IEICE TRANS. INF. & SYST., VOL.E102-D, NO.9 SEPTEMBER 2019

1679

| LETTER Special Section on Log Data Usage Technology and Office Information Systems

Character-Level Convolutional Neural Network for Predicting
Severity of Software Vulnerability from Vulnerability Description

Shunta NAKAGAWA ", Tatsuya NAGAI', Hideaki KANEHARA ™", Nonmembers, Keisuke FURUMOTO',
Makoto TAKITAY, Members, Yoshiaki SHIRAISHI'-"™), Senior Member, Takeshi TAKAHASHI'", Member,
Masami MOHRI™T, Senior Member, Yasuhiro TAKANOY, Member, and Masakatu MORII', Fellow

SUMMARY System administrators and security officials of an orga-
nization need to deal with vulnerable IT assets, especially those with se-
vere vulnerabilities, to minimize the risk of these vulnerabilities being ex-
ploited. The Common Vulnerability Scoring System (CVSS) can be used
as a means to calculate the severity score of vulnerabilities, but it currently
requires human operators to choose input values. A word-level Convo-
lutional Neural Network (CNN) has been proposed to estimate the input
parameters of CVSS and derive the severity score of vulnerability notes,
but its accuracy needs to be improved further. In this paper, we propose a
character-level CNN for estimating the severity scores. Experiments show
that the proposed scheme outperforms conventional one in terms of accu-
racy and how errors occur.

key words: CVE, CVSS, Convolutional Neural Network

1. Introduction

The vulnerability in software poses a risk of bringing seri-
ous losses to individuals and organizations. In order to mini-
mize the risk of vulnerabilities being exploited by attackers,
system administrators and security personnels in the orga-
nization need to address vulnerabilities of IT assets. Espe-
cially, those with severe vulnerabilities need to be addressed
promptly.

The Common Vulnerability Scoring System (CVSS) [1]
is a framework for scoring the severity of vulnerabilities. It
can automatically produce the vulnerability severity score,
i.e., CVSS base score, but a user needs to specify the values
of several metrics for this by choosing one among prede-
fined values. The uses are, in most cases, security operators
within security organizations. Due to the severe shortage of
security personnel in present days, it is usual that he needs
to find vulnerabilities, analyze them, calculate their severity,
prepare vulnerability reports, and register them, in addition
to many other security tasks. To aid in their efficient and

Manuscript received November 12, 2018.
Manuscript revised April 2, 2019.
Manuscript publicized June 21, 2019.
"The authors are with the Department of Electrical and Elec-
tronic Engineering, Kobe University, Kobe-shi, 657-8501 Japan.
""The authors are with National Institute of Information and
Communications Technology, Koganei-shi, 184-8795 Japan.
T The author is with Center for Mathematical and Data Sci-
ences, Kobe University, Kobe-shi, 657-8501 Japan.

T The author is with the Department of Electrical, Electronic
and Computer Engineering, Gifu University, Gifu-shi, 501-1193
Japan.

a) E-mail: nakagawa@stu.kobe-u.ac.jp
b) E-mail: zenmei@port.kobe-u.ac.jp
DOI: 10.1587/transinf.20180FL0006

effective operations, it is desirable to automate the sever-
ity estimation operation. By automating the operation, the
risk of causing human errors will be also minimized. For
instance, the scores produced by human operators may be
incorrect, but it is not always possible to thoroughly review
the scores before their publications. By using the automa-
tion technique can be used as a tool for reviewing the scores
produced by human operators. Likewise, the technique will
also aid in the operations of insufficient experiences.

Several automation efforts have been reported until
now, and one of such efforts was presented by Han et al. [2].
They proposed a word-level Convolutional Neural Network
(CNN) for estimating the severity level, i.e., CVSS base
score, based on Common Vulnerabilities and Exposures
(CVE) description [3], which used Word2Vec [4] to repre-
sent words in CVE description as vectors. As a result, the
prediction accuracy reached 81.6%, but it needs to be im-
proved further.

We take a different approach in this paper. Because
new technical terms and software are emerging day by day,
we focus on letters rather than words and expect to learn
new terms by reflecting the closeness of meaning to existing
similar words. Many word-level CNN architectures have
been proposed until now, but character-level CNN architec-
tures have also been proposed by Zhang et al. [5] and Saxe
et al. [6]. In this paper, we propose a character-level CNN
architecture for estimating severity level from CVE descrip-
tion.

2. Vulnerability Database and Scoring Framework

CVE is a list of entries, each includes CVE identifica-
tion number (CVE-ID), CVE description, and the reference
[https://cve.mitre.org/]. In CVE Details [7], CVE descrip-
tion, CVSS score, and types of threats, etc. are posted. As
in Ref. [2], we also extract and use CVE descriptions and
CVSS base scores from CVE Details in this study.

CVSS is a mechanism for quantitatively evaluating vul-
nerabilities. CVSS base score ranges from 0.0 to 10.0. Ac-
cording to Atlassian’s security advisory, vulnerabilities are
classified into four classes — Critical (CVSS 9.0 - 10.0),
High (CVSS 7.0 - 8.9), Medium (CVSS 4.0 - 6.9), or Low
(CVSS 0.1 - 3.9) — based on CVSS base score [8]. Like-
wise, we classify vulnerabilities into four classes.

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers

1680

3. Proposed Character-Level CNN Architecture for
Estimating Severity Level

3.1 Overview

Figure 1 shows the procedure of our severity estimation.
CVE descriptions and CVSS base scores are used from
CVE Details for severity estimation in this paper. CVE
descriptions are classified into four classes (Critical, High,
Medium, Low) based on CVSS scores. Note that we call
these classes severity level. A one-hot encoded vector of
each character of CVE description is as an input vector
and severity level is as a teacher signal for training CNN.
Trained model estimates the severity level from one-hot en-
coded CVE descriptions.

3.2 One-Hot Encoding

Based on Zhang et al.’s method [5], we encode each charac-
ter using one-hot encoding. We deal with 1014 characters as
input and ignore any characters exceeding 1014. If the num-
ber of characters in the sentence is less than 1014 characters,
fill the blank with zero vector. 69 kinds of target characters
are as follows.

abcdefghijklmnopqrstuvwxyz0123456789

-3 20 ¥ _@ES % &t~ +-=<> [1{}
We deal with characters that are not included in this list, in-
cluding whitespace, as zero vector. In this research, we deal
with 69 kinds of characters and zero vector. 70-dimensional
one-hot vectors represent the characters in CVE description.

3.3 CNN Architecture

Figure 2 shows the proposed CNN architecture. The archi-
tecture has one dense layer to prevent over-fitting. In the
dropout layer, the fraction of neurons we keep is set to 0.5.

In the embedding layer, vectors of CVE description are
input to learn the 32-dimensional distributed representation.
The vector is given to the convolutional layer.

The convolutional layer has four types of filters differ-
ent in the length (11, 13, 15, 17) to extract the features of the
sequence of characters with different lengths. The width of
the filter is 32, which is the dimensionality of the character.
We prepare 256 filters per type. Threshold ReLLU is used as
the activation function.

The output of the convolutional layer is input to the 1-
max-pooling layer. 1-max-pooling extracts the largest fea-
ture in the vector. The output of the 1-max-pooling layer is
input to the dropout layer.

All the outputs of the 1-max-pooling layer are concate-
nated to form a 1024-dimensional vector, and this vector is
input to the dropout layer. Then, the output of the dropout
layer is input to the dense layer with 1024 units. Threshold
ReLU is used as the activation function. The output of the
dense layer is input to the dropout layer.

The output layer is the dense layer with 4 units. We

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.9 SEPTEMBER 2019

CVE Details

[[cvss Base Score | | CVE Description |]
1 1
f i

v v
Classify One-Hot Encoding : One-Hot Encoding
! 4

1
[Severity Level | | CVE Description Vector | : [CVE Description Vector

Trained
CNN Model

H Severity Level

Training Phase : Prediction Phase

Fig.1 The procedure of severity estimation.

1
1 1 1
N 1024
256|
32 1]
1 5 H 256
(e e s
. -
1014{ input 1
P 32 L 254 H
15 -_TW'_ 4 classes
32 o 256
embedding size 32 B 1
A !
T
Embedding | Convolutional | 1-Max [Concat-| Dense | Output
Layer Layer Pooling|enate | Layer | (Softmax)
(256X 4) Layer (1024)

Fig.2 Proposed CNN architecture.

use L2 regularization. Softmax is generally used in multi-
class single-label classification, so we also use Softmax as
the activation function. The output represents severity level.
This model uses Adam update algorithm as the opti-
mizer and categorical cross entropy as the loss function.

4. Experiment

We compare our character-level CNN architecture with a
word-level CNN architecture and other two character-level
CNN architectures. We use CVSS base scores and CVE de-
scriptions extracted from CVE Details.

4.1 Preliminary Experiment

We carried out preliminary experiment to test which is bet-
ter, 1-max-pooling or average-pooling in our CNN. It was
to compare proposed character-level CNN using 1-max-
pooling with proposed one using average-pooling in before
Oct. 16. 2018 dataset. We set the batch size to 32. We build
a model for each epoch and calculate validation accuracy.
We stop learning if the validation accuracy does not improve
any further. And we adopt the model whose validation accu-
racy was the best among the built models. The highest val-

LETTER

Table 1 The number of vulnerabilities as of 31st March 2017.
Severity Level CVSS Number
Critical 9.0-10.0 12,286
High 7.0 -89 20,722
Medium 4.0-6.9 43,503
Low 0.1-39 6,213
Total 0.1-10.0 82,724

idation accuracies of proposed character-level CNN using
1-max-pooling and average pooling were same 74.76%. At
that time, the learning time of proposed character-level CNN
using 1-max-pooling is smaller than when using average-
pooling. Therefore, in the experiment in Sect. 4.3, we adopt
1-max-pooling.

4.2 Used Dataset and Architectures in Experiment

As of 31st March 2017, CVE Details has 82,772 vulnera-
bilities. Among them, we discard the vulnerabilities with
CVSS base score 0, which have not been evaluated yet.

We use three architectures to compare our character-
level CNN with word-level CNN and other character-level
CNN except for our CNN architecture.

The first architecture is word-level CNN, based on Han
et al.’s architecture [2]. We use Softmax as the activation
function in the output layer and categorical cross entropy as
the loss function. After training CNN, we extract the input
to the last layer as the feature vector. We use this as input to
SVM and make predictions.

The other two architectures are character-level CNN.
Like the proposed, we represent characters in distributed ex-
pression in 32 dimensions.

The one is based on the architecture of Zhang et al.
(Zhang’s character-level CNN [5]) and the other one is based
on the architecture of Saxe er al. (Saxe’s character-level
CNN [6]). In Saxe’s character-level CNN, we set the size
of the filters of the convolution layer to (5, 7, 9, 11) and
use Softmax as the activation function in output layer and
categorical cross entropy as the loss function.

4.3 Methods and Results

In the following experiments (A) and (B), we used the model
built by the method described in Sect. 4.2.
(A) Experiment with randomly sampled data

In order to match the number of severity classes, we
randomly select 6,213 vulnerabilities from each “Critical”,
“High”, and “Medium” vulnerabilities. We use 80% vul-
nerabilities of each severity level as training data, 10% as
validation data, and 10% as test data.

The architectures are compared with the view of accu-
racy and how errors occur. Accuracy is defined as correct
predictions among the total number of vulnerabilities in the
dataset. Table 2 shows the results of comparative experi-
ments with other architectures in accuracy. Saxe’s character-
level CNN is the best and proposed character-level CNN is
second in terms of accuracy, but it seems that the difference
among all architectures is small. Because it is not still clear

1681
Table 2 Accuracy of all architectures.
Architecture Accuracy
word-level CNN [2] 0.6961
word-level CNN+SVM |[2] 0.7081
Zhang’s character-level CNN [5] 0.6771
Saxe’s character-level CNN [6] 0.7310
Proposed character-level CNN 0.7250

Table 3 Confusion matrix of word-level CNN+SVM [2].
True Label
Critical High Medium Low
g Critical 504 130 47 13
?g High 63 360 89 16
g Medium 44 102 377 74
o
<N Low 10 29 108 518
Table 4 Confusion matrix of Saxe’s character-level CNN [6].
True Label
Critical High Medium Low
g Critical 490 98 38 8
;1 High 81 400 83 15
g Medium 41 102 422 94
o
<N Low 9 21 78 504
Table 5 Confusion matrix of proposed character-level CNN.
True Label
Critical High Medium Low
g Critical 505 108 43 9
f’g High 80 401 105 18
s Medium 27 88 385 84
o
<N Low 9 24 88 510

which architecture is better, we compare the top three archi-
tectures by using confusion matrix.

Tables 3, 4 and 5 are confusion matrices of word-
level CNN+SVM, Saxe’s character-level CNN, and pro-
posed character-level CNN, respectively. Each number of
one level error is 566 (22.79%) in word-level CNN, 536
(21.58%) in Saxe’s character-level CNN and 553 (22.26%)
in proposed character-level CNN. Each number of two level
error is 136 (5.48%) in word-level CNN, 115 (4.63%) in
Saxe’s character-level CNN and 112 (4.51%) in proposed
character-level CNN. Each number of three level error is 23
(0.93%) in word-level CNN, 17 (0.68%) in Saxe’s character-
level CNN and 18 (0.72%) in proposed character-level
CNN. Each number of three level error of Saxe’s character-
level CNN and proposed character-level CNN are much the
same and smaller than word-level CNN. Note that mistak-
ing “Critical” as lower level is not preferable, for example,
“Critical’—>*“High” and “Critical’—*“Medium”, especially
“Critical’—“Low”. In the case where “Critical” is mistaken
as lower level, the number of Saxe’s character-level CNN
and proposed character-level CNN are as below: Although
the numbers of mistaking “Critical” as “Low” is same as
9 (1.45%) in both architectures, each number of mistak-
ing “Critical” as “Medium” is 41 (6.60%) and 27 (4.35%),
and each number of mistaking “Critical” as “High” is 81
(13.04%) and 80 (12.88%), in Saxe’s character-level CNN

1682

Table 6 Results of word-level CNN+SVM [2] with the dataset separated

by periods.
Testing Dataset Accuracy Overall Overall Overall

Precision Recall F1-measure
Before-2016 0.695 0.692 0.695 0.693

Jan-Mar, 2016 0.632 0.624 0.632 0.620
Apr-Jun, 2016 0.614 0.595 0.614 0.596
Jul-Sep, 2016 0.640 0.626 0.640 0.620

Table 7 Results of proposed character-level CNN with the dataset sepa-
rated by periods.
Testing Dataset Accuracy Overall Overall Overall
Precision Recall Fl-measure
Before-2016 0.697 0.699 0.697 0.697
Jan-Mar, 2016 0.662 0.655 0.662 0.656
Apr-Jun, 2016 0.648 0.636 0.648 0.632
Jul-Sep, 2016 0.662 0.653 0.662 0.652

and proposed character-level CNN, respectively. From the
above experimental results, proposed character-level CNN
is considered to be able to predict “Critical” more accurately
than other methods.

(B) Experiment with the dataset separated by time

We used before-2016 dataset and 2016 dataset to eval-
uate the estimation of new vulnerability description’s sever-
ity level. First, as dataset before-2016, we build training
dataset-2015, validation dataset-2015 and test dataset-2015
by using the data discovered before Dec 31, 2015. We
choose 10,000 (2,500 for each severity level) vulnerabilities
as before-2016-training dataset, 4,000 (1,000 for each sever-
ity level) vulnerabilities as before-2016-validation dataset,
600 (150 for each severity level) vulnerabilities as before-
2016-test dataset by using the data discovered before Dec
31, 2015. Second, we create test datasets for the three peri-
ods of 2016. We made three datasets by choosing 500 (125
for each severity level) vulnerabilities from the data in Jan 1-
Mar 31, Apr 1-Jun 30, and Jul 1-Sep 30, 2016. These three
datasets of 2016 are used as test datasets to evaluate model
learned using before-2016-training dataset and before-2016-
validation dataset.

Tables 6 and 7 show the result of the test accu-
racy, when using word-level CNN+SVM [2] and proposed
character-level CNN in this experiment. When using before-
2016-test dataset, each test accuracy of the two architectures
is almost the same. However, when using three test datasets
of 2016, the test accuracy of the proposed character-level
CNN exceeds the accuracy on the word-level CNN+SVM
in all three test datasets. It is considered that proposed
character-level CNN can estimate the severity level of un-

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.9 SEPTEMBER 2019

known vulnerability reflecting similarity of known character
string.

5. Conclusion

In this paper, we studied to find CNN architecture to esti-
mate severity level from the description of vulnerabilities.
System administrators and security officials of an organiza-
tion need to deal with vulnerable IT assets, especially those
with severe vulnerabilities. To aid in their efficient and ef-
fective operations, it is desirable to automate the severity
estimation operation. Furthermore, estimating new vulner-
ability description’s severity level is particularly important
because new technical terms and software are emerging day
by day. So, we focused on letters rather than words and pro-
posed character-level CNN for estimating severity level.

In order to evaluate the proposed architecture, we con-
structed a word-level CNN and two other character-level
CNN architectures for comparison. As the results of ex-
periment (A) and (B), the proposed character-level CNN ar-
chitecture is the best in these architectures for estimation of
severity level and it is considered that proposed character-
level CNN can estimate the severity level of unknown vul-
nerability reflecting similarity of known character string.

References

[1] FIRST, “A Complete Guide to the Common Vulnerability Scoring
System,” https://www.first.org/cvss/v2/guide, accessed Nov. 11. 2018.

[2] Z. Han, X. Li, Z. Xing, H. Liu, and Z. Feng, “Learning to Predict
Severity of Software Vulnerability Using Only Vulnerability Descrip-
tion,” 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), Shanghai, China, pp.125-136, Sept. 2017.

[3] MITRE Corporation, “Common vulnerabilities and exposures (cve),”
https://cve.mitre.org/, accessed Oct. 16. 2018.

[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estima-
tion of word representations in vector space,” arXiv preprint, arXiv:
1301.3781, Sept. 2013.

[5] X.Zhang,J.Zhao, and Y. LeCun, “Character-level Convolutional Net-
works for Text Classification,” arXiv preprint, arXiv: 1509.01626,
Sept. 2015.

[6] J. Saxe and K. Berlin, “eXpose: A Character-Level Convolutional
Neural Network with Embeddings For Detecting Malicious URLs,
File Paths and Registry Keys,” arXiv preprint, arXiv: 1702.08568,
Feb. 2017.

[7]1 CVE Details, “CVE details,” http://www.cvedetails.com/, accessed
Oct. 16. 2018.

[8] A.S. Advisories, “Severity levels for security issues,” https://www.
atlassian.com/trust/security/security-severity-levels, accessed Oct. 28.
2018.

http://dx.doi.org/10.1109/icsme.2017.52

