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SUMMARY In this paper, we propose a method for automatic vir-
tual resource allocation by using a multi-target classification-based scheme
(MTCAS). In our method, an Infrastructure Provider (InP) bundles its CPU,
memory, storage, and bandwidth resources as Network Elements (NEs)
and categorizes them into several types in accordance to their function,
capabilities, location, energy consumption, price, etc. MTCAS is used by
the InP to optimally allocate a set of NEs to a Virtual Network Operator
(VNO). Such NEs will be subject to some constraints, such as the avoid-
ance of resource over-allocation and the satisfaction of multiple Quality of
Service (QoS) metrics. In order to achieve a comparable or higher predic-
tion accuracy by using less training time than the available ensemble-based
multi-target classification (MTC) algorithms, we propose a majority-voting
based ensemble algorithm (MVEN) for MTCAS. We numerically evaluate
the performance of MTCAS by using the MVEN and available MTC algo-
rithms with synthetic training datasets. The results indicate that the MVEN
algorithm requires 70% less training time but achieves the same accuracy
as the related ensemble based MTC algorithms. The results also demon-
strate that increasing the amount of training data increases the efficacy of
MTCAS, thus reducing CPU and memory allocation by about 33% and
51%, respectively.
key words: multi-target classification, virtual resource allocation scheme,
multiple QoS

1. Introduction

The Future Internet is expected to support various types
of services and applications (e.g. smart metering, video
surveillance, connected vehicles, emergency rescue dur-
ing disaster), each with diverse requirements (e.g. ultra-
reliable connectivity, very low latency, massive number of
devices, and quality of service (QoS) guaranteed through
dynamic virtual resource control and adjustment). It would
be based on network virtualization, software defined net-
working (SDN), and network slicing technologies [1]. In-
frastructure provider (InP), virtual network operator (VNO),
and application service provider (ASP) are the three stake-
holders involved in the management of virtual resources [2].

The InP virtualizes its physical resources into differ-
ent network elements (NEs) according to their functionali-
ties and provides information about available NEs and their
usage prices to the subscribing VNO(s). The NEs con-
tain various combinations of CPU, storage, and bandwidth
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resources with associated values, and features like location
and energy budget. For example, a NE consists of network
software module installed in virtual machine (VM) with re-
quired CPU, storage, and bandwidth resources. NE can also
be a shared physical modular infrastructure like WiFi ac-
cess point characterized with its a location, cache storage,
bandwidth, and transmission power requirements or a link
bandwidth between two geographic locations. Hereafter,
throughout this paper we use NE to represent ‘virtual re-
source’. A VNO leases NEs from InP to provide networking
platform with required QoS for the services offered by ASP.

Overcommitting and service level agreement (SLA)
QoS violations are two common problems of NE allocation
during peak demands [3]. Overcommitting refers to the sit-
uation where InP accepts new VNO requests, even though
the available NEs are not sufficient to satisfy them. In or-
der to accommodate new VNO requests InP usually adjusts
the resources already allocated to incumbent VNOs, lead-
ing to the SLA QoS violation. InP loses revenue due to
QoS violation penalty. Irrespective of peak demand situa-
tions, these two problems are particularly severe when the
InP owns limited physical resources such as in a micro edge
datacenter [4]. Customers of VNOs usually use only 10% of
the leased NEs [5]. InP should incorporate feedbacks from
VNO(s) to avoid over-allocation of NEs and maintain the
reserve of resources for future requests, and thus these two
problems can be solved to a large extent.

In this paper, we design the allocation of NEs that sat-
isfy multiple QoS metrics for dynamic VNO requests for
different amount of NEs by leveraging a proactive multi-
target classification (MTC) based machine learning ap-
proach. The InP in our scenario owns limited physical re-
sources and follows the VM allocation model of Amazon
elastic cloud compute (EC2) [6] and Google compute en-
gine (GCE) [7].

We propose an MTC based automatic NE allocation
scheme (MTCAS) to be used by InP to predict and allo-
cate a multiple QoS compliant set of NEs for each VNO
request. MTCAS satisfies three objectives for InP (namely
balancing the resource utilization, minimizing energy con-
sumption, and avoiding over-allocation) by considering four
QoS metrics for VNOs (provable QoS satisfaction guar-
antee, response time, location, and price). By employing
MTCAS, InP is able to efficiently allocate resources of op-
timal locations for load-balancing and energy usage, as well
as increase resource availability for future VNO requests by
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avoiding potential over-allocation. Note that we consider
balancing utilization of resources owned by InP in various
places through the allocations by MTCAS. The prediction
accuracy of MTCAS provably guarantees that the demanded
QoS for a certain percentage of new requests will be satis-
fied by the allocated NEs. MTCAS also ensures that the
VNOs get response for the requests within SLA compliant
time, at desired location and price.

The remaining of this paper is organized as follows.
We present a literature review of machine learning based
NE management approaches and clarify our contributions in
Sect. 2. Section 3 describes necessary background concepts
to understand our proposal. Section 4 illustrates MTCAS
with an example, discusses in detail the procedural steps
of the proposed scheme, and presents an ensemble algo-
rithm for MTCAS. Section 5 describes the preparation of
two training datasets. Numerical evaluation results are dis-
cussed in Sect. 6. Finally, Sect. 7 concludes this paper and
mentions about future directions.

2. Related Work and Contributions

InP employs either combinatorial optimization [8]–[11] or
machine learning approaches [12]–[18] to solve the NE al-
location problem without any feedback about the solutions
from VNOs. Due to exponential computational time com-
plexity, optimal solutions usually consider limited number
of QoS constraints [19]. Therefore, many optimization-
based prior works have tried to solve the NE allocation prob-
lem by considering one or two QoS constraints, such as
computation time [8], resource consumption and load bal-
ancing [9], latency and reliability [10], and energy [11].

Machine learning based NE management have been
addressed in several works [12]–[18]. Linear support vec-
tor machine (SVM) based classification of VNO requests
is suggested in [12] to increase the acceptance rate of ur-
gent requests requiring large amount of resources. Rein-
forcement learning (RL) agent with feedback is used in each
substrate node and link to learn optimal policy to dynam-
ically allocate resources to virtual nodes and links, which
in turn improves VNO request acceptance and revenue [13].
A random forest (RF) algorithm-based method is presented
in [14] to dynamically adjust the number of virtual network
function (VNF) instances to minimize QoS violation and op-
eration/leasing cost. VNF forwarding graph topology infor-
mation is exploited by a neural network (NN) based algo-
rithm to predict future resource metrics for each VNF com-
ponent [15]. Ensemble prediction mechanisms are presented
in [16] to turn off and assign VMs smartly to maintain SLA
compliant QoS level. Autoregressive integrated moving av-
erage (ARIMA) based future resource demand prediction is
adopted in [17] to improve consolidation and migration effi-
ciency for the cloud servers employing local storage. The k-
Nearest Neighbor (k-NN) algorithm is used for beam selec-
tion in the multiuser massive multiple-input multiple-output
(MIMO) environment [18]. Interested readers are referred
to [20]–[22] for a comprehensive use of above-mentioned

Table 1 Comparison of MTCAS with related works.

Reference Algorithm Feedback Classification
[12] Linear SVM × Binary
[13] RL ✓ ×
[14] RF × Multi-class
[15] NN × ×
[16] Ensemble × ×
[17] Regression × ×
[18] k-NN × Multi-class

MTCAS Classifier chain, ✓ Multi-target
Ensemble

machine learning algorithms in various applications.
Our MTCAS supports feedback mechanism between

InP and VNOs, and classification for resource allocation de-
cisions. However, previous works [12]–[18] discussed ear-
lier do not support both of them at the same time. There
are several advantages of feedback mechanism for both InP
and VNOs. Feedbacks from VNOs help InP to verify the
correctness of resource allocation decisions and know about
the satisfaction of VNOs, and according to these satisfaction
measurements improve the training data, which is essential
for machine learning algorithms. Feedback mechanism en-
ables a VNO to reject an unacceptable offer (in terms of re-
source configuration and/or price) from InP, and request for
a new offer. This also helps InP to avoid request rejection
during peak demand situations, because in this case InP of-
fers less amount of resources compared to the requested one
and the VNO accepts it. Table 1 presents a comparison of
related work [12]–[18] with MTCAS in terms of three crite-
ria: employed machine learning algorithm, use of feedback
among involved parties in decision process, and whether or
not classification based allocation approach used.

Our motivation to adopt machine learning approach in
this paper is explained in the following. Optimization fo-
cuses on obtaining exact solutions at the cost of increased
computation complexity, which is acceptable for static sit-
uation. Machine learning approaches usually require less
time to solve a problem than the conventional mathemat-
ical optimization approaches do. Therefore, they are bet-
ter suitable for dynamic resource allocation decision mak-
ing purposes, where both resource requests and availabil-
ity change with time [18]. Particle swarm optimization [23],
column generation [24], dynamic programming [25] meth-
ods have been used to overcome the exponential time issue
of conventional optimization approaches. However, multi-
ple available methods may introduce a new decision prob-
lem of deciding which solution to use at different resource
availability situations. To avoid this problem, our objec-
tive is to propose a single solution, which we call “a gen-
eral solution” for the dynamic ranges of VNO resource re-
quests and provide a quick response (e.g., within 20 mil-
liseconds [26]). Therefore, machine learning approaches are
more favorable for our goal. However, poor prediction and
absence of feedback from VNO to InP may result in re-
source over-allocation, under-utilization, or monetary losses
for InP and VNOs [27]. Therefore, we also investigate the
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ensemble approach with MTCAS to increase the prediction
accuracy.

To the best of our knowledge there are no prior works
on proactive NE management that consider the aforemen-
tioned three objectives for InP and four QoS metrics for
VNOs. The contributions of this paper are three-fold.

• First, we propose MTCAS to be used by InP to allo-
cate a multiple QoS compliant set of NEs to VNOs.
MTCAS avoids resource over-allocation by incorporat-
ing VNOs feedback.
• Second, we propose a majority voting based ensemble

algorithm (MVEN) for MTCAS.
• Third, we assess the performance of MTCAS by using

MVEN and available MTC algorithms with synthetic
training datasets. The proposed MVEN algorithm re-
quires 70% less training time but achieves the same ac-
curacy as the related ensemble based MTC algorithms.
The results also demonstrate that increasing the amount
of training data increases the efficacy of MTCAS, thus
reducing CPU and memory allocation by about 33%
and 51%, respectively.

3. Background Concepts

We discuss here the necessary background concepts related
to MTC and ensemble algorithm.

3.1 MTC

An NE is described with a set of related features F. The NE
is classified with a set of labels L determined as the most
relevant features. Each label l ∈ L can take a finite V num-
ber of values. Each feature f ∈ F can be assigned with
either a numeric or an alphanumeric value. There are four
classification paradigms: binary (|L| = 1, V = 2), multi-
class (|L| = 1, V > 2), multi-label (|L| > 1, V = 2), and
multi-target (|L| > 1, V ≥ 2) [30]. In MTCAS, the number
of labels |L| must be greater than or equal to the number of
QoS metrics to be satisfied by InP for an NE request. Clas-
sifying an NE (e.g., a VM) instance with |L| = 4 labels (e.g.,
CPU, memory, storage, and NIC speed) and V > 2 values
per label is an MTC problem. For example, the label related
to NIC speed can have three values (e.g. 100Mbps, 1Gbps
or 10Gbps), and the label related to CPU may represent the
number of CPU cores (e.g. 1 ∼ 9).

3.2 Training, Testing, Request, and Prediction

Let InP creates N instances of a NE, which are classified
with |L| labels and V values per label. A collection of these
classification information together with |F| features per in-
stance serves as the training dataset for MTC algorithms.
The training dataset can be represented as a N × (|L| + |F|)
dimensional matrix TN×(|L|+|F|), where each row represents
an instance, first |L| elements of each row indicates labels
and remaining |F| elements represent the features of that in-
stance. Let M be a set of available MTC algorithms. k-fold

cross-validation and train/test split are the two methods to
train MTC algorithms m ∈ M [30]. Cross-validation is pre-
ferred when N is small. Train/test split is suggested when
N is large with known distribution function. Trained MTC
algorithms, denoted as classifiers, are used to predict |L| la-
bels of a new NE request (‘prediction’) that meets |L| QoS
metrics. A VNO requests for a NE to InP in a prescribed
form suitable for prediction by MTC algorithms. The pre-
scribed form includes multiple mandatory (must mention
the resource specifications) and optional (not necessary to
mention) features. InP allocates the NE to VNO according
to the prediction.

3.3 Metrics to Evaluate Prediction Accuracy

Exact matching (EM) and Hamming score (HS) are used
metrics to determine prediction accuracy of the multi-target
or multi-dimensional classification tasks [31]. EM (label-set
based global accuracy) and HS (label-based mean accuracy)
are defined by Eqs. (1) and (2), respectively [31].

EM =
1
N

N∑

i=1

δ(y′i , yi) (1)

HS =
1

N|L|
N∑

i=1

|L|∑

l=1

δ(y′il, yil) (2)

where N is the total number of training instances indexed by
i, and each instance has |L| labels indexed by l, y′i = {y′il : i =
1, 2, · · · ,N, and l = 1, 2, · · · , |L|} is the vector of predicted
labels and yi = {yil : i = 1, 2, · · · ,N, and l = 1, 2, · · · , |L|}
is the vector of known labels. Note that y′il and yil is the
predicted and known values, respectively, of the lth label
of an instance i. In Eq. (1), δ(y′i , yi) = 1 if y′i = yi, and
otherwise δ(y′i , yi) = 0. Similarly, in Eq. (2) δ(y′il, yil) = 1 if
y′il = yil, and otherwise δ(y′il, yil) = 0. The desired prediction
values of EM and HS are both 1.

3.4 MTC Methods and Algorithms

MTC problems are solved either by problem transforma-
tion methods (i.e. converting a multi-target problem into
a set of binary classification problems and solving them
by using binary classification algorithms) or by algorithm
adaptation methods (i.e. adapting the algorithm to directly
perform multi-target classification) [31]. Binary relevance
(BR), classifier-chains (CC), and label powerset (LP) are
the generally adopted problem transformation methods [30].
We explain the BR method in the following. Let the given
multi-target dataset TN×(|L|+|F|) consists of two sub-matrices,
i.e., TN×(|L|+|F|) = [AN×|L| | BN×|F|]. Sub-matrices AN×|L| and
BN×|F| represent |L| labels and |F| features for each of N in-
stances. For each label l ∈ L the BR method creates a matrix
Tl

N×(1+|F|) = [AN×1 | BN×|F|], where sub-matrix AN×1 repre-

sents the lth column of sub-matrix AN×|L|. The BR method
then independently learns the class (binary or multi-class)
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of each label l ∈ L by using the same algorithm and cor-
responding matrix Tl

N×(1+|F|). The information about label
correlations i.e. the probability of appearing two or more la-
bels together is not preserved with BR method due to inde-
pendent label learning, which sometimes may lead to poor
prediction. In order to keep this correlation information, the
CC method is presented where correlations are preserved by
creating a chain of labels in the feature space. The label cor-
relations in the LP method are conserved by considering all
possible combinations of label combinations.

The available MTC algorithms m ∈ M are imple-
mented based on the BR, CC, and LP methods. Based on
training time and prediction accuracy, one MTC algorithm
m ∈ M is selected by InP to use with MTCAS.

3.5 Ensemble Algorithm

Ensemble learning is the technique where multiple classi-
fiers are strategically generated and combined to improve
the classification or prediction performance of a poor clas-
sifier [32]. The motivation behind ensemble learning comes
from the decision making process of our daily life events.
For example, we buy a product by reading several reviews
about it, or an employer hires a person based on several
recommendations received with the application. Here each
product review or recommendation acts as an expert clas-
sifier. The final decision is made by combining the deci-
sions/opinions of individual classifiers to make a better de-
cision [33]. Commonly used ensemble learning algorithms
are adaboost, bagging, stacked generalization, mixture of
experts, and voting based methods ([33] and the references
therein).

4. The Proposal of MTCAS

We describe the flow of actions among ASP, InP, and VNOs,
and explain how InP uses MTCAS to predict and allocate
NEs with the help of Fig. 1 (Sect. 4.1). A simple example
of MTCAS with the process of creating training dataset for
VMs are explained in Fig. 2 (Sect. 4.2). In Sect. 4.4, we
present the detail descriptions of the methodology used in
MTCAS with the help of two algorithms. We then discuss
the our proposed MVEN algorithm for MTCAS (Sect. 4.3).

Note that the number of labels |L| for classifying an NE
should be equal to or higher than the number of QoS param-
eters to be satisfied when this NE is requested. The number
of features |F| should be equal to or higher than the num-
ber of labels |L|, because labels are determined according to
the features. Therefore, the number of QoS ≤ |L| ≤ |F|. The
number of clusters b should be greater than or equal to 1, and
it does not depend on the number of QoS, |L|, and |F|. The
number of instances N for an NE should be large enough
(e.g., a few hundreds) for preparing a reasonable training
data. The InP is solely responsible to determining the num-
bers of |L|, |F|, b, and N. The number of QoS requirements
and MTC algorithms |M| are determined by InP according
to the VNO requests and utilized machine learning software

Fig. 1 The flow of actions among InP, VNO, and ASPs.

packages, respectively.

4.1 Flow of Actions

The InP provides a catalogue of NEs, which includes the
types of NEs, their prices and locations, to the subscribing
VNOs (step 0 of Fig. 1, where only one VNO is shown for
simplicity). The catalogue of each NE containing detailed
information, not disclosed to VNOs, serves as the training
dataset. For each type of NE, MTCAS trains a suitable
MTC algorithm m ∈ M, with the training datasets (step 1).
An ASP requests for NEs with abstract resource specifica-
tions and intended usage duration (step 2). In response to
the ASP’s request, the VNO identifies the necessary config-
urations of requested NEs (VM, access point (AP), and link
bandwidth) and submits a virtual network (VN) request in
a specified format to InP with required QoS metrics, loca-
tions, and intended duration (step 3). InP uses trained MTC
algorithms of step 1 to predict and recommend the VNO a
set of resources suitable to meet the QoS requirements (step
4). Upon receiving an acknowledgment from the VNO (step
5a), InP allocates NEs to VNO to create a VN (step 5b). InP
compares the configurations of requested and predicted NEs
to determine whether there is an over-allocation or under-
allocation (step 5c). VNO answers back to ASP (step 6).
After the intended duration is over VNO releases the NEs
and provides feedback about the usage of leased resources
(step 7) to InP. InP updates the training datasets by using
the information obtained from steps 5c and 7, and re-trains
MTC algorithms (step 8).

In our considered scenario the VNO cannot exactly es-
timate resource requirements for the requested NEs for two
reasons. First, ASPs usually over-estimate the abstract re-
source specifications for NEs. For example, it was reported
that only 10% of leased computation resources are used [5].
Second, InP informs the VNO only the names and locations
of NEs. However, the actual resource availability situation,
which changes with time, is not disclosed to VNOs. Thus,
the VNO cannot make exact estimation due to incorrect
and incomplete information [39]. The VNO can be able to
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Fig. 2 An illustrative example of MTCAS.

compute and request for the exact amount of required re-
sources, only if all the information exchanged among InP,
VNO, ASP are made public [40]. On the other hand, InPs
motivation for avoiding resource over-allocation is to in-
crease revenue and improve resource utilization, where InP
wants to satisfy as many VNO requests as possible with its
limited physical resources.

4.2 An Illustrative Example of MTCAS

Let us assume that InP offers VMs as NE to VNOs. InP cre-
ates VMs as the NEs consisting of different amount of CPU,
memory, storage, and network interface card (NIC) speed as
shown in Fig. 2 (a). The VMs are described with |F| = 11
features, which are the amounts and types of CPU, RAM,
storage, and NIC, location of VM host, power usage, and
service type. InP informs the VNOs with a subset of these
features F (step 0 of Fig. 1). InP assigns |L| = 5 labels to
each VM. First, InP classifies each VM according to the fol-
lowing four labels: CPU, memory, storage sizes, NIC speed
(shown in Fig. 2 (b)). InP then creates b (here b = 3) clus-
ters (by using hierarchical [28] or k-means [29] clustering
algorithm) of VMs having location and configuration (CPU
and memory combination) as common features (shown in
Fig. 2 (c)). These cluster information serve as the fifth label.
Note that, there is no relation between the number of labels
and clusters. A collection of these classification informa-
tion of all VMs serves as training dataset for the MTC algo-
rithms. MTCAS trains a suitable MTC algorithm by using
the training dataset with five labels and eleven features (step
1 of Fig. 1). A VM request in specified format containing in-
formation about required amount of CPU, memory, storage,
NIC, location, and usage duration arrives from VNO to InP
(step 3 of Fig. 1). InP specific features such as cluster and
energy are not mentioned in the request. The trained MTC

algorithm predicts and matches the request to the red circled
VM in cluster 3 (shown in Fig. 2 (d)). MTCAS recommends
allocating this VM to the requesting VNO. In case this VM
has already been allocated to previous requests, InP allo-
cates another VM from the same cluster 3 (step 4 of Fig. 1).

Note that we only show one type of NE in this example.
If the VNO request demands x NEs, the procedures of Fig. 2
must be executed simultaneously x times.

4.3 Our MVEN Algorithm

4.3.1 Description of MVEN

We follow the similar technique as the BR method to divide
the multi-target problem (dataset matrix) at hand into |L|
multi-class problems (|L| matrices). In order to solve each
of these multi-class problems, contrary to the BR method,
our MVEN employs an ensemble of five different algorithms
and multi-voting decision rule. The MVEN algorithm is
elaborated in Fig. 3, which works as follows. For each of
the given label l, l = 1, 2, · · · , |L|, similar to the BR method,
MVEN creates a dataset matrix Tl

N×(1+|F|). During training,
MVEN simultaneously learns about each label l ∈ L by an
ensemble of five functionally different algorithms namely
the Bayesian Network (BN), k-NN, Decision Table (DT),
Decision Tree C4.5, and RF. Each algorithm predicts a value
for the label. The final prediction of MVEN is decided by
majority voting i.e. the label to which the majority of al-
gorithms in the ensemble agree is the final output label of
the ensemble. To keep the training time small, we do not
include NN (multilayer perceptron) and SVM algorithms.
However, if training time is relaxed, NN and SVM can be
included in the ensemble. A short description of working
principles and parameters of the seven above mentioned al-
gorithms are found in [34] and the references therein.

The motivation of the MVEN algorithm is to increase
prediction accuracy as much as possible by using less train-
ing time than the two available adaboost and bagging MTC
algorithms provided by the MEKA [35] software. The rea-
sons are twofold. First, small improvement in prediction
accuracy is considered significant in many machine learn-
ing based applications [26]. Second, prediction accuracy
of two ensemble MTC algorithms increases the number of
adaboost and bagging, respectively, iterations performed for
a given training dataset. After reaching a certain maximum
accuracy, further iterations do not change these accuracy
scores. Finding the iteration number resulting in the max-
imum accuracy requires an exhaustive search. Therefore,
the cumulative training time of exhaustive search becomes
an issue.

While adopting BR method logic with MVEN, we have
ignored the effect losing of label correlations. In future
we shall consider feature engineering and principal compo-
nent analysis method [21] with MVEN to avoid ignoring this
effect.
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Fig. 3 An illustration of our MVEN algorithm with label l. The procedure above is simultaneously
repeated for each label l ∈ L. The final predictions of each label l ∈ L are combined through majority
voting to make the final MTC prediction.

4.3.2 HS, EM , and Training Times for MVEN

Each label l ∈ L is considered independently with MVEN.
Therefore, the Eq. (2) is also suitable to compute HS for
MVEN. However, the Eq. (1) is not suitable for comput-
ing EM for MVEN. We redefine the Eq. (1) as Eq. (3) in the
following.

EM ≈ min
l∈{1,2,··· ,|L|}

1
N

N∑

i=1

|L|∑

l=1

δ(y′il, yil) (3)

where, 1
N

∑N
i=1
∑|L|

l=1 δ(y
′
il, yil) denotes the average accuracy

for label l over N instances. The MVEN algorithm indepen-
dently and simultaneously learns and predicts about each
of the |L| labels. Therefore, the label l ∈ L that achieves
the minimum average accuracy approximately determines
the EM score for MVEN. For the same reason, the total re-
quired training time equals the highest individual training
time among the l ∈ L labels.

4.4 Details of the MTCAS

The MTCAS consists of two stages: 1) Proactive catego-
rization and training, and 2) Prediction, recommendation,
and re-training. We discuss the above two stages in detail
with the help of Algorithms 1 and 2. The notations used in
Algorithms 1 and 2 are defined in Table 2.

The inputs to Algorithm 1 are the physical resource in-
formation (P), the set of available MTC and our presented
MVEN algorithms (M), and the set of types of NEs (Z). For
each type of NE z ∈ Z, Algorithm 1 performs the catego-
rization task (lines 2 to 6) to create the training dataset Tz

and the training task (lines 7 to 10) to select the best algo-
rithm mz ∈ M. For each z ∈ Z InP creates Nz instances. Each
of the Nz instances is defined by fz features according to its
capabilities (line 2) and classified with |L| − 1 labels (Line
3). All the Nz instances are divided into b clusters (line 4).
The relevant cluster number (1 to b) is added to each of the
Nz instances as the |L|th label (line 5). The collection of all
classified Nz instances with |F|z features constitute the Tz

(line 6). For each algorithm m ∈ M (line 7) we evaluate
the EM and HS scores with TZ and k-fold cross-validation
(line 8), and select the algorithm with highest EM and HS as

Table 2 Notations used in Algorithms 1 and 2

Notation Definition
P Physical resource information
Z The set of types of NEs, e.g.Z={VM, access point, band-

width, gateway/router}
Nz Number of created instances for NE type z ∈ Z
pz Unit usage price for NE type z ∈ Z
|F|z Associated number of features (including pz) for NE type

z ∈ Z
yzi The correct classification vector for a training instance i

of type z with |L|-1>1 labels and V>1 values per label
Tz The training dataset in suitable format ∀z ∈ Z
M The set of available MTC and MVEN algorithms
mz The most suitable m ∈ M, used as classifier for a z ∈ Z
Q The set of VNO requests q.
xz Each q ∈ Q demands for xz ≥ 0 NEs of type z ∈ Z.
y′zr Predicated classification vector of a requested instance r

of type z ∈ q, with r ≤ xz

cz1 The number of times y′zi causes over-allocation
cz2 The number of times y′zi causes under-allocation

Algorithm 1 Proactive categorization and training
Input: P, M,Z
Output: Tz, mz ∀z ∈ Z
1: for each z ∈ Z do
2: Assign fz features to each instance i, i = 1, 2, · · · ,Nz.
3: Classify each instance i into yzi with L-1 labels.
4: Create b clusters of all Nz instances.
5: Add cluster info as the Lth label each yzi.
6: Tz =

⋃Nz
i=1 yzi ∪ az

7: for m ∈ M do
8: Train and evaluate EM and HS with Tz and k-fold cross-

validation
9: end for

10: Select a m with highest EM and HS as mz.
11: end for
12: return Tz, mz

the most suitable mz for prediction (line 10). The outputs of
Algorithm 1 are Tz and mz for each z ∈ Z.

The inputs to Algorithm 2 are Tz, mz, and the set of
VNO requests Q. A VNO request q ∈ Q demands a total of∑

z∈Z xz NEs. Algorithm 2 performs three tasks for each re-
quest q ∈ Q: prediction (lines 3–5), recommendation (lines
5 to 10), and re-training (lines 11 to line 18). Algorithm 2
employs mz and obtains predictions y′zr for the xz requested
NEs of type z (lines 3 to 5), and recommends them to VNO
(line 6). InP determines whether the y′zrs yield a perfect
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Algorithm 2 Prediction, recommendation, and re-training
Input: Tz, mz, Q
Output: y′zr∀q ∈ Q, r=1, 2, · · · , xz, z ∈ Z, cz1, cz2, updated Tz, mz

1: for each request q ∈ Q do
2: for each z ∈ q do
3: for p = 1 to xz do
4: Employ mz and obtain prediction y′zr .
5: end for
6: Recommend predicted NEs y′zr , r = 1, 2, · · · , xz.
7: Verify whether y′zrs are equal to (perfect), or lower than (under-

allocation), or higher than (over-allocation) the amounts re-
quested in q.

8: if Predicted capabilities are either perfect or over-allocation
then

9: VNO accepts recommended NEs
10: end if
11: Initialize cz1 = cz2 = 0
12: if Predicted capabilities yield over-allocation then
13: cz1 = cz1 + 1
14: else if Predicted capabilities yield under-allocation then
15: cz2 = cz2 + 1
16: end if
17: Update Tz with by adding correctly classified instances corre-

sponding to cz1 and cz2.
18: Re-train mz with updated Tz for future use.
19: end for
20: end for
21: return y′xi, i = 1, 2, · · · , x, c1, c2, updated mz and Tz

match, over-allocation or under-allocation (line 7). VNO
accepts the recommended resources only if the predictions
result in perfect or over-allocation (lines 8–10). InP also
marks the predictions which result in over-allocation by cz1

and under-allocation by cz2 (lines 11–16). InP updates Tz

by adding the correctly classified instances that corresponds
to cz1 and cz2 (line 17). The algorithms mz are also re-trained
with the updated Tz (line 18).

5. Preparation of Training Dataset

We prepare of two training datasets for MTCAS, named
D50 and D84, based on real VM allocation data referred and
obtained from two sources [5] and [6], respectively. D50
and D84 consist of 50 and 84 classified VM instances, re-
spectively. We prepare training data in “ARFF” [36], spe-
cific to WEKA [37] and MEKA [35] data mining software.

5.1 Preparing D50

For 1750 VMs, the information about provisioned and used
amounts of resources (CPU, memory, storage, and network)
with timestamps are available in [5], [38]. We randomly se-
lected data for 50 VMs, and extracted the provisioned num-
ber of CPU cores, CPU speeds, allocated RAM, and net-
work storage type (fast or slow). We added additional data
to create training data in “ARFF” format with |L| = 7 labels
(including “Label” string) and |F| = 8 features (including
“Feature” string), as shown in Fig. 4. Note that, the three
strings “relation”, “attribute”, and “data” are reserved for
“ARFF” format.

A VM instance 2,6,SAN,1,1,2,4,4,11.43,64,F,10,1,3,

Fig. 4 Training data in ‘ARFF’ with |L| = 7 labels and eight features.

0.75, as shown in Fig. 4, is interpreted as follows. The VM
is classified as classes “2,6,SAN,1,1,2,4”, indicating that it
consists of 22 = 4 CPU cores, 26 = 64 GB memory (CPU
core and memory requests for VM follow the power of 2
trend [5]), access to fast storage, and 10 Gbps NIC (type 1).
The VM resides in a physical machine at location 1, spends
high energy (class 2), belongs to optional cluster number
4. Three additional pieces of information about the VM are
available from this instance. The four CPU cores have a total
speed of 11.43 GHz. The VM is intended to use for scien-
tific (type S) computation service. The last feature price-
per-hour valued 0.75 indicates that a VNO should pay 0.75
currency units to use the requested resource.

A VM request must include required number of CPU
cores, amount of memory, storage type, NIC bandwidth, and
desired usage duration, which InP should satisfy quantita-
tively. The optional features, which a VNO may mention
in a VM request, are CPU speed per core, desired VM lo-
cation, service type, and willing to pay usage price per unit
time. InP may override a location request made by VNO
for the purpose of balancing resource utilization of various
locations when available resources at the requested location
are not sufficient to meet the demand. In this situation, InP
updates the location related features in the training data and
retrains the MTC algorithms so that the solution finds the
best location for allocating VMs depending on the updated
training data and resource availability. The first five labels
are determined from the VM request. The remaining energy
and cluster labels are specific to InP. InP knows the power
usage of each NE, so it can allocate VMs so that total power
usage of allocated resources does not exceed some thresh-
old. Cluster feature is utilized by InP to allocate an alter-
native resource in case a predicted resource by classifier is
unavailable.

In addition to a VM, a VNO requests for access points,
gateway, and end-to-end link bandwidth to prepare a net-
working platform, that an ASP will use to provide intended
services to the end users. Following above descriptions,
we can describe access points with features like location,
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capacity per user equipment (UE), total number of UE it can
support, price, etc. We assume that access point ensures the
requested end-to-end bandwidth up to gateway. The gate-
way node can be described with features like OS type, inter-
faces types, supported protocols type, location etc. The links
between gateway node and cloud VM locations are divided
into several virtual links of different capacities and catego-
rized with features like available bandwidth, delay, physical
link types (LAN or optical fiber cable), failure probability,
usage price per unit bandwidth, etc.

5.2 Preparing D84

Following the same procedure described above, we prepare
D84 in “ARFF” format with 16 features following the spec-
ifications mentioned in Amazon EC2 instance website [6].
A total of 84 VM instances with different configurations are
specified in [6]. Among the 16 features, we select the most
relevant three, seven, and twelve features and created cor-
responding labels |L| = {3, 7, 12}. For example, a classified
vector yi = {1, 1, 1} (|L| = 3) indicates the “t2.nano” VM
instance offered by Amazon Web Service. The remaining
procedure for the preparation of D84 dataset is similar to
that of D50 dataset.

6. Numerical Evaluations

In our evaluation, we consider that InP is a cloud provider
and owns sufficient number of VMs to meet VNO requests.
Therefore, a resource request response is rejected by VNO
due to under-allocation, which does not meet QoS metrics.
A VNO request includes the desired usage duration of re-
quested VM. So VM migration is not considered here.

Our evaluation consists of two parts. First, we evalu-
ate the MVEN algorithm in comparison with several avail-
able MTC algorithms in terms of EM , HS, and training time
by varying the number of labels |L| = {3, 7, 12} (i.e. num-
ber of QoS metrics related to requested VMs to be satisfied)
with both D50 and D84 datasets, and select the most suit-
able MTC algorithm(s) with respect to accuracy and training
time to use as classifier in our scheme. The six common QoS
metrics with both datasets are number of CPU cores, RAM
size, storage type, NIC speed, VM location, and the service
type for which VM is used. The seventh QoS requirement
with D50 dataset only is cluster number. The six additional
QoS metrics considered with D84 dataset only are CPU gen-
eration, CPU capability for handling 256-bit/512-bit instruc-
tion sets and turbo boosting, need for graphical process-
ing unit, field-programmable gate array (FPGA), and stor-
age optimization. We denote the five different combination
of dataset and number of labels used in our evaluations as
D50-L3, D50-L7, D84-L3, D84-L7, and D84-L12, respec-
tively. Second, we evaluate the prediction-based resource
allocation performance of MTCAS, by using the selected
classifier, with respect to over-allocation, under-allocation,
and average prediction time for a request.

6.1 Selecting an MTC Algorithm as Classifier

Following the procedure of Algorithm 1, we evaluate
our MVEN and nine MTC algorithms provided by the
MEKA [35] software, namely Bayesian Classifier Chains
(BCC), Classifier Chains (CC), Classifier Chains with prob-
abilistic output (CCp), Class Relevance (CR), Multi-target
Ensemble (ENS), Bootstrap Aggregating (BAG), Super
Class Classifier (SCC), Disjoint Random k-label Pruned
Sets (RAkELd), and Nearest Set Replacement (NSR). Note
that BCC, CC, CCp, and CR are implemented based on clas-
sifier chain method and RAkELd, NSR, and SCC are based
on label powerset method. ENS and BAG use AdaboostM1
and bagging ensemble methods, respectively, on the CC
algorithm.

We train each of MTC algorithm with both D50 and
D84 by using 10-fold cross-validation and default parameter
settings in MEKA. The MVEN algorithm is implemented by
using the WEKA software, where an ensemble of five algo-
rithms are simultaneously executed with |L| created datasets
as explained in Sect. 4.3. The EM and HS scores, and train-
ing times of six MTC algorithms and MVEN, for the five
dataset-|L| combinations, are summarized in Figs. 5 (a), (b),
and (c), respectively. We exclude the performance results
of the SCC, NSR, and RAkELd algorithms in this paper,
because their performance in terms of EM and HS are very
poor. Though their training times are faster than the six other
evaluated MTC algorithms, poor EM and HS results inhibit
this advantage. The results presented in Fig. 5 are averaged
over 100 evaluations by changing the random number seed
between 1 to 100†. The decision tree C4.5 algorithm is used
as the common base classifier for all MTC algorithms in our
evaluation††.

For each MTC algorithm, prediction accuracy in terms
of EM decreases (Fig. 5 (a)) and that of HS is equal or
slightly increases (Fig. 5 (b)) with the increasing number
of QoS metrics (increasing value of |L|) to be fulfilled by
InP for VNO requests. The HS trend for our MVEN al-
gorithm is similar to that of MTC algorithms. However,
EM scores and training times do not change for MVEN for
both D50 and D84. The average training time (in ms) for
each evaluated algorithm, which increase with |L| for both
datasets, are summarized in Fig. 5 (c). In order to evalu-
ate the training time, the algorithms are executed in a com-
puter equipped with Intel R© Core i7-5930K CPU (3.50GHz
per core), MEKA software version 1.9.1, WEKA software
version 3.8.2, Windows 10 operating system, CygWin, JDK
10.0.2 64 bits.

Our observations and interpretations from the results of
Fig. 5 are as follows:

†The random number input in WEKA/MEKA enables
to re-produce the same result, therefore it is suggested by
WEKA/MEKA developers to average the results over several ran-
dom number seed values.
††In WEKA/MEKA, the Java implementation of C4.5 algorithm

is denoted as J48.
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Fig. 5 EM , HS, and training time performances of the evaluated MTC
algorithms by changing |L| with D50 and D84 datasets.

• In terms of EM (0.92) and HS (0.97) our MVEN algo-
rithm outperforms all MTC algorithms for the D50-L3
and D50-L7 situations, which are at least 2% and 6%
higher as shown in Fig. 5 (a) and (b), respectively.
• There are more than one suitable MTC algorithm to

be used as classifier in MTCAS when the offered QoS

level is low (|L| = 3, 7). In terms of EM and HS,
four algorithms (BCC, CC, CCp and CR) perform the
same with D50-L3 (EM=0.86 and HS = 0.95), D50-L7
(EM = 0.77 and HS = 0.97), and D84-L3 (EM = 0.49
and HS = 0.8).
• As the offered QoS level is increased (|L| = 7), the

BCC algorithm outperforms all other algorithms with
D84-L7 (EM = 0.38 and HS = 0.83).
• At the highest offered QoS level (|L| = 12) with D84-

L12 situation, MVEN achieves the highest EM (0.32)
score (Fig. 5 (a)). It achieves comparable HS (0.86)
performances when compared with the BAG and ENS
(shown in Fig. 5 (b)) at the cost of 70% less train-
ing time than that of with ENS and BAG (shown in
Fig. 5 (c)). With D84-L12, the BCC algorithm per-
forms good with HS (0.84) but poor with EM (0.21).
• In our evaluation we observed that around 100 itera-

tions are required for both BAG and ENS to reach a
maximum EM and HS. So, we executed BAG and ENS
with 50, 100, and 150 iterations, and choose the high-
est EM and HS scores to represent in Figs. 5 (a) and (b)
respectively. Note that, the training times for ENS and
BAG in Fig. 5 (c) are the sum of these three executions.
• For InPs HS is a better choice to offer QoS guarantee to

the customer VNOs. According to our evaluation, InP
can offer complete QoS satisfaction for 80% to 97%
of resource requests in terms of HS. Similar prediction
accuracy (85% to 90%) for virtual resource allocation
was also reported in [15].
• We observe form Fig. 5 (c) that the classifier chain

methods (BCC, CC, CCp, CR) are faster to train than
the ensemble methods (MVEN, ENS, and BAG). The
CR algorithm has the fastest training time among the
six MTC algorithms.

6.2 Resource Over-Allocation and Under-Allocation

The predictive performance of MTCAS is evaluated, follow-
ing the procedure of Algorithm 2, in terms of over-allocation
and under-allocation. We generated 50 random VM re-
source requests with necessary number of CPU cores, mem-
ory size, storage type, network interface speed, desired lo-
cation, and service type. We use two classifiers trained with
50% and 100% of D50 data with cross-validation. Note that
the new requests do not match exactly with the classified
requests in D50. The results are summarized in Table 3,
where, Cxx% denotes a classifier trained with xx% of D50
dataset, Rr be the total amount of requested and Rp is the
total amount of predicted functional resources, c1 be the
number of over-allocated and c2 be the number of under-
allocated request instances. Percentage of resource over-
allocation ROA% is defined by ROA% =

Rp−Rr

Rr
× 100 with

Rp ≥ Rr.
Resource allocation with the classifier, trained with

50% of D50 (denoted as C50% in Table 3), results in to-
tal 33.8% CPU core, 52.14% memory, and 40.6% NIC
bandwidth over-allocation. Out of 50 predicted resource
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Table 3 Summary of CPU, memory, and NIC resource allocation to 50 new random VM requests.

C50% C100%

VM component Rr Rp c1 c2 ROA% Rp c1 c2 ROA%
# of CPU cores 497 665 18 0 33.80% 497 0 0 0

RAM (GB) 1003 1526 33 8 52.14% 1014 11 0 1.1%
NIC (Gbps) 266 374 16 4 40.6% 374 16 4 40.6%

request classes, CPU cores, memory and NIC bandwidth
are over-allocated in 18, 33, and 16 instances, and under-
allocated in 0, 8, and 4 instances, respectively. In contrast,
resource allocation with the classifier, trained with 100%
of D50 (denoted as C100% in Table 3), results in total 0%
CPU core, 1.1% memory, and 40.6% NIC bandwidth over-
allocations. Out of 50 predicted resource request classes,
CPU cores, memory and NIC bandwidth are over-allocated
in 0, 11, and 16 instances respectively, and only NIC band-
width resource are under-allocated for 4 instances. We ob-
serve that resource over-allocation for CPU and memory
are reduced by 33.8% and 51.04%, respectively, as the VM
classifier with the BCC algorithm is trained with more data
(100% of D50). Resource request for location and storage
are correctly classified in all the requests, which are not
mentioned in Table 3. However, 30 instances are not cor-
rectly classified for service types by C50%, which are cor-
rectly classified with C100%.

Note that in four prediction instances NIC bandwidth is
under-allocated, resulting in four resource request rejection
by VNO. So, our evaluation experiences a rejection rate of
4×100

50 = 8%.
Our scheme regularly updates the training data by

adding correct classification data for the over-allocated and
under-allocated resource requests history, indicated by c1

and c2 in Table 3. The classifiers are also regularly re-trained
with the update training data. Therefore, prediction accu-
racy is certain to increase with time, which in turn improves
multiple QoS satisfaction rate and further reduces resource
over-allocation.

6.3 Balancing Resource Utilization

We consider that InP owns physical resources in three geo-
graphical locations, which are indicated by the location fea-
ture of D50 training dataset. Let us consider that InP always
wants to keep 5% of computation and storage resources free
for satisfying urgent requests at each location. For the next
50 requests, according to the current resource availability
situations at these three locations, InP decides to allocate 15,
14, and 21 VMs from location 1, location 2, and location 3,
respectively. We prepare our training data with D50 accord-
ingly. The predictions by C100% suggest InP to allocate 16,
12, and 22 VMs from location 1, location 2, and location
3, respectively. Thus, the predictions almost achieve the de-
sired number of VM allocations, although an extra VM is
allocated from both location 1 and location 3.

Table 4 Average prediction time in μsec. for one VM request.

Algorithm D50-L3 D50-L7 D84-L3 D84-L7 D84-L12
BCC 5.8 11 7.3 11.1 24.5

MVEN 328 328 281 327.4 327.4

6.4 Prediction Times

The entire virtual network provisioning time is influenced
by three issues: prediction time, provisioning time, and
transfer time. Prediction time is the time required by
MTCAS, on behalf of InP, to determine physical resource
locations and amounts for the requested NEs. The time
needed by the InP to create and activate the requested NEs
in the substrate network is denoted as the provisioning time.
The time required to transfer the entire VN usage right
from VNO to ASP for the duration of lease is known as
the transfer time. For example, if an InP is employing the
OpenStack platform, the prediction and provisioning times
for a requested VM are about 150 ms and 4.6 s, respec-
tively [41]. It is also reported that when InP uses the
OpenNebula (KVM based) cloud platform, the prediction
and provisioning times are 200 ms and 2.5 s, respec-
tively [41]. This implies that prediction time should be in
the range of 3.26% - 8% of the provisioning time. The VN
usage right transfer time from VNO to ASP can be consid-
ered equal to the network latency in 5G networks, which is
about 10 ms [42]. For machine learning classifier agents,
less than 10 ms of prediction time has been reported in [43].
Therefore, the prediction time in the NE allocation decision
should be much less than 10 ms.

In order to show that MTCAS is suitable to handle de-
lay sensitive requests, we evaluate average prediction time
required to classify a VNO request for the BCC and our
presented MVEN classifiers algorithms in MTCAS. The
MVEN classifiers are executed in a aforementioned PC
equipped with Intel R© Core i7-5930K CPU (3.5 GHz per
core), 64GB RAM, Windows 10 OS, and WEKA software
(version 3.8.2). Being very small, we cannot measure the
time for the BCC classifiers in the same environment as
MEKA. Therefore, we execute the BCC classifier in a VM
(on the same PC as MVEN) with one 3.50GHz processor,
4GB RAM, Linux OS, and MEKA software (version 1.9.1).
The BCC classifiers employ the C4.5 algorithm as base clas-
sifier. We train the classifiers with 10-fold cross-validation
with both D50 and D84 datasets. The results are summa-
rized in Table 4. We obtained prediction times in the mi-
croseconds (μsec) range for one VM request, which indi-
cates that MTCAS can be suitably adopted to the Clipper en-
vironment [26], or for applications like network slicing with
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LTE [44].

7. Conclusion

We have presented MTCAS, a proactive and adaptive
scheme based on MTC algorithms, for InP to allocate multi-
ple QoS compliant set of virtual resources to VNO requests.
We evaluate the MVEN and nine MTC algorithms in terms
of exact match, Hamming score, and training time. We have
found that MTCAS should adopt either BCC or CR algo-
rithm for delay-sensitive requests with lower QoS metrics,
ensemble algorithms (ENS and BAG) for delay-invariant re-
quests with higher QoS metrics, and MVEN algorithms with
higher QoS metrics and moderate delay-sensitivity. Pre-
diction based resource allocation performance of MTCAS
with the BCC algorithm has been evaluated with respect to
new request prediction time, resource over-allocation, and
request rejection. We achieved average prediction times
within 5.8 to 24.5 microseconds range for the BCC and 281
to 328 microseconds for the MVEN algorithm. We obtained
about 33.8% and 51.04% reductions in CPU and memory
resources, respectively, for virtual machines by using clas-
sifiers trained with complete training data, and 8% request
rejection by VNO in our evaluation. Our scheme regu-
larly updates training data based on resource request history
and regularly retrains classifiers with updated training data.
Therefore, predictive performance is certain to improve over
time.

In future, we will investigate MTCAS issues and poli-
cies regarding the determination of minimum necessary
amount of training data for classifiers and simultaneous al-
location of multiple NEs (e.g. VM, gateway, access points,
and end-to-end bandwidth demanded in a VNO request) in
order to achieve location-aware and load-balanced NE allo-
cation, and keep energy consumption under a threshold.
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