
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.9 SEPTEMBER 2019
1683

LETTER Special Section on Log Data Usage Technology and Office Information Systems

A Cross-Platform Study on Emerging Malicious Programs
Targeting IoT Devices

Tao BAN†a), Nonmember, Ryoichi ISAWA†, Member, Shin-Ying HUANG††, Nonmember,
Katsunari YOSHIOKA†,†††, and Daisuke INOUE†, Members

SUMMARY Along with the proliferation of IoT (Internet of Things)
devices, cyberattacks towards them are on the rise. In this paper, aim-
ing at efficient precaution and mitigation of emerging IoT cyberthreats, we
present a multimodal study on applying machine learning methods to char-
acterize malicious programs which target multiple IoT platforms. Experi-
ments show that opcode sequences obtained from static analysis and API
sequences obtained by dynamic analysis provide sufficient discriminant in-
formation such that IoT malware can be classified with near optimal accu-
racy. Automated and accelerated identification and mitigation of new IoT
cyberthreats can be enabled based on the findings reported in this study.
key words: IoT security, IoT malware, malware analysis, malware classi-
fication

1. Introduction

Aiming at infecting IoT devices across different CPU archi-
tectures, IoT malware is usually compiled on and launched
against multiple platforms. This poses new challenges to the
mitigation and prevention of these emerging cyberthreats. In
this paper, we present a new approach to capture, analyze,
and classify malicious programs across multiple IoT plat-
forms.

To collect the most recent IoT malware targeting differ-
ent IoT devices, we deploy the IoTPOT [1] in our environ-
ment. IoTPOT constitutes virtualized cross-platform Linux
systems deliberately set up with vulnerabilities that invites
penetration. It records all information related to the penetra-
tion by collecting the malicious programs, command traces,
and Internet communications during the attack. Then, based
on these evidences, we perform the following multilateral
analysis of the malicious programs across three major CPU
architectures, namely, ARM, MIPS, and MIPSEL.

In the first step, we use an entropy-based method
to identify obfuscated malware samples from non-packed
ones. Then, static and dynamic analyses are employed for
profiling the behavioral characteristics of the samples: For
static analysis, IDA Pro (a Linux-hosted multiprocessor dis-
assembler) is applied to the samples to attain their assembly

Manuscript received November 12, 2018.
Manuscript revised April 8, 2019.
Manuscript publicized June 21, 2019.
†The authors are with the National Institute of Information and

Communications Technology, Koganei-shi, 184–8795 Japan.
††The author is with the Institute for Information Industry,

Taipei, Taiwan.
†††The author is with Yokohama National University, Yokohama-

shi, 240–8501 Japan.
a) E-mail: bantao@nict.go.jp

DOI: 10.1587/transinf.2018OFL0007

Table 1 IoT malware dataset overview.

ISA Sample size Bashlight Mirai Tsunami
ARM 729 619 94 16
MIPS 980 657 310 13

MIPSEL 868 648 210 10

code and store it in the form of opcode sequences. For dy-
namic analysis, Application Programming Interface (API)
call sequences are collected with the strace command at run-
time in virtualized environments.

To yield numerical vectors that could serve as inputs to
the analytical tools, the sequences in log files are coded as n-
grams—a contiguous sequence of n items from the instruc-
tion sequence [2]. Then, vectorized representations of the
malware programs are examined by t-distributed Stochastic
Neighbor Embedding (t-SNE) [3], which provides a visual
hint on the interpretability of different analysis methods. Fi-
nally, pattern classification is applied to the vector represen-
tation of the malicious programs for quantitative evaluation.

1.1 Data

We use the same dataset introduced in [4] for the analysis. It
consists of 9,085 IoT malware samples collected from July
8, 2017 to January 20, 2018 using IoTPOT. To label them,
the SHA 256 hash values of malware samples are submit-
ted to VirusTotal, where they are checked against more than
60 different virus scanners. Then, the label of a sample is
determined by majority voting. We confined the analysis
to the three major malware types in the dataset, i.e., Bash-
lite, Mirai, and Tsunami, which consist of 2,577 samples.
Table 1 shows the distribution of malware among different
Instruction Set Architectures (ISA) and malware categories.
A sample is excluded from the analysis if its API/opcode
sequence is shorter than 10, indicating highly possibility of
a cracked file. This makes the dataset slightly smaller than
that in [4].

2. Analysis

2.1 Preprocessing

Packing is among the most popular obfuscation techniques
to impede virus scanners from effectively detecting mal-
ware. To confirm whether a malware program is packed or
not, we employ entropy analysis proposed by Lyda et al. [5]

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

1684
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.9 SEPTEMBER 2019

to the collected corpus. The analysis is based on the fact
that the entropy of a binary program, measured upon the
distribution of bytes, tends to be significantly raised by the
crypto-encoding process during packing. To measure the
entropy of a binary program, it is first divided into succes-
sive blocks of fixed size with the entropy of a block sk cal-
culated as

H(sk) = −
255∑

i=0

p(i) log2(p(i)), (1)

where p(i) is the probability of byte value i appeared in sk.
Given predefined threshold values θave and θmax, a binary is
determined to be packed if its averaged entropy score, Have,
and the maximum score among all blocks, Hmax, satisfy

Have > θave ∧ Hmax > θmax. (2)

In the experiment, we set θave = 6.0 and θmax =

6.796618, based on our previous experience on Windows
malware analysis. Entropy analysis reveals that only a small
portion of the IoT malware samples (less than 3%) appear to
be packed. Packed samples are excluded from the analysis
due to the lack of static analysis tools against them.

2.2 Feature Engineering

For the non-packed samples, feature engineering is pur-
sued in the following steps. First, IDA Pro, a Linux-hosted
multi-processor disassembler, is applied to the samples to
attain their assembly code. In the snapshot of ARM as-
sembly code shown in Fig. 1, each line contains an opcode
(MOV, ADD, BL, etc.) and the operands they act on. In
the second step, we extract the sequence of opcode which
carries the most essential information of malware behavior.
For the snapshot in Fig. 1, we obtain an opcode sequence
like {MOV MOV ADD BL CMP BLT ...}. Finally, follow-
ing the n-gram convention, we code each of the log files
as a list of n-grams. The 3-gram representation of the op-
code sequence ion Fig. 1 is {[MOV MOV ADD], [MOV ADD
BL], [ADD BL CMP], [BL CMP BLT] ...}. Following
the same procedure, we also generate API features for each
malicious program from the API-call trace logged by the
strace command during its execution in a virtualized sand-
box. Compared with the Vector Space Model approach
adopted in [4], the n-gram representation preserves the order
information in the sequence and thus may lead to superior
generalization performance.

Fig. 1 Assembly code output by IDA Pro on ARM.

In the n-gram representation, each sample is coded as
a list of n-grams, which tends to reside in very high dimen-
sional features space. Quite often, the extraordinary high
dimension of the data prevents the adoption of common al-
gorithms for the analysis. Moreover, the Euclidean distance
in such a high-dimensional space is likely to suffer from de-
teriorated representability in certain situations. To circum-
vent this problem, we propose to use the Jaccard distance [6]
to measure the dissimilarity between the list of sequences.
More specifically, Jaccard distance, which measures dissim-
ilarity between two finite item sets Xi and Xj, can be ob-
tained by dividing the difference of the sizes of the union
and the intersection of two sets by the size of the union,

dJ(Xi, Xj) =
|Xi ∪ Xj| − |Xi ∩ Xj|

|Xi ∪ Xj| . (3)

With this distance function defined upon the n-gram repre-
sentation of the opcode/API traces, the distance-based anal-
ysis described in the following sections are applied.

2.3 Visualization

To visualize the sample distribution of a particular ISA, the
N × N distance matrix, where N is the number of malware
samples under analysis, is mapped to 2-D points using t-
SNE [3]. t-SNE implements the mapping in such a way that
similar samples are modeled by nearby points and dissimi-
lar samples are modeled by distant points with high proba-
bility. Figure 2 (a) shows the layout of malware samples on
MIPS using opcode feature. Samples from different mal-
ware classes are shown with different markers. Samples
from the same category forms clusters because inter-class
distances are closer than intra-class distances. The separa-
bility of samples from different categories in this 2D space
suggests that the n-gram features carries essential informa-
tion for classifying the malware samples.

Figures 2 (b) and (c) shows the layout of malware sam-
ples on ARM using opcode features and API features, re-
spectively. A gray line between Figs. 2 (b) and (c) connects
two points that correspond to the same Mirai sample. This
comparison reveals that in the API feature space, the classes
interlace with each other more than in the opcode feature
space, which may lead to degenerated performance in clas-
sification.

2.4 Classification

Using the same features, we build classifiers that can pre-
dict the classes of new malware samples. Two classifiers,
namely, SVM [7] and k Nearest Neighbor (kNN) [8] are cho-
sen for their good generality and generalization ability. The
results using opcode features and API features are reported
in Table 2, where the micro averages over 10 runs are shown.
For each run, we use 70% of data for training and the rest of
the data for testing.

As can be seen from the table, with the Jaccard dis-
tance, both SVM and kNN give nearly optimal results on all

LETTER
1685

Fig. 2 2-d visualization using t-SNE. (a) Opcode features on MIPS; (b) Opcode features on ARM;
(c) API features on ARM.

Table 2 IoT malware classification result (micro-average).

ISA Feature Classi- Accura- Precision Recall FPR AUC G-mean F1-mea-
Set fier cy(%) (%) (%) (%) (%) sure(%)

ARM API SVM 98.90 98.92 98.90 5.68 0.9661 96.53 98.85
kNN 99.31 99.36 99.31 0.90 0.9920 99.17 99.27

Opcode SVM 100.00 100.00 100.00 0.00 1.0000 100.00 100.00
kNN 99.58 99.59 99.58 1.14 0.9922 99.18 99.52

MIPS API SVM 99.46 99.54 99.46 0.38 0.9954 99.53 99.47
kNN 99.55 99.51 99.55 0.35 0.9960 99.54 99.50

Opcode SVM 99.73 99.76 99.73 0.21 0.9976 99.76 99.74
kNN 99.66 99.66 99.66 0.50 0.9958 99.56 99.63

MIPSEL API SVM 99.69 99.69 99.69 0.57 0.9956 99.55 99.69
kNN 99.77 99.81 99.77 0.35 0.9971 99.71 99.78

Opcode SVM 99.46 99.47 99.46 0.98 0.9924 99.24 99.46
kNN 99.73 99.73 99.73 0.51 0.9961 99.61 99.72

the examined ISAs with static and dynamic features. This
indicates Jaccard distance has a strong potential to measure
behavioural similarity between the instruction sequences.
Opcode features outperforms API features on ARM and
MIPS, while API features win on MIPS with a small margin.
In particular, on ARM, SVM yields a perfect classification
result using opcode features.

3. Conclusion

The experiment results reveal that IoT malware is yet not
armed with complicated obfuscating techniques at the cur-
rent stage. First, the result of entropy analysis shows that
less than 3% of the malware programs use common obfus-
cation techniques like packing. Second, near optimal clas-
sification rates using opcode and API features indicate that
both static analysis and dynamic analysis carry determinis-
tic discriminant information about malware category. This
further implies that no sophisticated behavior-obfuscation
techniques such as reordering API call sequences, injecting
bogus API calls, or alternation between semantically equiv-
alent API calls are implemented by the malware. For the
sake of the ease to perform statistic analysis than dynamic
analysis, it might be rational to say that statistic analysis is
preferable than dynamic analysis for recent IoT malware.

References

[1] Y.M.P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C.
Rossow, “IoTPOT: Analysing the rise of IoT compromises,” WOOT
15, USENIX Association, 2015.

[2] A.Z. Broder, S.C. Glassman, M.S. Manasse, and G. Zweig, “Syntac-
tic clustering of the Web,” Computer Networks and ISDN Systems,
vol.29, no.8-13, pp.1157–1166, 1997.

[3] L. van der Maaten and G.E. Hinton, “Visualizing high-dimensional
data using t-SNE,” J. Machine Learning Research, vol.9, pp.2579–
2605, 2008.

[4] T. Ban, R. Isawa, K. Yoshioka, and D. Inoue, “A cross-platform study
on IoT malware,” 2018 Eleventh International Conference on Mobile
Computing and Ubiquitous Networking, 2018.

[5] R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted
and packed malware,” IEEE Security Privacy, vol.5, no.2, pp.40–45,
2007.

[6] P.N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,
First Edition, Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2005.

[7] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intelligent Systems and Technology, vol.2,
no.3, Article No.27, 2011.

[8] S.K. Pal and P. Mitra, Pattern Recognition Algorithms for Data Min-
ing: Scalability, Knowledge Discovery, and Soft Granular Computing,
Chapman and Hall/CRC, New York, 2004.

http://dx.doi.org/10.1016/s0169-7552(97)00031-7
http://dx.doi.org/10.23919/icmu.2018.8653580
http://dx.doi.org/10.1109/msp.2007.48
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1201/9780203998076

