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Exact Learning of Primitive Formal Systems Defining Labeled
Ordered Tree Languages via Queries

Tomoyuki UCHIDA†a), Satoshi MATSUMOTO††, Takayoshi SHOUDAI†††, Yusuke SUZUKI†,
and Tetsuhiro MIYAHARA†, Members

SUMMARY A formal graph system (FGS) is a logic programming sys-
tem that directly manipulates graphs by dealing with graph patterns instead
of terms of first-order predicate logic. In this paper, based on an FGS, we
introduce a primitive formal ordered tree system (pFOTS) as a formal sys-
tem defining labeled ordered tree languages. A pFOTS program is a finite
set of graph rewriting rules. A logic program is well-known to be suit-
able to represent background knowledge. The query learning model is an
established mathematical model of learning via queries in computational
learning theory. In this learning model, we show the exact learnability of
a pFOTS program consisting of one graph rewriting rule and background
knowledge defined by a pFOTS program using a polynomial number of
queries.

1. Introduction

Graph grammar (see [1]) has been applied to a wide range
of fields including pattern recognition and image analysis.
Uchida et al. [2] introduced a framework called a formal
graph system (FGS) as a graph grammar system. An FGS
is a logic programming system that deals with term graph
patterns instead of terms of first-order predicate logic.

Large amounts of graph-structured data are now ac-
cessible on the Internet. Graph-structured data having tree
structures, such as HTML/XML files, glycan data and pars-
ing structures of natural languages, are called tree-structured
data and can be represented by ordered trees. A tree lan-
guage is a set of ordered trees. In order to represent struc-
tural features from tree-structured data, we propose an or-
dered term tree pattern [3], [4], which is a tree pattern that
has an ordered tree structure and some internal structured
variables. A variable of an ordered term tree pattern has
a variable label and can be replaced with an arbitrary or-
dered tree by hyperedge replacement (see [1]) according to
the variable label. Computational learning theory is studied
in the field of foundations of computer science. In computa-
tional learning theory, the learnability of tree languages has
been studied intensively [5]. We consider the problem of
identifying an unknown tree language from a specified class
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of tree languages. In this paper, we use an ordered term
tree pattern t∗ as an expression of a target tree language L∗
such that L∗ is equal to the tree language defined using t∗.
We showed in [4] that the class of tree languages defined by
ordered term tree patterns is polynomial time inductively in-
ferable from positive data. The query learning model of An-
gluin [6] is an established mathematical model of learning
via queries in computational learning theory. In this learning
model, a learning algorithm accesses oracles, which answer
specific types of queries, and collects information about a
target.

First of all, we introduce a primitive graph rewriting
rule of the form p0(t0) ← p1(t1), p2(t2), . . . , pn(tn) (n ≥ 0)
satisfying the following conditions. (1) If n ≥ 1, then t0
is an ordered term tree pattern all of whose variables are
distinct. Otherwise, t0 is a tree consisting of two vertices
and one edge between them. (2) For each i (1 ≤ i ≤ n), ti is
an ordered term tree pattern consisting of two vertices and
one variable between them. (3) For any i (1 ≤ i ≤ n), the
variable label in ti appears in t0. Here, for i (0 ≤ i ≤ n),
the symbols pi and pi(ti) are called a predicate symbol and a
literal, respectively. A primitive graph rewriting rule of the
form p(t0)← is called a fact.

Secondly, as a special type of FGS defining labeled or-
dered tree languages obtained by replacing variables of or-
dered term tree patterns with specified ordered trees, we in-
troduce a primitive formal ordered tree system (pFOTS) pro-
gram, which is a finite set of primitive graph rewriting rules.
Moreover, for a pFOTS program Γ, we give a condition,
called the predicate symbol identifiable condition (PSI con-
dition), on two different edge labels of two facts in Γ in order
to identify one predicate symbol. According to the manner
of logic programming system, the tree language defined us-
ing a pFOTS program Γ and its predicate symbol r, denoted
by L(Γ, r), is defined as the set of all trees T such that there
exists a derivation starting from the unit goal ‘← r(T )’ and
ending with the empty goal ‘�’ derived using Γ (see [2]). In
Fig. 1, as examples we give a pFOTS program Γen, a new
graph rewriting rule α and the tree language L(Γen ∪ {α}, r)
defined using the pFOTS program Γen, the graph rewriting
rule α and the predicate symbol r. Moreover, we give a
derivation D starting from the unit goal ‘← r(T )’ and end-
ing with the empty goal ‘�’ derived using Γen, where T is
the leftmost tree displayed in L(Γen ∪ {α}, r) in Fig. 1. The
language L(Γen ∪ {α}, r) represents a set of parse trees of a
natural language.

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 pFOTS program Γen, graph rewriting rule α, ordered tree language L(Γen ∪ {α}, r), and deriva-
tion D starting from ‘← r(T )’ ending with the empty goal ‘�’ derived using Γen. For each tree, the
leftmost vertex is the root of the tree. The children of a vertex close to “o” have siblings in the order
shown with dashed arrows. A variable [u, v] is denoted with a square connecting u and v which are
numbered by 1 and 2, respectively.

An elementary formal system (EFS) [7] is a logic pro-
gramming system over strings and is regarded as a special
type of pFOTS, since any string is expressed by an ordered

tree having only one leaf. We assume that our consid-
ered class does not contain the empty tree language. Un-
der this assumption, from the insufficiency result [8] for a
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special type of EFS, we can see that there exists no learn-
ing algorithm identifying a target tree language defined by a
pFOTS program using a polynomial number of equivalence,
membership and subset queries. This insufficiency result is
due to the fact that a positive example is not necessarily ob-
tained by using equivalence and subset queries. A logic pro-
gram is well-known to be suitable to represent background
knowledge. We call an FGS program or a pFOTS program
given as background knowledge a background FGS pro-
gram or a background pFOTS program, respectively. Let
Γ be a pFOTS program as background knowledge satisfying
the PSI condition. Thirdly, we present learning algorithms
of a target tree language defined using a pFOTS program
consisting of one graph rewriting rule and a background
pFOTS program Γ satisfying the PSI condition, by using one
positive example and a polynomial number of membership
queries with respect to the number of edges of the positive
example. Our learning methods use some operators based
on a background pFOTS program. Therefore, even if the
given pFOTS program and the tree language are changed,
our learning algorithms find the target graph rewriting rule.

Finally, by giving examples of FGS programs, we dis-
cuss the learnability of a target tree language defined using
an FGS program consisting of one graph rewriting rule and
a background FGS program that does not satisfy at least one
of the conditions of a primitive graph rewriting rule and the
PSI condition, by using one positive example and a polyno-
mial number of membership queries.

For the learning of ordered tree languages, Suzuki
et al. [4] showed that the class of languages defined by or-
dered term tree patterns is polynomial time inductively in-
ferable from positive data. Matsumoto et al. [9] showed that
finite unions of ordered term tree pattern languages are ex-
actly learnable with a polynomial number of queries. For
the learning of graph grammars, Okada et al. [10] showed
that some classes of graph pattern languages defined by FGS
programs are exactly learnable with a polynomial number of
equivalence and restricted subset queries. Shoudai et al. [11]
showed that the regular FGS languages of bounded degree
with the 1-finite context property and bounded treewidth
property are learnable from positive data and membership
queries with current distributional learning techniques [12].

This paper is organized as follows. In Sect. 2, we intro-
duce an ordered term tree pattern [3], [4], a primitive formal
ordered tree system and the PSI condition on a pFOTS pro-
gram, and explain the query learning model [6] briefly. In
Sect. 3, we propose a learning algorithm that exactly iden-
tifies a target tree language defined using one graph rewrit-
ing rule and a background pFOTS program having only one
predicate symbol. In Sect. 4, we present a learning algo-
rithm that identifies a target tree language defined using
one graph rewriting rule and a background pFOTS program
having two or more predicate symbols. In Sect. 5, under
the assumption that a background FGS program Ξ is not
a pFOTS program, we discuss whether or not a target tree
language defined using one graph rewriting rule and Ξ is
exactly identified by using one positive example and a poly-

nomial number of membership queries. This paper is the
full version of the paper [13], with proofs, extended results
and complete definitions.

2. Preliminaries

2.1 Term Tree Patterns

Let Σ and Λ be finite alphabets, and X an infinite alphabet.
We assume (Σ ∪ Λ) ∩ X = ∅. Let T be a rooted ordered tree
(a tree, for short). We denote by V(T ) and E(T ) the vertex
set and the edge set of T , respectively. We denote by (u0, u1)
the edge between u0 and u1 such that u1 is a child of u0. For
a set or list S , the number of elements in S is denoted by |S |.

Definition 1: Let T be a tree and HT a subset of E(T ). A
term tree pattern t obtained from T and HT is a 3-tuple
(V, E,H) where V = V(T ), E = E(T ) \ HT and H = HT .
An element (u0, u1) in HT is called a variable of t and de-
noted by [u0, u1] instead of (u0, u1). Every vertex and edge
of T is labeled with a symbol in Σ and Λ, respectively. Ev-
ery variable h = [u0, u1] is labeled with a symbol x in X.
Such a symbol x is called a variable label of h. We call u0

the parent port of h and u1 the child port of h.

For a term tree pattern t obtained from T and HT , if T
and HT are clear from the context, we omit them, i.e., we
write a term tree pattern t simply. For a term tree pattern t,
we denote by V(t), E(t), and H(t) the vertex set, the edge set,
and the variable set of t, respectively. Moreover we denote
the vertex label of v ∈ V(t) by ϕt(v) ∈ Σ, the edge label of
e ∈ E(t) by ψt(e) ∈ Λ, and the variable label of h ∈ H(t) by
λt(h) ∈ X. For two vertices u, u′ ∈ V(t), we say that u is the
parent of u′ in t if u is the parent of u′ in T . Similarly we
say that u′ is a child of u in t if u′ is a child of u in T . For
a vertex u ∈ V(t) with no child, we call u a leaf of t. We
define the order of the children of each internal vertex u in t
as the order of the children of u in T .

Definition 2: We say that two term tree patterns t and t′ are
isomorphic, denoted by t � t′, if there is a bijection f from
V(t) to V(t′) such that for any u, u′, v, v′ ∈ V(t) the following
conditions 1–7 hold:

1. the root of t is mapped to the root of t′ by f ,
2. u is the next sibling of u′ if and only if f (u) is the next

sibling of f (u′),
3. (u, u′) ∈ E(t) if and only if ( f (u), f (u′)) ∈ E(t′),
4. [u, u′] ∈ H(t) if and only if [ f (u), f (u′)] ∈ H(t′),
5. ϕt(u) = ϕt′ ( f (u)),
6. ψt((u, u′)) = ψt′ (( f (u), f (u′))), and
7. λt([u, u′]) = λt([v, v′]) if and only if

λt′([ f (u), f (u′)]) = λt′ ([ f (v), f (v′)]).

A term tree pattern t is linear if all variables in t have
mutually distinct variable labels in X. The set of all linear
term tree patterns is denoted by LOTT . A term tree pattern
is said to be primitive if it consists of two vertices and one
variable between them. We regard a term tree pattern t with
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Fig. 2 pFOTS program ΓOT , graph rewriting rule β and the ordered tree language L(ΓOT ∪ {β}, r)
defined using the pFOTS program ΓOT ∪ {β} and predicate symbol r.

H(t) = ∅ as a tree. We denote by OT the set of all trees.
Let T be a tree having at least two vertices and t a term

tree pattern having at least one variable. Let x be a variable
label in t and σ = [u0, u1] a list of two distinct vertices in T
where u0 is the root of T and u1 is a leaf of T . Then, the form
x := 〈T, σ〉 is called a binding for x. A new term tree pattern
t′ is obtained by applying the binding x := 〈T, σ〉 to t in the
following way. For each variable h = [v0, v1] labeled with x
in t, we attach a copy T ′ of T to t by removing h from H(t)
and by identifying the vertices v0 and v1 with the vertices u′0
and u′1 of T ′, respectively, where the vertices u′0 and u′1 of T ′

correspond to the vertices u0 and u1 of T , respectively. We
define a new sibling ordering on every vertex v in t′ in a nat-
ural way [4], [14]. A substitution θ is a finite set of bindings
for distinct variable labels. The term tree pattern obtained
from t by applying all bindings in θ to t simultaneously is
denoted by tθ. For a term tree pattern t, the term tree pattern
language of t, denoted by L(t), is the set of all trees obtained
from t by replacing all variables in t with arbitrary trees.

2.2 Primitive Formal Ordered Tree System

Let Π be a set of unary predicate symbols. We assign a list
of two distinct vertex labels in Σ to every predicate symbol
p in Π. The list is called the pointer of p and denoted by
pointer(p). An atom is an expression of the form p(t). We
use pointer(p) to specify how to bind a tree to a variable of
t in an atom p(t). The first label of pointer(p) specifies the
root of t and the second specifies one of the leaves of t. In
Sect. 2.1, we gave the definition of a binding x := 〈T, σ〉. In
any binding, we need to give the list σ of vertices. Roughly
speaking, if T is a tree that is generated by a predicate sym-
bol p, the first (resp. second) vertex of σ is the vertex of T

that has the first (resp. second) label of pointer(p). In Figs. 1
and 2, all predicate symbols qs, qn, . . . have the same pointer
(a, b).

Let A, B1, . . . , Bn be atoms (n ≥ 0). A graph rewriting
rule (rule, for short) is a clause of the form A← B1, . . . , Bn.
The atom A is called the head and the part B1, . . . , Bn is
called the body of the rule. A rule is called a fact if n = 0.
We denote by o(t, x) the number of variables in t labeled
with x.

Definition 3: A rule p(t) ← q1(t1), . . . , qn(tn) is said to be
primitive if the following conditions 1–3 hold.

1. If n = 0, i.e., the rule is a fact, then t is a tree consisting
of two vertices and one edge between them.

2. If n ≥ 1, then the following conditions are satisfied.

a. t is a linear term tree pattern such that |V(t)| > 2
holds.

b. Every ti (1 ≤ i ≤ n) is a primitive term tree pattern.

3. For every variable x ∈ X, o(t, x) = o(t1, x) + · · · +
o(tn, x) ≤ 1.

For example, all rules in Γen and the rule α in Fig. 1 are
primitive. Moreover, all rules in ΓOT and a rule β in Fig. 2
are also primitive.

Definition 4: A finite set Γ of primitive rules is said
to be a primitive Formal Ordered Tree System program
(pFOTS program, for short) if for each predicate symbol p
appearing in Γ, there is at least one fact whose predicate
symbol is p.

For a rule α =‘p(t) ← q1(t1), . . . , qn(tn)’, we denote
by Πh(α) and Πb(α) the sets of all predicate symbols in
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Fig. 3 pFOTS program Γmp

the head and body of α, respectively, that is, Πh(α) = {p}
and Πb(α) = {q1, . . . , qn}. For a pFOTS program Γ, we
denote by Π(Γ) the set of all predicate symbols in Γ, that
is, Π(Γ) =

⋃
α∈Γ Π

h(α) ∪ Πb(α). For any predicate symbol
p ∈ Π(Γ), we denote by Λ(Γ, p) the set of all edge labels
in the facts in Γ whose predicate symbols are p. Figure 2
shows a pFOTS program ΓOT , where Π(ΓOT ) = {p} and
Λ(ΓOT , p) = {a, b}.

A pFOTS program Γ satisfies the predicate symbol
identifiable condition (PSI condition, for short) if for each
predicate symbol p ∈ Π(Γ), there exist two edge la-
bels a1, a2 ∈ Λ (a1 � a2) such that P(a1) ∩ P(a2) =
{p}, where P(a) = {q ∈ Π(Γ) | ‘q(T ) ← ’ ∈
Γ s.t. T has the edge label a}. A pair of such edge labels like
a1 and a2 is called a predicate identifier of p. For exam-
ple, for the pFOTS program Γmp in Fig. 3, since P(a) =
{p}, P(b) = {p, q} and P(c) = {q}, for two edge labels
a, b ∈ Λ, P(a) ∩ P(b) = {p} and P(b) ∩ P(c) = {q} hold.
Then, the predicate identifiers of p and q are the pairs (a, b)
and (b, c), respectively. From the definition of the PSI con-
dition, we remark that, if a pFOTS program Γ satisfies the
PSI condition, then for every predicate symbol p ∈ Π(Γ), Γ
has at least two facts having p as their predicate symbols.
This means that, if |Π(Γ)| = {p} holds, Γ has at least two
facts whose predicate symbol is p.

For a pFOTS program Γ and a predicate symbol r ∈
Π \ Π(Γ), we denote by pGRR(Γ, r) the set of all primitive
rules α such that the predicate symbol of the head of α is
r, i.e., r ∈ Πh(α) and if α is not a fact, then Πb(α) ⊆ Π(Γ)
holds.

Let t1 and t2 be linear term tree patterns. Let p and
q be predicate symbols. A substitution θ is called a unifier
of atoms p(t1) and q(t2) if p and q are the same predicate
symbol and t1θ � t2θ holds. A goal is a rule of the form
← B1, . . . , Bm (m ≥ 0). It is called a unit goal if m = 1 and
the empty goal if m = 0. For a rule α, we denote by var(α)
the set of all variable labels in α. Let α be a rule ‘p0(tα0 ) ←
p1(tα1 ), . . . , pk(tαk )’ and β a rule ‘p0(tβ0)← p1(tβ1), . . . , pk(tβk )’.
We say that β is a variant of α if there are two substitutions
θ, θ′ and a permutation ξ : {1, . . . , k} → {1, . . . , k} such that
tα0 θ � tβ0 and tα0 � tβ0θ

′ and, for any i (1 ≤ i ≤ k), tαi θ � tβξ(i)
and tαi � tβξ(i)θ

′ hold.

Definition 5: ([2], [15]) Let Γ be a pFOTS program and β
a goal. A derivation from β derived using Γ is a sequence

of 3-tuples (βi, θi, αi) (i = 0, 1, . . .) satisfying the following
conditions:

1. βi is a goal, θi is a substitution, and αi is a variant of a
rule in Γ.

2. β0 = β.
3. var(αi) ∩ var(α j) = ∅ for any i, j (i � j) and var(αi) ∩

var(β) = ∅ for any i.
4. We assume that there is a procedure, say A, which

chooses an atom from the body of a goal. Let
βi be a goal ← A1, . . . , Ak and αi a rule A ←
B1, . . . , Bq. Let Am (1 ≤ m ≤ k) be an atom
in the body of βi, which is chosen by A. Then
θi is a unifier of A and Am, and βi+1 is a goal ←
A1θi, . . . , Am−1θi, B1θi, . . . , Bqθi, Am+1θi, . . . , Akθi.

Definition 6: ([2], [15]) Let Γ be a pFOTS program and
β0 a goal. A refutation derived using Γ is a finite derivation
from β0 derived using Γ ending with the empty goal. Let F =
{(βi, θi, αi)}0≤i≤
 be a refutation from a unit goal β derived
using Γ. A refutation tree T
+1 of F is a tree satisfying the
following conditions:

1. Every vertex is labeled with a unit goal or the empty
goal.

2. The label of the root is the unit goal β0 = β.
3. Every leaf is labeled with the empty goal.
4. T0 is a tree consisting of only one vertex labeled with

β. For any i = 0, . . . , 
, Ti+1 is a tree obtained from
Ti by applying (βi, θi, αi) to Ti as follows: let βi be
a goal ← Ai

1, . . . , A
i
ni

. We assume that Ti has a leaf
labeled with ← Ai

j (1 ≤ j ≤ ni). Let αi be a rule
Ai ← Bi

1, . . . , B
i
qi

(qi ≥ 0) and θi a unifier of Ai and Ai
j.

If qi = 0, that is, αi is a fact Ai ←, then Ti+1 is ob-
tained by adding a new vertex labeled with empty goal,
as the child of the vertex that is labeled with ← Ai

j.
Otherwise, Ti+1 is obtained by adding new qi vertices
labeled with ← Bi

1θi, . . . ,← Bi
qi
θi, respectively, as the

children of the vertex that is labeled with← Ai
j.

Figure 4 shows an example of a refutation from a unit goal
derived using the pFOTS program ΓOT in Fig. 2 and its refu-
tation tree.

For a pFOTS program Γ and a predicate symbol p in
Π(Γ), we denote by L(Γ, p) the set of all trees T ∈ OT such
that there exists a refutation from the unit goal← p(T ) de-
rived using Γ. We say that a subset L ⊆ OT is a pFOTS lan-
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Fig. 4 Tree T in LOTT , refutation F from the unit goal ← p(T ) derived using ΓOT and refutation
tree T of F. For each i (1 ≤ i ≤ 5), ot′i is a variant of a rule oti in Fig. 2. The square box with thick line
denotes the empty goal.

guage if there exists a pFOTS program Γ and its predicate
symbol p such that L = L(Γ, p) holds. We note that for
any pFOTS program Γ and any predicate symbol p ∈ Π,
L(Γ, p) � ∅ holds, since Γ has at least one fact whose
predicate symbol is p from Definition 4 of a pFOTS pro-
gram. It is easy to see that for the pFOTS program ΓOT
in Fig. 2, L(ΓOT , p) = OT holds. Furthermore, Fig. 2
shows the pFOTS language L(ΓOT ∪ {β}, r) defined using
the pFOTS program ΓOT ∪ {β}.

2.3 Query Learning Model

Let L be a class consisting of sets of trees such that each
set in L has its own representation of finite length. Let R be
the set of representations for all sets of trees in L. For each
representation π ∈ R, we denote by L(π) the set of trees that
is represented by π. For the set LOTT of representations,
L(LOTT ) = {L(t) | t ∈ LOTT } is the class defined using
LOTT . Let Γ be a pFOTS program that can be consid-
ered background knowledge and r a predicate symbol with
r ∈ Π \ Π(Γ). Then, for the set pGRR(Γ, r) of represen-

tations, pGRRL(Γ, r) = {L(Γ ∪ {α}, r) | α ∈ pGRR(Γ, r)}
is the class defined using pGRR(Γ, r). Hereafter we call
a pFOTS program given as background knowledge a back-
ground pFOTS program.

We consider the query learning framework proposed
by Angluin [6]. Let L∗ ∈ L be a learning target. Let π∗ ∈ R
be one of the representations of L∗, i.e., L∗ = L(π∗). A
tree T ∈ OT is said to be a positive example of L∗ if T ∈
L∗. A learning algorithm can access oracles that will answer
queries about the target L∗. We consider the following tree
kinds of query.

Membership query (MQ): The input is a tree T ∈
OT . The output is yes if T ∈ L∗, and no otherwise.

Restricted subset query (rSQ): The input is a repre-
sentation π ∈ R. The output is yes if L(π) ⊆ L(π∗), and no
otherwise.

Equivalence query (EQ): The input is a representation
π ∈ R. If L(π) = L(π∗), the output is yes otherwise the
output is a tree in (L(π) \ L(π∗)) ∪ (L(π∗) \ L(π)), called a
counterexample.

A learning algorithmA is said to exactly identify a tar-
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get L∗ ∈ L if A outputs a representation π ∈ R satisfying
L(π) = L(π∗). In the next section, we will present a learning
algorithm that exactly identifies a target L∗ ∈ pGRRL(Γ, r)
using one positive example and a polynomial number of
membership queries, that is, the algorithm outputs a prim-
itive rule α∗ ∈ pGRR(Γ, r) satisfying L(Γ ∪ {α∗}, r) = L∗.

3. Exact Learning of Tree Languages with Background
pFOTS Programs Having Only One Predicate Sym-
bol via Queries

In this paper, for a background pFOTS program Γ and the
set pGRR(Γ, r) of representations with r ∈ Π \ Π(Γ), we
consider the learnability of the class pGRRL(Γ, r) using
one positive example and a polynomial number of mem-
bership queries. From Theorem 16 in [4], if a background
pFOTS program Γ satisfies the PSI condition, a target tree
language L∗ in pGRRL(Γ, r) is identified by identifying a
rule α∗ in pGRR(Γ, r) such that L∗ = L(Γ ∪ {α∗}, r) holds.
Hence, by using one positive example and a polynomial
number of membership queries, we construct a primitive
rule α∗ ∈ pGRR(Γ, r) that satisfies L∗ = L(Γ ∪ {α∗}, r) on
the basis of the following strategy.

(1) Construct contraction operators from Γ.
(2) Construct a minimal tree Tmin with respect to the num-

ber of edges in L∗ by recursively applying the con-
structed contraction operators to a given positive ex-
ample in L∗.

(3) Construct a target primitive rule α∗ from Tmin such that
L∗ = L(Γ ∪ {α∗}, r) holds as follows.

(a) Identify a term tree pattern in the head of α∗ by re-
placing some edges in Tmin with appropriate vari-
ables.

(b) Identify all predicate symbols in the body of α∗.

For a background pFOTS program Γ satisfying the PSI con-
dition and the set pGRR(Γ, r) of representations with r ∈
Π \ Π(Γ), in Sect. 3.2 and Sect. 4, we give two query learn-
ing algorithms based on the above strategy for two cases
of |Π(Γ)| = 1 and |Π(Γ)| ≥ 2, respectively. In the case of
|Π(Γ)| = 1 (Sect. 3.2), it is not necessary to identify predi-
cate symbols in the body of a target primitive rule α∗, that is,
process (3)-(b) of the strategy is unnecessary. On the other
hand, in the case of |Π(Γ)| ≥ 2 (Sect. 4), we have to iden-
tify predicate symbols in the body of a target primitive rule
α∗ since, L(Γ, p) � L(Γ, q) holds for two distinct predicate
symbols p, q ∈ Π(Γ). To make our results easier to under-
stand, we explain (1) and (2) of the above strategy in detail
in Sect. 3.1. Moreover, in Sect. 3.2, we show results for the
case of |Π(Γ)| = 1. Finally, in Sect. 4, we show results for
the case of |Π(Γ)| ≥ 2.

3.1 Algorithm for Finding Minimum Positive Example by
Contraction Operators

In this subsection, we explain our ideas for (1) and (2) in the

above strategy.
Let Γ be a pFOTS program. For convenience, i.e., in

order to describe our learning algorithm simply, we use two
kinds of special symbols that are not in Σ ∪ Λ. For any
p ∈ Π(Γ), we use the symbol ε to specify two vertex labels in
pointer(p), and the symbols “?p” to specify the edge labels
in Λ(Γ, p). Let p be a predicate symbol of the head of a
rule in Γ. Let α = ‘p(tα0 ) ← p1(tα1 ), . . . , pn(tαn )’ (n ≥ 1) be
a primitive rule in Γ and β = ‘p(tβ) ← ’ a fact in Γ. Let
H(tα0 ) = {h1, . . . , hn}. Without loss of generality, we assume
that for any i (1 ≤ i ≤ n), the variable label of hi is the
same as that of the unique variable of tαi . Let Pα be the tree
obtained from tα0 in the following way: each hi (1 ≤ i ≤ n)
is replaced with an edge whose label is the special symbol
“?pi ”, and each vertex label in pointer(p) is changed to the
special symbol ε. Let Qβ be the tree obtained from tβ by
replacing the labels of two vertices of tβ with the special
symbol ε. The pair (Pα,Qβ) is called the contraction pair
of α and β. For a pFOTS program Γ and a predicate symbol
p ∈ Π(Γ), the contraction pair set of Γ and p, denoted by
CPS(Γ, p), is the set of all contraction pairs of α and β that
satisfy the following conditions 1–3:

1. α is a primitive rule in Γ with Πb(α) � ∅,
2. β is a fact in Γ such that the edge label appearing in

the head of β is the lexicographically first symbol in
Λ(Γ, p),

3. Πh(α) = Πh(β) = {p}.
The contraction pair set of Γ, denoted by CPS(Γ), is the set
⋃

p∈Π(Γ) CPS(Γ, p).

Example 1: For the pFOTS program Γen in Fig. 1, we
present the contraction pair set CPS(Γen) = {(Pen

1 ,Q
en
No),

(Pen
2 ,Q

en
No), (Pen

3 ,Q
en
No)} of Γen, where Pen

1 , P
en
2 , P

en
3 and Qen

No
are shown in Fig. 5.

Example 2: For the pFOTS program ΓOT in Fig. 2, we
present the contraction pair set CPS(ΓOT ) = {(POT1 ,QOTa ),
(POT2 ,QOTa ), (POT3 ,QOTa )} of ΓOT , where POT1 , POT2 , POT3
and QOTa are shown in Fig. 6.

Let T be a tree in OT . A subgraph S of T is said to be
a subtree of T if S is a tree. A vertex u in V(S ) is called a
boundary vertex of S if u is adjacent to a vertex in V(T ) \
V(S ). A subtree S of T is said to be a 2-port subtree of T
if the root of S is either the root of T or a boundary vertex
of S , and all leaves of S except at most one boundary vertex
are leaves of T . Let rS be the root of S and 
S the boundary
vertex that is a leaf of S if it exists.

For a 2-port subtree S of T and a contraction pair (P,Q)
of Γ, we say that S matches P, denoted by S ≈ P, if there
is a bijection f : V(S ) → V(P) that satisfies the following
conditions 1–5:

1. the root of S is mapped to the root of P by f ,
2. for any u and u′ in V(S ), u is the next sibling of u′ if

and only if f (u) is the next sibling of f (u′),
3. for any u and u′ in V(S ), (u, u′) ∈ E(S ) if and only if

( f (u), f (u′)) ∈ E(P),
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Fig. 5 Trees Pen
1 , P

en
2 , P

en
3 and Qen

No constructed from Γen in Fig. 1.

Fig. 6 Trees POT1 , POT2 , POT3 and QOTa constructed from ΓOT in Fig. 2.

4. for any u ∈ V(S ), if u is neither rS nor 
S , then ϕS (u) =
ϕP( f (u)) holds, and

5. for any (u, u′) ∈ E(S ), if ψP(( f (u), f (u′))) =“?p” for
some p ∈ Π(Γ), then ψS ((u, u′)) ∈ Λ(Γ, p) holds, other-
wise ψS ((u, u′)) = ψP(( f (u), f (u′))).

Note that if 
S exists, then ϕP( f (
S )) = ε holds.
Let (P,Q) be a contraction pair in CPS(Γ). A contrac-

tion operator, denoted by �(P,Q)(T, S ), is a function that re-
turns a new tree from a tree T and a 2-port subtree S of T as
input. If S � P holds, we define the tree �(P,Q)(T, S ) as T .
We assume that S ≈ P holds. Let f be a bijection from V(S )
to V(P) realizing S ≈ P. Let 
′S be the leaf of S such that
ϕP( f (
′S )) = ε holds. If 
S exists, then 
′S = 
S holds. The
tree �(P,Q)(T, S ) is obtained from T by removing the vertices
in V(S ) \ {rS , 


′
S } and the edges in E(S ), and by identifying

rS of S with the root of Q and 
′S of S with the leaf of Q.
The following lemma on pFOTS plays an important

role in our algorithms.

Lemma 1: Let Γ be a pFOTS program, r a predicate sym-
bol inΠ\Π(Γ), α a primitive rule in pGRR(Γ, r), and tα a lin-
ear term tree pattern appearing in the head of α. For any tree
T ∈ L(Γ ∪ {α}, r), if |V(T )| > |V(tα)| holds, then there are a
2-port subtree S of T and a contraction pair (P,Q) ∈ CPS(Γ)
such that �(P,Q)(T, S ) ∈ L(Γ ∪ {α}, r) holds.

Proof. Since T ∈ L(Γ ∪ {α}, r), there is a refutation tree T
from the unit goal← r(T ). Let υT be the root of T . Since
|V(T )| > |V(tα)|, there is a proper descendant χ of υT all of
whose children inT are labeled with facts in Γ. Let← p(S ′)
be the label of χ for a tree S ′ ∈ OT and a predicate symbol
p ∈ Π(Γ). Then there are a rule p(t0) ← q1(t1), . . . , qn(tn)
and a substitution θ such that S ′ � t0θ holds and all tiθ (1 ≤
i ≤ n) are trees of only one edge. From the definition of
the contraction pair set of Γ and p, there is a contraction
pair (P,Q) in CPS(Γ, p) such that S ′ ≈ P holds. From the
definition of a refutation tree, there is a 2-port subtree S of T
such that S is isomorphic to S ′ except the two vertex labels
of S ′ specified by pointer(p). Therefore S ≈ P holds. The
refutation tree of the tree �(P,Q)(T, S ) is obtained from T by
removing all the children and grandchildren of χ, and by
replacing χ with the vertex χ′ having the unit goal← p(Q)

Procedure 1 Contraction
Input: A tree T in the target L∗ and the contraction pair set CPS(Γ) of Γ.
Output: A tree Tmin ∈ L(t∗) s.t. |V(Tmin)| ≤ |V(T ′)| holds for all T ′ ∈ L∗.
1: Tmin := T ;
2: repeat
3: for all (P,Q) ∈ CPS(Γ) do
4: for all subtrees S of Tmin satisfying S ≈ P do
5: Ttmp := �(P,Q)(Tmin, S );
6: if |V(Ttmp)| < |V(Tmin)| then
7: if MQ(Ttmp) = yes then
8: Tmin := Ttmp;
9: end if

10: end if
11: end for
12: end for
13: until Tmin does not change;
14: output Tmin;

as its label and its child having the empty goal as its label.
Therefore the tree �(P,Q)(T, S ) ∈ L(Γ ∪ {α}, r) holds. �

Lemma 2: Let Γ be a pFOTS program, r a predicate sym-
bol in Π \ Π(Γ), α a primitive rule in pGRR(Γ, r), and tα a
linear term tree pattern appearing in the head of α. For any
tree T ∈ L(Γ ∪ {α}, r) and the contraction pair set CPS(Γ) of
Γ, Procedure 1 (Contraction) finds a tree Tmin ∈ L(Γ∪{α}, r)
with |V(Tmin)| = |V(tα)| using O(n2) membership queries
where n = |V(T )|.

Proof. We will prove that, given any tree T ∈ L(Γ ∪ {α}, r)
and the contraction pair set CPS(Γ) of Γ as inputs, Procedure
1 (Contraction) outputs a tree Tmin obtained from T such
that |V(Tmin)| = |V(tα)| holds. We assume that |V(Tmin)| >
|V(tα)| holds. From Lemma 1, there are a 2-port subtree S
of Tmin and a contraction pair (P,Q) ∈ CPS(Γ) such that
�(P,Q)(Tmin, S ) ∈ L(Γ ∪ {α}, r) and |V(�(P,Q)(Tmin, S ))| <
|V(Tmin)| hold. Therefore if |V(Tmin)| > |V(tα)|, the repeat-
loop of Procedure 1 does not finish. Hence |V(Tmin)| =
|V(tα)| holds. The number of vertices of Tmin decreases by
at least one every iteration at lines 2–13 of Procedure 1.
The for-loop at lines 4–11 of Procedure 1 enumerates O(n)
subtrees, since the number of subtrees of T that are nearly
isomorphic to the first element of one pair of CPS(Γ) is
O(|CPS(Γ)| · n). Note that |CPS(Γ)| ≤ |Γ| holds. Then, since
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Algorithm 2 Learning〈Γ,r〉
Input: A tree T ∈ OT that is a positive example of a target tree language

L∗, i.e., T ∈ L∗.
Output: A primitive rule α ∈ pGRR(Γ, r) satisfying L(Γ ∪ {α}, r) = L∗.
1: // Preprocessing Step
2: Make the contraction pair set CPS(Γ) of Γ;
3: // Contraction Step
4: Tmin := Contraction(T,CPS(Γ)); (Procedure 1)
5: // Variable Replacement Step
6: t := Variable Replacement(Tmin); (Procedure 3)
7: // Postprocessing Step
8: α := Make Rule(t); (Procedure 4)
9: output α;

Procedure 3 Variable Replacement
Input: A tree Tmin in the target L∗.
Output: A term tree pattern t ∈ LOTT .
1: t := Tmin;
2: for all e ∈ E(Tmin) do
3: Ttmp := Tmin;
4: ψTtmp (e) := a, where a ∈ Λ(Γ, p) \ {ψTmin (e)};
5: if MQ(Ttmp) = yes then
6: he := [u, u′], where e = (u, u′);
7: ttmp := (V(t), E(t) \ {e},H(t) ∪ {he});
8: λttmp (he) := x, where x ∈ X \ {λt(h) | h ∈ H(t)};
9: t := ttmp;

10: end if
11: end for
12: output t;

the number of primitive rules in Γ is constant, Procedure 1
uses O(n2) membership queries. �

3.2 Learning Algorithm Given Background pFOTS Pro-
gram Having Only One Predicate Symbol

Let Γ be a background pFOTS program such thatΠ(Γ) = {p}
holds and r a predicate symbol in Π \Π(Γ). For a target tree
language L∗ ∈ pGRRL(Γ, r) with r ∈ Π \Π(Γ), Algorithm 2
(Learning〈Γ,r〉) finds a primitive rule α ∈ pGRR(Γ, r) satis-
fying L∗ = L(Γ ∪ {α}, r) by using one positive example and
membership queries in the following way. First of all, Al-
gorithm 2 makes the contraction pair set CPS(Γ) of Γ from
the pFOTS program Γ. Secondly, in Procedure 1 (Contrac-
tion), Algorithm 2 constructs the minimal tree Tmin in the
target language L∗ by recursively applying contraction oper-
ators defined using CPS(Γ) to the tree given as one positive
example. Thirdly, in Procedure 3 (Variable Replacement),
Algorithm 2 constructs a term tree pattern t obtained from
Tmin by recursively replacing edges of t with variables using
membership queries. Finally, in Procedure 4 (Make Rule),
Algorithm 2 makes the primitive rule α ∈ pGRR(Γ, r) from
t.

We will prove the correctness and the time complex-
ity of Algorithm 2 (Learning〈Γ,r〉) when for a background
pFOTS program Γ, |Π(Γ)| = 1 holds. From Lemma 1, we
have the following theorem.

Theorem 1: Let Γ be a fixed pFOTS program such that
Γ has at least two facts and |Π(Γ)| = 1 holds, r a predi-

Procedure 4 Make Rule
Input: A linear term tree pattern t ∈ LOTT .
Output: A primitive rule α ∈ pGRR(Γ, r).
1: Let H(t) = {h1, . . . , h
};
2: for i := 1 to 
 do
3: Let ui and vi be distinct new vertices;
4: ti := ({ui, vi}, ∅, {[ui, vi]});
5: (ϕti (ui), ϕti (vi)) := pointer(p);
6: λti ([ui, vi]) := λt(hi);
7: end for
8: output α = ‘ r(t)← p(t1), . . . , p(t
) ’;

cate symbol in Π \ Π(Γ), and L∗ a target tree language in
pGRRL(Γ, r). Then, a primitive rule α ∈ pGRR(Γ, r) satis-
fying L∗ = L(Γ ∪ {α}, r) is exactly identified using O(n2)
membership queries and one positive example T ∈ L∗,
where n = |V(T )|.

Proof. Algorithm 2 (Learning〈Γ,r〉) consists of four steps.
In Preprocessing Step, the contraction pair set CPS(Γ) of
Γ is created. In Contraction Step, Algorithm 2 decreases
the size of Tmin using the contraction operators constructed
from CPS(Γ) repeatedly while MQ(Ttmp) returns yes. After
that, in Variable Replacement Step, Algorithm 2 makes a
linear term tree pattern t by replacing edges of Tmin with new
variables if MQ(Ttmp) returns yes. Then, in Postprocessing
Step, Algorithm 2 makes a primitive rule α from t such that
the predicate symbol of the head of α is r and L∗ = L(Γ ∪
{α}, r) holds.

Let α∗ be a primitive rule in pGRR(Γ, r) such that
L∗ = L(Γ ∪ {α∗}, r) holds, and t∗ the linear term tree pat-
tern appearing in the head of α∗. From Lemma 2, in Con-
traction Step, for a tree T ∈ L∗ and the contraction pair
set CPS(Γ) of Γ, Algorithm 2 finds a tree Tmin ∈ L∗ with
|V(Tmin)| = |V(t∗)| using O(n2) membership queries. Here,
we will prove that after Variable Replacement Step, t � t∗
holds. We see that after Contraction Step, there is a bijec-
tion f : V(Tmin) → V(t∗) such that for any u, u′ ∈ V(Tmin),
(u, u′) ∈ E(Tmin) if and only if ( f (u), f (u′)) ∈ E(t∗) or
[ f (u), f (u′)] ∈ H(t∗). In particular, if ( f (u), f (u′)) ∈ E(t∗),
then ψTmin ((u, u′)) = ψt∗ (( f (u), f (u′))) holds. In the for-loop
at lines 2–11 of Procedure 3, for an edge e = (u, u′) ∈
E(Tmin), if ( f (u), f (u′)) ∈ E(t∗), MQ(Ttmp) does not return
yes. That is, if MQ(Ttmp) returns yes, then [ f (u), f (u′)] ∈
H(t∗) holds. Conversely, if [ f (u), f (u′)] ∈ H(t∗), whatever
the edge label of e = (u, u′) is, MQ(Ttmp) returns yes.
Therefore, we have t � t∗. Trivially, in Variable Replace-
ment Step, Procedure 3 uses at most n membership queries.
Then Algorithm 2 (Learning〈Γ,r〉) uses O(n2) membership
queries. Hence, the theorem holds. �

From Theorem 1, when the pFOTS program ΓOT ,
which defines the set of all ordered trees, is given as back-
ground knowledge, we can see that the following corollary
holds.

Corollary 1: Let ΓOT be the pFOTS program in Fig. 2 and
r a predicate symbol in Π \ Π(ΓOT ). Then, Algorithm 2
(Learning〈ΓOT ,r〉) exactly identifies a target tree language in
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Algorithm 5 LearningPluralPred〈Γ,r〉
Input: A tree T ∈ OT that is a positive example of a target tree language

L∗, i.e., T ∈ L∗.
Output: A primitive rule α ∈ pGRR(Γ, r) satisfying L(Γ ∪ {α}, r) = L∗.
1: // Preprocessing Step
2: Make the contraction pair set CPS(Γ) of Γ;
3: // Contraction Step
4: Tmin := Contraction(T,CPS(Γ)); (Procedure 1)
5: // Variable Replacement Step
6: (t,X) := Variable Replacement(Tmin); (Procedure 6)
7: // Postprocessing Step
8: α := Make Rule(t,X); (Procedure 7)
9: output α;

L(LOTT ) using one positive example T and O(n2) mem-
bership queries, where n = |V(T )|.

4. Exact Learning of Tree Languages with Background
pFOTS Programs Having Two or More Predicate
Symbols with Queries

In this section, for a background pFOTS program Γ satisfy-
ing the PSI condition and the set pGRR(Γ, r) of represen-
tations with r ∈ Π \ Π(Γ), we consider the learnability of
the class pGRRL(Γ, r) in the query learning model under
the assumption of |Π(Γ)| ≥ 2. If a background pFOTS pro-
gram Γ have two or more predicate symbols such as Γen

with |Π(Γen)| = 4 in Fig. 1, it is necessary to determine the
predicate symbols in the body of a target rule. We iden-
tify those predicate symbols in Variable Replacement Step,
while identifying the variables of the term tree pattern in the
head of the target rule.

Let Γ be a pFOTS program such that Γ satisfies
the PSI condition and |Π(Γ)| ≥ 2 holds. We can
present a learning algorithm, denoted by Algorithm 5
(LearningPluralPred〈Γ,r〉), by replacing Procedures 3 and
4 of Algorithm 2 with Procedures 6 and 7, respectively. By
using Algorithm 5, given a pFOTS program having two or
more predicate symbols and satisfying the PSI condition as
background knowledge, we have the following theorem.

Theorem 2: Let Γ be a background pFOTS program such
that Γ satisfies the PSI condition and |Π(Γ)| ≥ 2, r a pred-
icate symbol in Π \ Π(Γ), and L∗ a target tree language in
pGRRL(Γ, r). Then, a primitive rule α ∈ pGRR(Γ, r) satis-
fying L∗ = L(Γ ∪ {α}, r) is exactly identified using one pos-
itive example T ∈ L∗ and O(n2) membership queries with
n = |V(T )|.

Proof. In a similar way to Theorem 1, the correctness of
Algorithm 5 (LearningPluralPred〈Γ,r〉) can be shown. Here
we will estimate the time complexity of Algorithm 5. Since
Γ is a pFOTS program satisfying the PSI condition, Variable
Replacement Step is recursively applied to a tree Tmin ob-
tained after Contraction Step at most 2 ·V(Tmin) times. After
that, we obtain a primitive rule α by using Procedure 7 such
that L(Γ∪{α}, r) = L∗ holds. Hence, since |V(Tmin)| ≤ n, α is
exactly identified using O(|Γ| · n2) membership queries and

Procedure 6 Variable Replacement
Input: A tree Tmin in the target L∗.
Output: A term tree pattern t ∈ LOTT and a collection of sets of variable

labels {Xp}p∈Π(Γ).
1: t := Tmin;
2: for all predicate symbols p ∈ Π(Γ) do
3: Let (ap, bp) be a predicate identifier of p;
4: Xp := ∅;
5: end for
6: for all e ∈ E(Tmin) do
7: T 1

tmp := Tmin;

8: T 2
tmp := Tmin;

9: for all predicate symbols p ∈ Π(Γ) do
10: ψT 1

tmp
(e) := ap and ψT 2

tmp
(e) := bp;

11: if MQ(T 1
tmp) = yes and MQ(T 2

tmp) = yes then
12: he := [u, u′], where e = (u, u′);
13: ttmp := (V(t), E(t) \ {e},H(t) ∪ {he});
14: λttmp (he) := x, where x ∈ X \ {λt(h) | h ∈ H(t)};
15: Xp := Xp ∪ {x};
16: t := ttmp;
17: break;
18: end if
19: end for
20: end for
21: output t and {Xp}p∈Π(Γ);

Procedure 7 Make Rule
Input: A linear term tree pattern t ∈ LOTT and a collection X of sets of

variable labels {Xp}p∈Π(Γ).
Output: A primitive rule α ∈ pGRR(Γ, r).
1: Let H(t) = {h1, . . . , h
};
2: for i := 1 to 
 do
3: Let pi be a predicate symbol in Π(Γ) s.t. λt(hi) ∈ Xpi ;
4: Let ui and vi be distinct new vertices;
5: ti := ({ui, vi}, ∅, {[ui, vi]});
6: (ϕti (ui), ϕti (vi)) := pointer(pi);
7: λti ([ui, vi]) := λt(hi);
8: end for
9: output α = ‘ r(t)← p1(t1), . . . , p
(t
) ’;

one positive example. Since |Γ| is constant, the statement
holds. �

We can extend pFOTS programs to deal with the class
of ordered tree languages in case that |Λ| is infinite. by using
the special atom determining whether or not the edge label
is in Λ. Therefore, it is easy to see that Theorems 1 and 2
hold if |Λ| is infinite.

5. Discussion

In this section, under some relaxed conditions of
pFOTS programs, that is, the assumption that background
knowledge Γ has rules that do not satisfy at least one of
the conditions 1 and 2 in Definition 3, we discuss whether
or not a target tree language L∗ = L(Γ ∪ {α∗}, r) with
α∗ ∈ pGRR(Γ, r) is exactly identified using one positive ex-
ample and a polynomial number of membership queries.

To identify a target tree language L∗ in pGRRL(Γ, r)
with background knowledge Γ and r ∈ Π \Π(Γ), we need to
construct a linear term tree pattern t∗ in the head of a target
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Fig. 7 FGS program ΓCE , which is not a pFOTS program, target primitive rule α∗ and language
L(ΓCE ∪ {α∗}, r)

Fig. 8 Candidate primitive rule β and a tree TCE in OT

primitive rule α∗ such that L∗ = L(Γ∪{α∗}, r) holds. If Γ is a
pFOTS program, we can see that |E(t∗)|+ |H(t∗)| = |E(Tmin)|
holds, where Tmin is a minimal tree such that there exists
a refutation from the unit goal ← r(Tmin) derived using
Γ ∪ {α∗}. Therefore, we can construct a target term tree pat-
tern t∗ obtained from E(Tmin) by replacing edges with vari-
ables recursively while membership queries return “yes”.
We consider the case that Γ has a fact ‘p(t) ←’ such that
t consists of two or more edges. Let Tmin be a minimal
tree such that there exists a refutation F from the unit goal
← r(Tmin) derived using Γ ∪ {α∗} satisfying (β, θ, ‘p(t) ← ’)
∈ F. Then, we can see that |E(t∗)| + |H(t∗)| < |E(Tmin)|
holds. Therefore, we need to construct a linear term tree
pattern t∗ from Tmin by replacing subtrees isomorphic to
trees of facts in Γ with variables using a polynomial num-
ber of membership queries with respect to |E(Tmin)|. Con-
sider the FGS program ΓCE to be background knowledge
and the target rule α∗ in Fig. 7. We remark that any fact in
ΓCE has a tree consisting of two edges, that is, none of the
facts in ΓCE satisfy the condition 1 of Definition 3. Sup-
pose that the minimal tree TCE in Fig. 8 is constructed by
recursively applying the contraction operators to a positive
example, after Contraction Step (or TCE is given as one pos-
itive example). In Variable Replacement Step, the subtree
of TCE that is described in the gray region is tried to be

replaced with a variable by replacing it with each tree ap-
pearing in facts of ΓCE and inquiring to oracle as member-
ship query. Since any membership query answers “yes”,
the candidate primitive rule β in Fig. 8 can be constructed.
However, L(ΓCE ∪ {β}, r) � L(ΓCE ∪ {α∗}, r) holds, since
Tbbbb ∈ L(ΓCE ∪ {α∗}, r) but Tbbbb � L(ΓCE ∪ {β}, r). This ex-
ample shows that identification of the target language may
fail even if we recursively apply the variable replacements to
Tmin while membership queries return “yes”. For a similar
reason, we can see that identification of a target tree lan-
guage may fail for any background knowledge containing
rules having variables consisting of 3 ports or more fail.

Moreover, let a pFOTS program Γ have at most one fact
for each predicate symbol in Π(Γ). We can easily construct
a target primitive rule α∗ without any membership query,
if Γ satisfies the following condition. For each predicate
symbol p in Π(Γ), the edge label in Λ(Γ, p) does not ap-
pear in a target graph rewriting rule α∗ or any rule in Γ ex-
cept a fact whose predicate symbol is p. Otherwise, since
we can use membership queries only, we need to identify
edges replaced with variables by using subtrees instead of
edge labels. If Γ is a pFOTS program such that L(Γ, p)
equals the set of all ordered trees having only one edge la-
bel, we conjecture that, using a similar strategy to that of the
proof of Theorem 22 in [4], a target tree language defined
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using a pFOTS program such as Γ and a predicate symbol
r ∈ Π \ Π(Γ) can be identified by using one positive exam-
ple and a polynomial number of membership queries with
respect to the number of edges of the positive example. Oth-
erwise, that is, if Γ is an arbitrary pFOTS program, to iden-
tify a target tree language L∗ by using one positive example
and a polynomial number of membership queries, we need
a new strategy for constructing an appropriate primitive rule
α such that L(Γ ∪ {α}, r) = L∗ holds.

To identify a target tree language defined using a back-
ground FGS program Ξ, such as ΓCE and one graph rewrit-
ing rule in pGRR(Ξ, r), by using one positive example and a
polynomial number of membership queries, Procedures 3 of
Learning〈Ξ,r〉 or 6 of LearningPluralPred〈Ξ,r〉 is necessary
to be modified.

6. Conclusions

We have introduced a primitive formal ordered tree system
(pFOTS) as a formal system defining ordered tree languages
based on FGS [2]. For a pFOTS program Γ as background
knowledge, we have shown the exact learnability of the class
pGRRL(Γ, r) of tree languages defined using pFOTS pro-
grams each of which consists of one primitive graph rewrit-
ing rule and Γ in cases of |Π(Γ)| = 1 and |Π(Γ)| ≥ 2, by us-
ing one positive example and a polynomial number of mem-
bership queries. Moreover, by giving an FGS program ΓCE

whose facts do not satisfy the condition 1 of Definition 3
as background knowledge, we have shown that a target tree
language defined using ΓCE and a primitive rule cannot be
identified, by our learning algorithm using one positive ex-
ample and a polynomial number of membership queries.

As future work, we will consider the exact learnabil-
ity of tree languages defined using pFOTS programs as
background knowledge in case that the number of facts
for each predicate symbol is only one, by using one posi-
tive example and membership queries. Let a pFOTS pro-
gram Γ have at most one fact for each predicate symbol in
Π(Γ). Kato et al. [8] showed that any target language of all
strings defined using a special type of EFS [7] is identified,
by using a polynomial number of membership and super-
set queries. Since any string is expressed by an ordered
tree having only one leaf, we will consider the learnabil-
ity of tree languages defined using pFOTS programs with-
out background knowledge by expanding Kato’s results to
pFOTS programs. Moreover we will expand our results
to pFOTS programs without background knowledge using
more powerful queries such as equivalence queries, subset
queries, superset queries and predicate membership queries
(see [6], [16]).
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