. G is connected
if for any pair of vertices of G, there exists a path between
them.

Let S be a subset of V(G). G[S ] = (S , E[S ])
denotes the graph induced by S , where E[S ] =

{(u, v) ∈ E(G) | u, v ∈ S }. We call G[S ] the induced sub-
graph of G. Because G[S ] is uniquely determined by S ,
we identify S with G[S ] if no confusion is possible. We
say that S is an induced tree if S is connected and acyclic.
Moreover, an induced tree S is maximal if there exists no
induced tree S ′ such that S ⊆ S ′ (see Fig. 1). A connected
component is a maximal connected induced subgraph of G.

2.1 Reconfiguration Problem

In this subsection, we give the definition of our recon-
figuration problem. To define reconfiguration sequences,
we first consider the adjacency of induced trees. Let f :
2V(G) × V(G) × V(G) → 2V(G) be a function defined as fol-
lows: f (S , u, v) = (S \ {u})∪ {v}, where u ∈ S and v � S . For
any two induced trees S and T in G, S and T are adjacent
to each other if there exist two vertices u and v satisfying
f (S , u, v) = T . That is, for any induced tree S , T is an in-
duced tree adjacent to S if we can obtain T by removing
u ∈ S from S and adding v � S to S . We refer to f as TJ
and f is one of the reconfiguration rules. Another recon-
figuration rule, called TS, is defined as follows: f (S , u, v) =
(S \ {u})∪ {v} such that u ∈ S , v � S , and v ∈ N(u). Next, we
construct a reconfiguration graph under the reconfiguration
rule f . Let IT (G) be the collection of induced trees of G.
A reconfiguration graph RIT (G) = (IT (G) ,E (G, f )) is a
pair of the set IT (G) and the set E (G, f ). Here, E (G, f ) ={
(S ,T ) ∈ IT (G)2 | ∃u ∈ S ,∃v � S ( f (S , u, v) = T )

}
, that is,

each edge in E (G, f ) is a pair of two adjacent induced trees
under f . For any two induced trees S and T , a reconfigu-
ration sequence from S to T is a path π(S ,T ) on RIT (G).
Figure 1 shows an example of a reconfiguration sequence
from S 1 to T1 on G1. Now, we define the induced tree re-
configuration problem ITReconf.

Problem 1 (Induced tree reconfiguration problem). Given
a graph G and two induced trees S and T in G,
ITReconf (G, S ,T ) asks whether there exists a reconfigura-
tion sequence from S to T on RIT (G) under a reconfigura-
tion rule f .

3. PSPACE-Completeness

In this section, we show that ITReconf is PSPACE-
complete. To prove this completeness, we reduce the s-t
shortest path reconfiguration problem, denoted by stSPR,
to ITReconf in polynomial time.

Let G be a graph, and s and t be two vertices of G. The
task of stSPR is as follows: given two shortest paths P and
P′ from s to t, decide whether there exists a reconfiguration
sequence (P = P1, P2, . . . , P� = P′) such that any Pi where
i ∈ {1, . . . , �} on the sequence is a shortest path between s
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Fig. 2 Example of H(G). On the left side, the bold edges are the edges of a shortest path between
s and t. On the right side, the bold edges are the edges of an induced tree. For simplicity, the edges
between vi and vertices of in Di are omitted.

and t, and each Pi is obtained by changing one vertex of
Pi−1. We assume that all vertices of G are on at least one
of the shortest paths between s and t in G. Otherwise, we
can remove such vertices without affecting the solutions of
stSPR. It is known that stSPR is PSPACE-complete [19].
Let Di(G, s) be the set of vertices that are distance at i from
s in G. Notably, D0(G, s) = {s}, D1(G, s) = N(s), and
Ddist(s,t)(G, s) = {t}. In what follows, we fix G, s, and t and
simply write Di instead of Di(G, s). Now, we construct H(G)
from G by adding two new vertices vi and v′i to Di, adding an
edge between vi and v′i , and making Di∪{vi} a clique for each

i ∈ {1, . . . , dist(s, t) − 1} (see Fig. 2). Let D′i = Di ∪
{
vi, v

′
i

}

and T (P) = V(P) ∪⋃i=1,...,dist(s,t)−1

{
vi, v

′
i

}
for a shortest path

P between s and t.

Theorem 1. ITReconf is PSPACE-complete under TJ and
TS even if an input graph is bounded maximum degree.

Proof. We first show that ITReconf is in NPSPACE, be-
cause, according to Savitch’s theorem [18], a problem in
NPSPACE is also in PSPACE. Now, we can find all adja-
cent induced trees in polynomial time nondeterministically
because the number of adjacent induced trees of an induced
tree is polynomial in the size of the input. In addition, the
number of induced trees is at most 2n and hence the length of
a longest reconfiguration sequence of ITReconf is at most 2n

if such a sequence exists. Thus, by repeatedly finding adja-
cent induced trees 2n times, we can find all induced trees
that are in the same component of the reconfiguration graph
of G with one of the input induced trees. Hence, we can
decide whether there exists a reconfiguration sequence be-
tween two input induced trees. On the basis of the above
discussion, we can easily obtain an NPSPACE algorithm for
ITReconf, and thus, ITReconf is in PSPACE. Next, we de-
scribe a polynomial-time reduction from stSPR to ITReconf
under TJ. Let G be a graph and s and t be two vertices of
G. First, given G and two shortest paths P and P′ between
s and t, we can construct H(G), T (P), and T (P′) in polyno-
mial time. Suppose that (G, P, P′) is a yes instance of stSPR.
Let Q be a shortest path on a reconfiguration sequence for
the instance. Note that |V(Q) ∩ Di| = 1 for each i. Let ui

be the vertex in Di and V(Q). Now, v′i is adjacent only to
vi and vi has only one adjacent vertex ui in Q. Thus, T (Q)

is an induced tree and (H(G),T (P),T (P′)) is a yes instance
of ITReconf. Suppose that (H(G),T (P),T (P′)) is a yes in-
stance of ITReconf under TJ. Because D′i \

{
v′i

}
induces a

clique, any induced tree adjacent to T (P) does not contain
three or more vertices of D′i \

{
v′i

}
. This implies that we can-

not move v′i at all. Because any induced tree is connected,
we cannot remove vi from T (P) to obtain its adjacent in-
duced trees. Thus,

⋃
i

{
vi, v

′
i

}
⊆ T (P) ∩ T ′ for any induced

tree T ′ that is adjacent to T (P). Now, both vi and v′i are
only adjacent to vertices of D′i . Thus, if u ∈ T (P) \ T ′

is in D′i , u′ ∈ T ′ \ T (P) is also in D′i because T ′ is con-

nected. Therefore, T ′ \ ⋃i

{
vi, v

′
i

}
forms a shortest path P∗

between s and t under TJ, and P∗ is adjacent to P. We can
proceed with the same discussion for any two consecutive
induced trees on a reconfiguration sequence for the given
instance. Thus, ITReconf is PSPACE-complete under TJ.
Note that D′i \

{
v′i

}
induces a clique. Therefore, ITReconf is

also PSPACE-complete under TS. Moreover, it is known that
stSPR is PSPACE-complete even if each Di has a constant
size [19]. Hence, the statement holds. �

Thus far, we demonstrated that ITReconf is PSPACE-
complete. Now, we show that the maximal induced tree ver-
sion MITReconf remains PSPACE-complete. RMIT (G) de-
notes the reconfiguration graph of the maximal induced trees
of G. The maximal induced tree reconfiguration problem is
defined as follows:

Problem 2 (Maximal induced tree reconfiguration prob-
lem). Let G be a graph and S and T be two maximal in-
duced trees of G. MITReconf (G, S ,T ) asks whether there
exists a reconfiguration sequence from S to T on RMIT (G).

As shown in the proof of Theorem 1, for any in-
duced tree T on a reconfiguration sequence of ITReconf,
T ∩ D′i =

{
vi, v

′
i , wi

}
for some wi ∈ Di. Moreover, for any

vertex w′i ∈ D′i \
{
vi, v

′
i , wi

}
,
{
vi, wi, w

′
i

}
induces a cycle be-

cause D′i \
{
v′i

}
induces a clique. Thus, we can obtain the

following theorem.

Theorem 2. MITReconf is PSPACE-complete under TS
and TJ even if the input graph is bounded maximum degree.
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4. W[1]-Hardness

In this section, we show that ITReconf is W[1]-hard under
TJ and TSwhen parameterized by k+�, where k is the size of
the induced trees and � is the number of steps in the recon-
figuration sequences. To demonstrate the hardness, we use
the following result [4]: Let G = (V(G), E(G)) be a graph
and k be a positive integer. The following question is W[1]-
complete: does there exist a vertex subset S ⊆ V such that
S is an independent set of G and |S | = k? We refer to the
problem as k-IS.

4.1 Token Jumping Case

In this subsection, we consider an FPT-reduction from k-IS
to ITReconf under TJ. To demonstrate this FPT-reduction,
we first construct the graph I(G) = (V(I(G)), E(I(G))) from
an instance G = (V(G), E(G)) of k-IS as follows:

V(I(G)) = V(G) ∪ {r} ∪ U ∪W and

E(I(G)) = E(G) ∪ {(r, v) | v ∈ V(I(G)) \ {r}}

∪
{
(ui, w j) | i, j = 1, . . . , k + 1

}
,

where U = {u1, . . . , uk+1} and W = {w1, . . . , wk+1}. Note
that U ∪ W forms a complete bipartite graph in I(G). In
addition, TU = {r}∪U and TW = {r}∪W form induced trees
(see Fig. 3). The following theorem shows that ITReconf is
W[1]-hard when parameterized by k + �.

Theorem 3. ITReconf is W[1]-hard when parameterized
by k + � under TJ, where k is the size of the induced trees
and � is the length of the reconfiguration sequences.

Proof. Let G = (V(G), E(G)) be a graph and k be a positive
integer. We show that the following (I) and (II) are equiv-
alent: (I) G has an independent set of size k and (II) There
exists a reconfiguration sequence from TU to TW such that
the number of steps in the sequence is 2k + 1. (I) → (II):
Let S be an independent set of size k of G. For any two
vertices u and v in S , (u, v) � E(I(G)) from the definition of
an independent set. Thus, I(G)[S ∪ {r}] is an induced tree
because (u, r) ∈ E(I(G)) for any vertex u in S . Hence, we
can actually construct a reconfiguration sequence of length
2k + 1 from TU to TW as follows: First, we move u1, . . . , uk

to S one by one. Second, we move uk+1 to wk+1. Finally, we

Fig. 3 Example of I(G). The edges in G are omitted. The vertex r is
adjacent to all vertices. The induced subgraph I(G)[U∪W] forms a biclique
Kk+1,k+1.

move the vertices of S to W one by one. (II)→ (I): We as-
sume that there exists a reconfiguration sequence from TU to
TW of length 2k+1. Note the following two facts: (a) for any
distinct four vertices u, u′ ∈ U and w, w′ ∈ W, {u, u′, w, w′}
forms a cycle in I(G), and (b) for any two vertices u ∈ U
and w ∈ W, {r, u, w} forms a cycle in I(G). That is, for any
two vertices u ∈ U and w ∈ W, (TU \ {u}) ∪ {w} has a cy-
cle. By contrast, for any vertex w ∈ W, (TU \ {r}) ∪ {w}
is an induced tree. However, for any two vertices u ∈ U
and w′ ∈ W, (TU \ {r, u}) ∪ {w, w′} has a cycle. Thus, to re-
configure from TU to TW , first we have to move k vertices
in U ∩ TU to S ⊆ V(G). Let u be the remaining vertex in
U ∩ TU . This process is completed in k steps. Thereafter,
the intersection of T ′ = (TU \ (U \ {u}))∪ S and TW consists
of a singleton {r}. Then, we move the k + 1 vertices T ′ \ {r}
to W starting from u. On the basis of the above discussion,
all (2k + 1)-step reconfiguration sequences can be obtained
from the above steps. Moreover, S must be an independent
set with k vertices since all induced trees on a reconfigura-
tion sequence contain r. Hence, G is a yes instance of k-IS
iff (I(G),TU ,TW ) is a yes-instance of ITReconf. Thus, by
[4], the theorem holds. �

4.2 Token Sliding Case

In this subsection, we show that ITReconf is W[1]-hard
when parameterized by k + � under TS. To show hard-
ness, we must slightly modify I(G). We define I′(G) =
(V(I′(G)), E(I′(G))) as follows (see Fig. 4):

V(I′(G)) = V(G) ∪ {r, r′} ∪ U′ ∪W ′ ∪CU′ ∪CW′ and

E(I′(G)) = E(G) ∪ {(r, v) | v ∈ V(I′(G)) \ {r}}

∪
{
(ui, w j) | i, j ∈ {1, . . . , n + 1}

}

∪ {(vi, ui) | i ∈ {1, . . . , n}}
∪ {(vi, wi) | i ∈ {1, . . . , n}}
∪ {(ui, cui) | i ∈ {1, . . . , n}}

∪
{
(cui, cu j) | i, j ∈ {1, . . . , n} and i < j

}

∪ {(wi, cwi) | i ∈ {1, . . . , n}}

∪
{
(cwi, cw j) | i, j ∈ {1, . . . , n} and i < j

}
,

Fig. 4 Example of I′(G). The edges in G, I′(G)[CU′ ], and I′(G)[CW′ ]
are omitted. I′(G)[CU′ ] and I′(G)[CW′ ] form cliques Kn, and I′(G)[U′ ∪
W′] forms a biclique Kn+1,n+1.
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where U′ = {u1, . . . , un+1}, W ′ = {w1, . . . , wn+1}, CU′ =

{cu1, . . . , cun}, and CW′ = {cw1, . . . , cwn}. In the graph I′(G),
U′ ∪W ′ forms a complete bipartite graph, and CU′ and CW′

are cliques. In the following, two input induced trees of
ITReconf under TS to I′(G), TU′ = {r, r′, u1, . . . , uk, un+1},
and TW′ = {r, r′, w1, . . . , wk, wn+1}, respectively. From the
construction of I′(G), we have the following three lemmas.

Lemma 1. If there exists a reconfiguration sequence from
TU′ to TW′ , every induced tree in the sequence includes both
r and r′.

Proof. Let T be an induced tree including both r and r′. Un-
der TS, we cannot remove them from T because removing r
disconnects T and r′ is only adjacent to r. �

Lemma 2. Suppose an induced subgraph S of I′(G) in-
cludes r. If S ∩ U′ � ∅ and S ∩ W ′ � ∅, S has a cycle.

Proof. Vertices u ∈ S ∩U′, w ∈ S ∩W ′, and r induce K3. �

Lemma 3. Suppose an induced subgraph S of I′(G). If S
includes r and two distinct vertices u and v in CU′ , S has a
cycle. The same claim holds for CW′ .

Proof. {r, u, v} induces a cycle. �

Theorem 4. ITReconf is W[1]-hard when parameterized
by k + � under TS, where k is the size of the induced trees
and � is the length of the reconfiguration sequences.

Proof. Let G = (V(G), E(G)) be a graph and k be a pos-
itive integer. We prove the statement in the same fash-
ion as in the case of Theorem 3. We show that (I) and
(II) are equivalent: (I) G has an independent set of size
k. (II) There exists a reconfiguration sequence from TU′

to TW′ such that the number of steps in the sequence is at
most 8k + 1. (I)→(II): Suppose that I = {s1, . . . , sk} is an
independent set of G. Now, we consider how to obtain
TW′ from TU′ in I′(G). For each 1 ≤ i ≤ k, let T i

U′ ={
r, r′, uidx(s1), . . . , uidx(si), ui+1, . . . , uk, un+1

}
and T 0

U′ = TU′ ,
where idx(v) is the index of a vertex v in G. If i = 1, we
can obtain T 1

U′ from T 0
U′ by (1) removing u1 and adding cu1,

(2) removing cu1 and adding cuidx(s1), and then (3) remov-
ing cuidx(s1) and adding uidx(s1). By applying these three op-
erations to T i

U′ repeatedly, we can finally obtain T k
U′ from

TU′ in 3k steps at most. This reconfiguration always ex-
ists from Lemmas 1 to 3. Next, we obtain the induced
tree TS = {r, r′, s1, . . . , sk, un+1} from T k

U′ in k steps. TS

is actually an induced tree of I′(G) because {s1, . . . , sk} is
an independent of I′(G). Next, we obtain the induced tree
T ′S = {r, r′, s1, . . . , sk, wn+1} in one step. Next, we obtain
the induced tree T ′′ =

{
r, r′, widx(s1), . . . , widx(sk), wn+1

}
in k

steps. Finally, we obtain the induced tree TW′ from T ′′ in
3k steps in the same fashion as we obtained T k

U′ from TU′ .
Hence, if G has an independent set with k vertices, we can
obtain TW′ from TU′ in 8k + 1 steps at most. (II)→(I): We
show that, if a reconfiguration sequence RS from TU′ to TW′

exists, RS always includes an induced tree TS , in which

|TS ∩ V(G)| ≥ k holds. Suppose that there exists a reconfig-
uration sequence RS ′ from TU′ to TW′ that does not include
such TS . For any induced tree T on RS , the number of ver-
tices in T is k + 3, |T ∩ V(G)| < k. Thus, from Lemma 1,
|T ∩ (V(I′(G)) \ (V(G)) ∪ {r, r′})| ≥ 2. This implies that, if
such RS ′ exists, there exists T ′ on RS ′ such that T ′ ∩U′ � ∅
and T ′ ∩W ′ � ∅ because there is no edge between CU′ and
CW′ , CU′ and W ′, and CW′ and U′. However, according to
Lemma 2, such T ′ has a cycle and this contradicts the def-
inition of a reconfiguration sequence. Thus, the statement
holds. �

5. Fixed Parameter Tractability

In this section, we show that ITReconf is fixed parame-
ter tractable when parameterized by the size of the induced
trees and the maximum degree of an input graph.

Theorem 5. ITReconf is fixed parameter tractable when
parameterized by k +Δ under TJ and TS, where k is the size
of the induced trees and Δ is the maximum degree of an input
graph.

Proof. Let G = (V(G), E(G)) be an input graph. For any
vertex v in G, the number of vertices whose distance from
v is at most k is fewer than N = Δ

Δ−2 (Δ − 1)k [3], and the

number of induced trees including v is at most
(

N
k

)
. This

implies that the size of IT (G) is O(|V(G)|
(

N
k

)
), which is

linear in the number of vertices. Here, IT (G) is the set
of induced trees in G. Therefore, we can solve ITReconf in
polynomial time because the reachability of the graph can
be solved in polynomial time. �

The above theorem also holds for MITReconf.

Corollary 1. MITReconf is fixed parameter tractable when
parameterized by k +Δ under TJ and TS, where k is the size
of the induced trees and Δ is the maximum degree of an input
graph.

There exist some variations of ITReconf, such as
ShortestITReconf, which outputs the shortest reconfigura-
tion sequence between two induced trees, and ConITRe-
conf, which answers whether the reconfiguration graph is
connected. From Theorem 5, the size of a reconfiguration
graph is linear in the number of vertices of an input graph
when k + Δ is constant. Hence, not only ITReconf and
MITReconf but also ShortestITReconf and ConITReconf
are fixed parameter tractable when parameterized by k + Δ.

6. Conclusion

In this paper, we addressed the reconfiguration problem for
induced trees. We summarized the our results in Table 1.
Future work will include the consideration of whether ITRe-
conf can be solved in polynomial time when input graphs
are restricted.
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Table 1 Summary of the main results of this study. Here, Δ is the max-
imum degree of an input graph, k is the size of the induced trees, and � is
the length of a reconfiguration sequence. Reconfiguration rules are TJ and
TS.

Problem Hardness

ITReconf /MITReconf
PSPACE-complete even if Δ is constant

FPT parameterized by k + Δ
ITReconf W[1]-hard parameterized by k + �
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