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Elastic Trust Model for Dynamically Evolving Trust Frameworks
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SUMMARY Today, trust plays a central role in services in distributed
environments. Conventionally deployed trust has been based on static
framework in which a server responds to a service request under statically
determined policies. However, in accordance with evolution of distributed
environments empowered with IoT and federated access mechanisms, dy-
namic behavior must be analyzed and taken into service provision, which
conventional trust cannot properly handle. In this paper, we propose an ex-
tension of PDP (Policy Decision Point) in which assertions together with
service requests are evaluated. Furthermore, the evaluation may be dynam-
ically configured in dynamically evolving trust environment. We propose
an elastic trust model in view of dynamic trust environment. This enables
intuitionistic modeling of typical concrete elastic distributed services.
key words: internet trust, policy decision point (PDP), assertion exchange

1. Introduction

In several methodologies so far proposed and deployed for
effective security, we have observed that we need a common
framework or infrastructure on which organizations or soci-
eties rely. For organizational security, we need specifying
a security border on which each security measure compo-
nent is performed. For effective specification and operation
of security border and security measures, it is required that
the corresponding framework is correctly deployed and op-
erated.

The same conclusion applies to the Internet trust. For
the Internet trust to be effective, we need that the policies
of trust are stipulated, that entities enroll into the commu-
nity by contract representing the consent of the specified
policies (trust boundary), and that the administrator of the
trust commits the trust by regular compliance audit (trust
measure). Thus operated community, called “trust frame-
work,” is established and some standard operation models
have been proposed and deployed. For effective operations,
we need an organizational framework in which enrolling en-
tities are identified by the contract and the compliance audit
is effectively performed.

Generally in modern distributed environments, the
logic used to decide whether a server can accept or deny a
given service request grows in complexity. To process com-
plicated service requests, a modern server also collects evi-
dence from peers and the surrounding environment to make
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a decision. This is implemented as collecting and evaluat-
ing assertions by the policies of a server. For an assertion
to be elevated to evidence, a server must trust issuing en-
tities of an assertion. Trust is indispensable for services in
distributed environments also in this meaning.

In addition to this, the evolution of modern edge net-
works comprising of IoT devices including smartphones is
also a driving force of dynamically changing network envi-
ronments. Dynamic border reconfiguration in security and
dynamic trust management of dynamically changing net-
work are strongly required. While conventional trust man-
agement is designed for static trust environments, new tech-
nologies such as Self-Issued IdPs (Identity Providers) of
OpenID Connect are emerging to handle such dynamic trust
environments where smartphones play a central role. It is
essential to analyze these dynamically changing distributed
environments, and to build frameworks enabling dynamic
evaluation of policies in terms of security and trust.

To this aim, this paper first defines a framework for
evaluating assertions under given trust. Based on the frame-
work, we propose Elastic Trust in which dynamically chang-
ing trust can be represented. Elastic Trust can dynamically
update the trust values and the set of trusted entities, which
is implemented upon assertion exchange among trusted enti-
ties and environments, including conventional assertion ex-
change seen in SAML and OpenID Connect used in access
federations.

The rest of this paper is organized as follows: in Sect. 2,
we specify the situations where dynamic trust management
is essential. Section 3 gives a formal definition of policy
decision points (PDP) that evaluate assertions to elevate to
evidence. In Sect. 4, we propose Elastic Trust that enables
dynamic and elastic trust management. In Sect. 5, we de-
scribe typical concrete trust scenarios by using Elastic Trust.
Section 6 surveys related work. Section 7 concludes this pa-
per.

2. Services and Trust in Distributed Environments

2.1 Classical Trust Frameworks

In modern architectures of distributed service environments,
it is commonly observed that individual servers federate to
provide a single mash-up service. This service design dates
back to service oriented architecture (SOA). These days,
abundant sets of service components are provided, and the
deployment cost is drastically reduced. They include API

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers



1618
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.9 SEPTEMBER 2019

for service integration and dedicated protocols for federated
authentication such as SAML and OpenID Connect, and for
federated authorization such as OAuth.

In providing such services, a problem arises: how we
can trust a communication peer and its data. This prob-
lem is critical especially in an access federation where au-
thentication and authorization are delegated to third par-
ties. Trust framework has been designed and deployed in
order to solve this trust problem in access federations. In
this framework, service providers delegate their authenti-
cation process to third parties called identity providers. If
the identity providers belong to the same trust framework in
which the authentication is actually completed, the service
providers trust assertions issued by the identity providers.
For this kind of trust to be established, a certain set of cri-
teria is specified regarding verified operations of dedicated
protocols and secure management of identities and their cre-
dentials. Furthermore, maturity of operating organization is
required. Classical trust framework is designed and oper-
ated to guarantee that the operations of the service and iden-
tity providers are trustworthy enough so that criteria of the
framework is fulfilled. Concretely,

1. the policies of governance and operations are defined
first.

2. Next, they are enforced to enrolling entities in the form
of contracts.

3. Enrolling entities provide their services, trusting that
the policies are enforced to other entities by the trust
framework.

4. The trust framework commits the trust by regularly or
irregularly auditing the entities for the compliance with
the policies, thus by guaranteeing the compliance pos-
teriorly.

Given a single trust framework, there are two kinds of
entities: Identity Providers (IdP) that provide identity infor-
mation and Relying Parties (RP) that leverage given identity
information. Within the framework, they trust each other.

Classical trust frameworks have been explicitly or im-
plicitly deployed in several forms. One form is that so
called “platformers” that provide social identities together
with services of their own or those of third parties under
federation. Here, IdP: RP = one: many. This form is widely
accepted, and stably operated under the trust of platformers.
Since around 2003 when the specification of SAML 2.0 was
released, another form has emerged. Academia in the world
has begun access federation in which universities access re-
sources of RPs by using IdPs operated by them. Here, IdP:
RP = many: many. This kind of academic access federa-
tions have been world-widely deployed. However, also in
this early access federation, trust was implicit.

Following this trend, in 2010, United States announced
the initiative of National Strategy for Trusted Identities in
Cyberspace (NSTIC). Its objective includes replacement of
the scheme of individual account issuance by each federal
service provider with leveraging identities of social identi-
ties and those issued by IdPs operated by trustworthy orga-

nizations. To implement this scheme, establishment of trust
between IdPs and RPs must be defined. For this purpose,
trust frameworks are explicitly specified and deployed by
using related policies and bodies for their enforcement (e.g.
TFPAP [1], Kantara Initiative).

2.2 Trust Issues under Modern Distributed Environments

The forms of service and computing provision have drasti-
cally evolved since the design and deployment of classical
trust frameworks. How to adapt trust so as to handle the
changes described below is a central issue on trust deploy-
ment in modern distributed environments.

2.2.1 IoT Device Network

Classical trust has been designed on the assumption that a
relatively small number of servers are operated by stable or-
ganizations. Servers are assumed to have sufficient power of
computing and communications. Under these assumptions,
the Internet-wide global trust has been established. How-
ever, modern Internet architectures have evolved so that a
number of IoT devices play a major role as sensors and/or
actuators. They communicate with each other to build a sig-
nificant part of the Internet. Their behaviors are determined
by their host nodes whose policies specify how IoT nodes
enroll into the network, how they leave it, and how trust-
worthy the produced data is. This situation is very similar to
the role of conventional trust framework. However, because
all actions are completed online, we have to devise a differ-
ent method from offline contracts. Furthermore, we have to
solve the problem of how we elevate thus constructed trust
circle around a host node to a global trust. While classical
trust framework only determines the trust circle by offline
contracts, we have to extend the evaluation of global trust
levels based on dynamic trust related behaviors of enrolling
entities.

2.2.2 Flexible Authentication Schemes

Authentication is now a significant gateway to service pro-
vision. As authentications have evolved and become diver-
sified, we have to flexibly handle the diversity.

Flexible authentication has been partly proposed and
implemented in various ways such as classification of au-
thentication levels depending on the required levels of as-
surance (LoA) for providing services, and dynamic tuning
of assurance levels in LoA elevation.

In addition, advanced authentication is affected by dy-
namic configuration of its trust circle and monitored data of
its environment. For example, Self-issued IdP of OpenID
Connect, assuming a trusted user environment provided by
smartphones, is specified so that an RP can install an IdP
dedicated to a specific user. In this framework, an RP can
extend its own trust circle by using a specific trust anchor
such as smartphones.

Continuous authentication based on behavior analysis
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Fig. 1 Service request processing model by PDP and PEP

is another major example that enables dynamic tuning of
levels of security and trust. In behavior analysis, behav-
iors of enrolling entities (typically, users) are monitored, and
LoA of authentication is dynamically tuned by using pre-
defined policies and logic. When LoA is elevated, entities
obtain extra trust, which may result in additional offer of
services. When degraded, entities lose trust, which may re-
sult in refusal of specific services. This scheme is actually
deployed by some SNS providers. In this deployment, user
behaviors are recorded. If any irregular use such as login
from an unusual terminal and that from unusual places is
detected, it is reported as anomalies, and sometimes service
degradation such as login refusal is determined. More so-
phisticated anomaly detection to affect a level of trust given
to individual entity is also proposed.

2.3 Service Model using Assertions and their Evaluation

Let us consider a general model to process service requests
(Fig. 1). In this model, request processing is initiated by a
client. A service request is sent to an RP by a client. The RP
specifies and controls policies related to its own service, se-
curity and privacy. The request is evaluated by its Policy De-
cision Point (PDP) in terms of the policies. PDP makes a de-
cision based on the evaluation, and the Policy Enforcement
Point (PEP) enforces the decision. The result (allow/deny)
is sent back to the client.

Service requests are generally access requests to a spe-
cific server resource. We consider their extension so that
a client can add auxiliary data that is generally called “as-
sertion.” In this extended scheme, a client sends a service
request together with a set of assertions.

[2] proposes a model in which in a given trust circle, an
RP receives a service request and a set of assertions that are
also evaluated under the trust policies of the RP. Some asser-
tions are evaluated as trustworthy, and elevated to evidence.

Thus collecting evidence in this way, PDP decides whether
it allows the service request. Assertions may include gen-
eral documents such as operation policies of a client. Also
in this case, an RP evaluates the operation policies to make
a decision. This model can be applied to the case where an
RP requests service of another RP. RPs can integrate ser-
vices of third parties whose policies match those of request-
ing RPs. However, in this model, dynamic trust growth is
out of scope. In a modern service architecture, trust circle
may dynamically grow or shrink, which must be represented
and analyzed.

3. Formal Definitions of Trust and PDP

This section gives a formal definition of PDP. This mod-
els a PDP that decides whether a given service request is
allowed or denied by evaluating assertions exchanged in a
distributed environment. A distributed environment is a set
of entities. An entity is an engine that executes given pro-
grams and communicates with other entities.

In this paper, we abstract PDP in an entity. In the rest of
this paper, an entity runs under given policies pol, has a set
of assertions exchanged in its communications, and decides
allow or deny to a service request of another entity. Its set
of assertions is exchanged in communications, and may be
modified. Concretely,

Definition 1. An entity e has the attributes defined below:

Name An unique identifier e.id.
Policies A set of policies e.pol. It may consist of multiple

policies regarding access control, privacy and security.
A policy is represented by a “property.”

Environment A set of entities e.env that e can communi-
cate with.

Trust The trust set e.trust.

“Properties” are defined as:
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1. Terms consist of constants and variables for arithmetic
and sets together with the ones below:

• entity,
• service requests,
• internal representation �P� for a property P.

2. A property is a formula of the first order logic that con-
tains the following primitive formulas.

• �, ⊥,
• predefined primitive formulas P,
• Allow(e, r), Deny(e, r) for entity e and service re-

quest r,
• assert(e, �P�) for entity e and a property P.

An assertion is defined as the internal representation
of a formula of the form assert(e, �P�). It has an intuitive
meaning that an entity e claims a property P.

Trust for an entity e is a set of pairs of an entity f
and its assertion that e trusts. Given a possible set S f of
assertions of f that e trusts, trust of e is represented by
{( f , �assert( f , �P�)�)| f : entity, assert( f , �P�) ∈ S f }

We denote by A |=e P that a property P holds in the
condition that e has policies e.pol, trust e.trust, and a set of
assertions A.

A set of assertions may grow in the communications
with other entities, or may shrink by expiration of assertions.
We use the symbol→ to denote that a set of assertions of an
entity changes from A by receiving assertions or observing
expiration. We denote by A → A ∪ B |=e P that the set
of assertions that e uses changes by receiving a new set of
assertions B, and e makes a decision on P under a new set
A ∪ B.

e.pol is specified and used for an entity e to decide
Allow( f , r) or Deny( f , r) for a request r of an entity f .

Given a set of assertions A, |=e satisfies the relation un-
der given e.pol and e.trust specified below:

Definition 2. • For any A, A |=e �.
• For a primitive formula P, A |=e P if the predefined

interpretation of P is true.
• If e.pol 
 P, A |=e P
• If e.trust 
 ( f , �assert( f , �P�)�), and A 

�assert( f , �P�)�, then A |=e assert( f , �P�) and A |=e P.
• A |=e P ∧ Q is equivalent to A |=e P and A |=e Q.
• A |=e P ∨ Q is equivalent to A |=e P or A |=e Q.
• A |=e P→ Q is equivalent to A |=e Q if A |=e P.
• A |=e ¬P is equivalent to not A |=e P.
• If A |=e P(t) for all entities t ∈ e.env, A |=e ∀x.P(x).
• If A |=e P(t) for some entity t ∈ e.env, A |=e ∃x.P(x).

In this system, an entity e makes an inference of
P from assert( f , �P�), the claim of a property P. In
other words, it is essential that e trusts an assertion of f
(( f , �assert( f , �P�)�) ∈ e.trust) so that it is elevated to ev-
idence.

Example 1. Let Authed( f , p) represent that an entity p

is authenticated on entity f . Furthermore, let e.pol 

∀p.∀r.(Authed( f , p) → Allow(p, r)), and for all P, e.trust 

( f , �assert( f , �P�)�). An entity p issues a service request
r together with Authed( f , p) to entity e when f issues
�assert( f , �Authed( f , p)�)�. When e receives this request
and the assertion, the original set of assertions is aug-
mented with the assertion, from the inference of A → A ∪
{�assert( f , �Authed( f , p)�)�} |=e Authed( f , p), and therefore
Allow(p, r) holds for e. This is the simplest model for ac-
cess federation. By accepting trust and policies in enrolling
a given access federation, e works as an entity of the access
federation.

Example 2. Let us consider assert(e0, �assert(e1, �P�)�).
When e.trust 
 (e0, a) and e0.trust 
 (e1, a) for every as-
sertion a, {�assert(e0, �assert(e1, �P�)�)�} |=e assert(e1, �P�)
holds. Furthermore,
{�assert(e0, �assert(e1, �P�)�)�} |=e0 P in e0. For e
to {�assert(e0, �assert(e1, �P�)�)�} |=e P, the assertion
�assert(e0, �P�)� must be issued by e0 to e.

Consistency of Assertions

For a set of assertions A to enable meaningful inference,
PDP must control A so that A �|=e ⊥. When this holds, the
set of assertions is called consistent. In the rest of this paper,
we consider only consistent sets of assertions.

Policies of Assertion Issuance

The system so far defined represents the logic of PDP. The
logic of PDP consists of the policies under which given as-
sertions can be trusted. This logic allows internal represen-
tation of a property P, which means that assertions can be
taken as an argument of Allow and Deny. This enables rep-
resentation of the issuance policy of assertions.

Let us revisit Example 1. The entity p must initiate the
process by requesting issuance of �assert( f , �Authed( f , p)�)�
to f . Let issueReq be this service request. PDP of f can
specify the policy of assertion issuance under a certain con-
dition C as C →
Allow(p, issueReq(�assert( f , �Authed( f , p)�)�)). PDP of f ,
on the other hand, may infer B |= f

Allow(p, issueReq(�assert( f , �Authed( f , p)�)�)) under a cer-
tain set of assertions B such that B |= f C. By this conclusion,
f can issue the related assertion.

Policy Set of an Entity

A PDP often evaluates related policies of a peer entity. P3P
(Platform for Privacy Preference Project) is its typical exam-
ple. Assuming that all policies are made machine-readable,
[3] gives a model in which policies of a peer such as se-
curity and privacy can be directly processed as data, and
are sent to the peer PDP. This service model is subsumed
in the model of this paper in the way that the policy set
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Fig. 2 Extended PDP model leveraging assertions

{P1, P2, · · · , Pn} of an entity e is represented as a set of as-
sertions {�assert(e, �P1�)�, · · · , �assert(e, �Pn�)�} which can
be exchanged as data between entities.

Figure 2 illustrates PDP extended so as to process as-
sertions. In Fig. 2, we observe that policies and assertions
are sent to PDP, and they are evaluated under the trust pol-
icy of PDP.

4. Elastic Trust

For a given entity e, we have observed that its PDP runs un-
der e.trust and e.pol. In order to manage them, we need
to control e.env, dynamic behaviors of e.trust, and trust an-
chors because the initial set of trust must be separately de-
termined. In this paper, we consider such control policies
as meta-policies of PDP, and propose Trust PDP (TPDP)
in order to dynamically control the trust of e. We denote
by Elastic Trust dynamically growing/shrinking trust whose
behaviors are specified by TPDP.

Concretely, TPDP controls the trust of an entity in the
way below:

• an entity e, by specifying a set of trustworthy asser-
tions S , and executing create(S ,T P, P), can create a
uniquely identifiable entity in e.env where T P is the
TPDP policy and P is the PDP policy of the created
entity.
• The name id of a created entity belongs to at least one

name space. In the specified name spaces, the created
name is unique.

Definition 3. TPDP properties are defined as formulas of
the first order logic on trust(t, A), join(t, A), leave(t, A) for
a entity t and a set of TPDP assertions A defined below,
created(e, t, S ,T P, P) for entities e, t, S a set of assertions,
T P a set of TPDP properties, and P a set of properties, and
assert(t, �P�) for an entity t and a TPDP property P.

As the entailment in TPDP properties in an entity e, we
add the axiom schema to the usual first order logic as below:

• trust(e,�).
• If trust(t, A) is valid and A 
 �P�, then assert(t, �P�)→

P is valid (corresponding to Definition 2).

TPDP policy is defined as a set of TPDP properties.
join and leave in TPDP policies correspond to Allow and
Deny in PDP policies, respectively. join is effective if an-
other entity that creates the target entity is trustworthy, even
if it itself does not create the target. Furthermore, an entity
may follow its own policy and independently decide wheter
it adopts claims of leave.

TPDP assertions are defined as assertions on TPDP
properties and created assertions. They are issued by an
entity e in the way below:

• �assert(e, �created(e, t, S ,T P, P)�)� is issued when an
entity t is created by entity e with a certain S ,T P, P by
create(S ,T P, P).
• �assert(e, �join(t, S )�)� is issued when e itself deter-

mines to trust the set of assertions S of t.
• �assert(e, �leave(t, S )�)� is issued when e itself deter-

mines to untrust the set of assertions S of t.

Trust Status and Trust Status Transition

join and leave initiated by some entity are propagated to the
trust of other entities. Trust status, the domain of assertions
that the entity trusts, can grow or shrink in our system. An
entity claims the range of its own trust status by continu-
ously issuing its TPDP assertions. These assertions deter-
mine growth and shrink of the entity’s trust e.trust. We de-
fine this growth and shrink as the trust status transition.

Definition 4. • A trust status of an entity e is defined as
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Fig. 3 Relation between TPDP and PDP in trust status transition

a tuple (e,T P,T,T A) where T P is a trust policy com-
prising of a set of TPDP properties and T is the trust of
e, and T A is a sequence of TPDP assertions.
• When T A, a given sequence of TPDP assertions,

changes to T A′, and T changes to T ′ accordingly, we
denote it by (e,T P,T,T A)⇒ (e,T P,T ′,T A′).
(e,T P,T,T A)⇒ (e,T P,T ′,T A′) is defined as follows.

• When T A = ∅ (initial status) and trust( f , A) can be
inferred in T P, then T ′ ⊃ { f } × A.
• When T A′ = T A +
{�assert(e, �created(e, t, S ,T P, P)�)�}, (t,T P, {e} ×�, ∅)
is created as a new trust status for t.
• When T A′ = T A + {�assert(t, �join(s, B)�)�} and

join(s, B) can be entailed in T P, T ′ = T ∪ ({s} × B).
• When T A′ = T A + {�assert(t, �leave(s, B)�)�} and

leave(s, B) can be entailed in T P, T ′ = T \ ({s} × B),

where + represents concatenation to a given sequence.

The inference of PDP depends on a trust status
(e,T P,T,T A). Here, e.trust = T is enforced. That is, an en-
tity continuously receives TPDP assertions by which e.trust
is modified so as to determine the evaluation policy of PDP.
Furthermore, e.env is updated to contain or remove s that is-
sues B. Figure 3 summarizes the relation of PDP and TPDP.

5. Analysis of Dynamic Trust Behaviors

Scenarios of Dynamic Trust Behaviors

We show some typical scenarios of distributed services
where elastic trust plays an essential role.

Example 3. Let an entity e create a set of sensors si(i ∈
N). An individual sensor si is created with its TPDP pol-
icy {trust(e,�)} and its PDP policy {e} × �. e will is-
sue assertions �assert(e, �created(e, si,�, {e} × �, ∅)�)� and
�assert(e, �join(si,�)�)� that will be received by e itself, and
will make the PDP policy of e modified. Furthermore, e.env
is updated to contain sis.

On the side of a sensor s, data d will be transmitted
as an assertion �assert(s, �sensed = d�)�. e receives it, and
issues �assert(e, �assert(s, �sensed = d�)�)�. Data d will be
received by entities that trust e, and be utilized.

Example 4. We consider a scenario that a security
monitor S M delivers its decision to enrolling enti-
ties. Enrolling entities e have a TPDP policy T P 

trust(S M,�) which means that e trusts every TPDP as-
sertions from S M. When S M delivers a TPDP assertion

set A = {�assert(S M, �leave( f ,�)�)�} to e, its trust sta-
tus changes (e,T P,T,T A) ⇒ (e,T P,T \ ({ f } × �),T A +
{�assert(S M, �leave( f ,�)�)�}. This means that f is excluded
from the trust circle, and removed from e.env.

Example 5. Let us revisit a classical trust framework of ac-
cess federation. There, protocols for use are specified in
the policy. The list of enrolling entities is published by a
special server of the federation (called “metadata server”).
The metadata server M publishes the set of enrolling enti-
ties ei(i = 1, · · · ) that use the specified protocol set Pr in
the form of assertions T AM = {�assert(M, �join(ei, Pr)�)�|
i = 1, · · · }. An enrolling entity e initializes its trust policy as
T Pe = {trust(M, Pr)}. Letting trustinit = {M} × Pr, e trusts
assertions sent in protocol Pr. Then, e updates its trust status
by using TPDP assertions sent by M in the following way.

(e,T Pe, ∅, ∅)⇒
(e,T Pe, trustinit, ∅)⇒
(e,T Pe, trustinit ∪ ({ei|i = 1, · · · } × Pr),T AM)⇒
· · ·

By this, entities listed in the metadata are trusted. M may is-
sue �assert(M, �leave( f , Pr)�)� for excluding f from its trust
circle. This is processed in the similar way as Example 4.

Example 6. We formulate Self-Issued IdP in the following
way. In addition to the processes of Example 1, we need the
steps below.

1. We assume that a service provider s runs under the PDP
policy of Example 1. Mobile apps are its typical exam-
ple.

2. s creates IdP i for itself, and joins it in its trust. Then,
the new trust circle TC = {trust(s,�), trust(i,�)} is
established between s and i. The trust status is updated
from its initial TPDP policy T P = {trust(s,�)} and a
trust policy T to the one below:

(s,T P,T,T A)⇒
(s,T P,T ∪ ({i} × �),T A∪
{�assert(s, created(i,�,TC, P)�, �assert(s, �join(i,�)�)�})

3. i is operated under a specific policy P restricted to an
IdP of Example 1 so that only authentication assertions
for prespecified user p are issued.

4. s requests an authentication assertion from i to a ser-
vice request. After certain communications, s receives
assertions needed to infer Authed(i, p). The PDP of s
infers Authed(i, p) by using the trust status where i is
trusted and the fact that i is the issuer of the related
assertion.

Trust Anchors

The trust e.trust of an entity e grows or shrinks by re-
ceiving and evaluating TPDP assertions including join and
leave. To add an entity s with assertion set B to e’s trust,
trust(e, �join(s, B)�) must be valid as the result of a chain
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of entailment in the e’s TPDP. This chain of trust must start
from a certain entity a that must be specified as trust(a, A)
for some A in the TPDP policy of e. This entity specified
in the trust policy is called “trust anchor.” Security monitors
and metadata servers are its typical examples. Examples 3
to 6 explicitly assume fixed trust anchors. In Definition 4,
in creating an entity, its trust anchor is defined as the one
that creates it. In IoT where communications environment
is limited, the trust anchor may be a national telecom car-
rier [4]. Controlling the set of trust anchors is one of major
functions of a trust framework, which may lead further ex-
tension of our model.

6. Related Work

The Internet trust has been designed for assuring the exis-
tence of an entity requesting services by assessing the as-
surance of identities and authentication by using predefined
policies. NIST SP800-63 [5] is a standard used in this as-
sessment. Trust frameworks of access federations are de-
ployed as a major application of the Internet trust. In Japan,
GakuNin (https://gakunin.jp) for academia is in operation.
Furthermore, the federation of academic access federations
is being built as eduGain (https://edugain.org).

As Internet service architectures evolve, their trusts are
forced to change, accordingly. Cloud trust analysis has
started around 2010 (e.g. [6], [7]), and now in operation
in the forms such as ISO (ISO 27017) and CSA (STAR).
Related audit has been specified and performed. Effective
operation of IoT trust [4], [8] is one of the most strongly re-
quired trusts. There have been proposed assurance levels
and anchors of IoT trust. IoT is characterized differently to
conventional distributed environments where each IoT node
has its own local connections and name space. Further-
more, nodes can dynamically be created, grow and vanish,
which means that it is hard to consistently control trust. [9]
analyzes service management of IoT environments includ-
ing the hierarchical control for name spaces. [10] discusses
identity management of IoT.

Methodologies of trust assessment have been matured.
Assessment of operating policies has been added to en-
able more effective assessment [3], [11]–[15]. It is gener-
ally based on evaluating machine-readable policies. There
have been proposed some specifications for them including
P3P [16] and privacy labels [17].

Today, it is commonly observed that trust status is
never static, but may change to another, which may be initi-
ated by changes of surrounding services and environments.
Dynamic trust status transitions have been analyzed in a
number of scenarios including multiple assurance levels [1],
dynamic trust level elevation [18], creation of trust by Self-
Issued IdP [19], reflection of security monitoring [20], [21]
and continuous authentication by behavior monitoring and
analysis [22], [23].

7. Concluding Remarks

In this paper, we have proposed a formal system in which
PDP receives assertions from a peer, and evaluates them to
elevate to evidence. Furthermore, we have proposed Elastic
Trust in which we can dynamically evaluate trust status tran-
sition in order to analyze dynamically growing/shrinking
trust.

Concretely, first, we have formalized behaviors of PDP
where entities exchange service requests and assertions in
distributed environments. It evaluates assertions to elevate
to evidence, and makes a decision on the basis of thus gener-
ated evidence. Next, we have given a system Elastic Trust in
which trust status may dynamically change. That is, TPDP
has been established on top of PDP where trust status tran-
sits by exchanging TPDP assertions on join and leave. In
addition, by using this system, we have analyzed typical sce-
narios of dynamic trust management such as IoT, a security
monitor, classical trust for access federations, and dynamic
trust for Self-Issued IdP.
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