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SUMMARY  With the acceptance of social sharing, public bike sharing
services have become popular worldwide. One of the most important tasks
in operating a bike sharing system is managing the bike supply at each sta-
tion to avoid either running out of bicycles or docks to park them. This
requires the system operator to redistribute bicycles from overcrowded sta-
tions to under-supplied ones. Trip demand prediction plays a crucial role
in improving redistribution strategies. Predicting trip demand is a highly
challenging problem because it is influenced by multiple levels of factors,
both environmental and individual, e.g., weather and user characteristics.
Although several existing studies successfully address either of them in
isolation, no framework exists that can consider all factors simultaneously.
This paper starts by analyzing trip data from real-world bike-sharing sys-
tems. The analysis reveals the interplay of the multiple levels of the factors.
Based on the analysis results, we develop a novel form of the point process;
it jointly incorporates multiple levels of factors to predict trip demand, i.e.,
predicting the pick-up and drop-off levels in the future and when over-
demand is likely to occur. Our extensive experiments on real-world bike
sharing systems demonstrate the superiority of our trip demand prediction
method over five existing methods.

key words: point process, bike-sharing system, trip prediction, human mo-
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1. Introduction

With the acceptance of shared social systems, public bike
sharing services have become popular worldwide [1], [2].
The services consist of multiple docking stations (stations
hereafter) spread across the city where bicycles are avail-
able for short-term rental. A user can pick up a bicycle at
any station (pick-up), use it for short-distance trip, and drop
off it to any other station with an open dock (drop-off). Such
systems benefit a city in many ways [2]; they offer an afford-
able mobility option for the citizens; alleviate traffic con-
gestion; reduce exhaust gas emission; and promote public
health. Bike sharing systems have been developed in many
major cities including New York, Chicago and Tokyo, and
most of them have been growing in size since launch.

The most important task in operating a bike sharing
system is managing the bicycle supply in each station;
avoiding station over-demand, i.e., being either empty or
full. Stations with high pick-up demand may run out of
bicycles, while ones with higher drop-off demand tend to
fill up with bicycles and run out of docks to park them.
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Over-demand is a critical problem for both users and sys-
tem operators. To avoid it, the system operator must move
bicycles from overcrowded stations to under-supplied ones.
The most common strategy is to redistribute the bicycles by
truck or to incentivize users to return their bicycles to the
under-supplied stations. In either case, trip demand predic-
tion plays a crucial role in scheduling proper redistribution
in terms of number and timing; if we can accurately predict
the pick-up and drop-off demand at each station and when
over-demand will occur, we can redistribute the proper num-
ber of bicycles to the right place at the right time in order to
prevent over-demand.

Predicting trip demand is a highly challenging prob-
lem because bicycling behavior is influenced by multiple
levels of factors, both environmental and individual [3].
Environmental factors include weather [4]-[6] and social
events [7]. Previous studies [5], [6] present aggregate-level
models based on clustering-based regression to capture the
environmental factors. Another line of work[8], [9] ex-
plores the impact of individual factors on trip demand. In-
dividual factors are defined as any factor associated with
each individual trip, including user characteristics and type
of trip. For example, Zhang et al. [9] propose an individual-
level model that considers user type and attributes to predict
each user’s trip behavior. However, the different levels of
factors have, up to now, been explored separately, no frame-
work exists that integrates the multiple levels of key factors
simultaneously.

We develop a novel method that incorporates both envi-
ronmental and individual factors for predicting trip demand,
where the goal is to predict the pick-up and drop-off de-
mand in the future and the timing of the over-demand. We
formulate the problem of trip prediction in the framework
of the marked temporal point process. The marked tempo-
ral point process is an effective mathematical framework for
modeling the occurrence of events as marks over time [10];
it estimates an intensity function that describes the occur-
rence rate of events in continuous time periods. Point pro-
cess based methods have been widely used in many disci-
plines and fields including seismology and finance. Recent
works explore the application of the point process method
to mobility modeling, e.g., POI (points of interest) recom-
mendation [11], [12], trip purpose detection [13]. But some
challenges remain in applying the point process methods to
the goal of bike trip modeling. First, they cannot incorpo-
rate the environmental factors such as weather. Second, the
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functional form of the intensity must be carefully designed
by researchers so that it appropriately captures the reality.
Little is known about the interplay between the environmen-
tal and individual factors and their impact on trip demand.

In this paper, we first empirically investigate how trip
demand is jointly influenced by the multiple levels of fac-
tors, and then, based on the empirical insights, develop a
novel functional form of point process intensity. In our
framework, trips are organized as sequences of pick-up
events, each of which is associated with individual factors.
We introduce a set of intensity functions with covariates
of environmental factors to model these event sequences,
where individual factors are treated as marks. This formula-
tion allows us to effectively capture both environmental and
individual factors.

Finally, we conduct experiments on the data of three
real-world bike-sharing systems and show that the proposed
method consistently outperforms existing methods with re-
gard to the trip demand prediction task.

The main contributions of this paper are as follows:

e Empirical analysis: We examine how the multiple lev-
els of factors jointly influence trip demand using real-
world bike sharing datasets (Sect. 3).

e Model building: We construct a novel method for trip
demand prediction based on the analysis results. The
proposed method enables more accurate prediction by
taking the multiple levels of influential factors into ac-
count (Sect. 5).

o Evaluations: We conduct extensive experiments on the
data of real-world bike sharing systems from three
cities. The proposed method achieves better predictive
performance than all existing methods on all datasets
(Sect. 6).

2. Related Work

In this section, we first review the literature on bike-sharing
systems and then position our contributions. With the rapid
development of bike-sharing systems, large amounts of bike
trip data are being generated. Several services publish trip
datasets for public use. Many studies that use these datasets
with different aims have been presented, e.g., station place-
ment [14]-[16], rebalancing [6], [17], [18] and trip demand
prediction. This paper focuses on trip demand prediction,
which is one of the most important issues in operating bike-
sharing systems.

The literature on trip demand prediction continues
to expand. They can be broadly divided into two cate-
gories: aggregate-level methods and individual-level meth-
ods. Aggregate-level methods focus on predicting the aggre-
gated number of trips. They first discretize time into bins of
fixed width (e.g., 1-hour) and estimate the number of bicy-
cles that will be picked up and dropped off in each time bin.
Time-series models, such as ARMA [19] and ARIMA [20],
were introduced to predict the number of available bicy-
cles for each station a few minutes/hours ahead. In a
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recently paper, Froehlich et al. [21] use a Bayesian network
to predict the number of bicycles for each station, while
Schuijbroek et al. [18] employ a Markov chain to predict
station availability. Chen et al. [7] developed a dynamic
cluster-based method for over-demand prediction, which ex-
ploits periodic patterns and environmental factors such as
the weather. Yang et al. [5] built a random forest model (RF)
which includes periodic features (i.e., hour of day and day of
week) and the weather (e.g., temperature and visibility) as
covariates. Liu et al. [6] proposed Meteorology Similarity
Weighed K-Nearest-Neighbor (MSWK) regression, which
considers the similarity of related features, i.e., hour of day,
day of week and the weather. However, all these aggregate-
level methods still have their own limitations. First, they fail
to incorporate influential factors associated with individual
trips, i.e., user identifier, types of trip (e.g., round-trip vs.
one-way), membership (e.g., subscriber or temporary user)
and user profile (e.g., age, gender, etc.) into their models.
Second, they divide time into equal sized bins. Bin size
is a critical model parameter and should be determined ad
hoc (i.e. they are not continuous-time models). Furthermore,
they are designed to predict the number of trips; they cannot
be used to predict the timing of over-demand. The success-
ful prediction of over-demand timing is essential in allowing
bike-sharing system operators to decide when is the opti-
mal time to move bicycles as well as the optimal number
to move. If they know the timing of over-demand, they can
move the proper number of bicycles at the right time.

Individual-level methods such as point process mod-
els [22], [23] can handle individual trips and offer the pos-
sibility of overcoming the limitations, as they view pick-up
and drop-off times as discrete events occurring in contin-
uous time. A major drawback of this approach is that it
does not consider environmental factors such as the weather.
Point process models have been successfully applied in sim-
ilar domains such as mobility modeling [11], [12] and social
activities [24]-[27]. However, to the best of our knowledge,
no published method can handle multiple levels of the fac-
tors simultaneously.

This paper uses the framework of a marked temporal
point process to propose a novel method that covers the mul-
tiple levels of factors including environmental context and
individual factors.

3. Analysis of Bike Trips

In this section, we provide a series of empirical observations
about the interplay between individual and environmental
factors, on which our method is founded.

3.1 Data

For explanation, we use a collection of trips generated from
bike-sharing systems, from Sep. 2015 to Aug. 2016. For
each trip, these records provide a pick-up station, the date-
time of pick-up, the drop-off station, duration and user
type. The user type information includes membership (i.e.,
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temporary user or subscriber), gender and age. This anal-
ysis focuses on membership which has a significant impact
on trip demand [9]. Further, we have weather data which
includes temperature, humidity, wind speed and visibility
distance. The datasets are described in detail in Sect. 6.
We report the findings from just the New York City dataset
due to the space limitation, the other datasets show similar
results.

3.2 Empirical Observations

In this section we examine how multiple levels of fac-
tors affect bike pick-up demand (Sect.3.2.1) and trip dura-
tion (Sect.3.3.2). The key observations are listed in each
subsection.

3.2.1 Pick-Up Demand

Previous studies showed that pick-up demand changes in the
environmental factors such as weather [5], [6], [28] as well
as individual factors such as user type [8], [9]. Here we fur-
ther analyze how these two levels of factors influence the
pick-up demand collectively.

By examining the temporal evolution of bike pick-up
demand, we find that the weather variables have non-linear
effects on trip demand, which can be approximated by third
degree polynomials (P1). Figure 1 shows the average num-
ber of pick-up events per day for subscribers and temporary
users across different weather variables: temperature (left)
and humidity (right). The dotted lines represent the results
of third degree polynomial fitting. This result also shows
the collective influence of the weather and user type factors.
The demand variations under different weather conditions
are quite different for the different user types (P2). It is ap-
parent that temporary users are more sensitive to weather
stress than subscribers.
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3.2.2 Trip Duration

Most existing works [4], [5] simply fit a single distribution
to trip durations between each pair of stations, without con-
sidering the influential factors. This paper investigates in
more detail whether and how trip duration changes under
different environmental and individual contexts.

Our analysis indicates that the variation in trip duration
is mostly explained by user type (P3). Figure 2 plots the
log-normal distribution best-fit to the normalized histogram
of trip durations for different temperatures. Figure 2 (a) is
the distribution of trip duration for all users; Fig. 2 (b) is the
subscriber distribution. According to Fig.2 (a), trip dura-
tions seem to fluctuate with the weather. Average trip dura-
tion is longer with nice temperatures than with cool or hot
temperatures. This can be explained by different trip be-
havior across different user type (registered subscribers or
temporary users). As mentioned in the previous subsection,
temporary users use the bikes much less than subscribers in
bad weather conditions such as too hot or cold temperatures.
Also, the average trip durations vary significantly between
subscribers and temporary users [9]. We confirm that the
same discussion holds for the other weather variables and
periodic factors. This knowledge allows us to simplify the
model (see Sect. 5).

4. Notations and Definitions

In this section, we first introduce some notations and defi-
nitions and then formally define the trip demand prediction
problem. The notations used in this paper is summarized in
Table 1.

A bike trip treated as the tuple (u,v,t,7,m) which
means a user of type m picked up a bicycle from station
u at time ¢ and dropped off the bicycle at station v at time 7.
The duration of each trip is defined as A = 7 — ¢. Formally,
let S = {s1,...,5x} be a set of stations, where K denotes
the number of stations. We have a set of bike trip histories
D = {(u;, v, 1,7, m;)};_, with a total of n instances. Each
element in D is an event consisting of pick-up station, drop-
off station, pickup time, drop-off time, and user type; where
user of type m; € M picks up a bicycle from station u; € S at
continuous time #; € R*, and drops off the bicycle at station
v; € S at continuous time 7; € R* (#; < ;). Trip duration is
represented by A; = 7; — t;. Figure 1 illustrates an example

Table1 Important notations.
Symbol  Description
S Set of stations, S = {s1,..., sk}
K Number of stations

u;/vi Pick-up/drop-off station of trip i
ti/7i Pick-up/drop-off time of trip i

A; Trip duration of trip i, T; — t;
M Set of user types

m; User type of trip i

W, Weather vector at time ¢
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Fig.3  Example of bike trip data: The x-axis presents a timeline of events
for each station.

of bike trip data. In this figure, the black arrows denote trips
between stations. Each black arrow is a pick-up event and
each red diamond marker is a drop-off event. At the bottom
of Fig. 4, we plot the number of pick-up events (black line),
the number of drop-off events (red line) and the number of
bicycles (yellow line) at station sg.

We further have a set of weather data W = {W,},er-.
W, = (F, H;,S;,V;, R,) is a weather vector corresponding
to time ¢, where F;, H;, S;, V; and R, denote tempera-
ture, humidity, wind speed, visibility distance, and rainfall,
respectively.

The trip demand prediction task tackled in this paper is
defined as:

Problem 1: Given bike trip data 9D and weather data ‘W,
we aim to solve the following two sub-tasks:

o Pick-up and drop-off number prediction: What number
of bicycles will be picked up or dropped off at each
station in time window [fgart, fend]?

e Over-demand time prediction: What is the expected
time at which over-demand will occur at each station?

5. Trip Demand Prediction

In this section, we first provide the necessary background
on marked temporal point processes. We then introduce our
model and derive an optimization algorithm for our method.
Finally, we provide the prediction procedure.

5.1 Marked Temporal Point Process

Marked temporal point process is a random process of event
occurrences over time. Let (¢,v) be an event, represented
by the pair of time + € R* and another marker informa-
tion v (e.g., station). Marked temporal point process is gov-
erned by non-negative intensity function A(t,v). Intensity
A(t, v) represents the probability of the occurrence of a new
instance of v in small time window [t,¢ + dt]. The func-
tional form of the intensity function is designed to capture
the phenomena of interest[29]. Typically, intensity A(z,v)
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reduces to A(t,v) = A(¢) f(v|t), where f(v|?) is the conditional
mark density function and A(f) represents the probability of
an event occurring in small time window [t + dt]. Given
historical observations H = {(t,-,vi)}l'.\i”1 with a total of Ny
events, the likelihood function in observation time window
[0, T] is given by

T
p(wwr,v)):[ [1 z(n)f(vnm]exp(— fo A0dr).

(t;,0)eH

(D

5.2 Proposed Method

This paper aims to design a trip demand prediction method
that properly incorporates both environmental and individ-
ual factors. Our method follows a few basic assumptions
drawn from previous studies: (A1) pick-up and drop-off
demand varies with circadian and weekly patterns [5], [6],
[28]; and (A2) trip duration follows a log-normal distribu-
tion[4]. Additionally, we apply the insights gained from
empirical observations (P1)-(P3) to our method.

Figure 4 shows the framework of our proposed method.
From the left, we have two data sources, i.e., bike trip data
and weather data. The two kinds of data are processed
by two models: 1) pick-up model models pick-up demand
at each station by a marked temporal point process, where
drop-off stations and individual factors (e.g., user type) are
represented as marks; 2) trip duration model describes trip
durations between each pair of stations with log-normal
models (A1). Finally, our method predicts drop-off demand
by combining the pick-up demand and trip duration. The
following subsection details the models of our method.

5.2.1 Pick-Up Model

The pick-up model is built upon the marked temporal point
process. Here we explain how to incorporate the aforemen-
tioned assumptions into the point process framework. We
assume that the set of pick-up events at station u follows a
marked point process with intensity function 4,,(¢, v|W,) with
covariates of environmental factors (weather variables) W;
as follows:

(8, 0IW1) = fu (0N, (EW)), 2

where A,(t, v|W;) indicates the occurrence probability that a
user picks up a bicycle at time ¢ and station u, and f,(v|f)
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is the conditional probability that the user who picks up the
bicycle at time ¢ and station # will drop it off at station v.
This formulation enables us to incorporate the environmen-
tal factors.

We design f,(v|f) based on assumption (Al): drop-off
demand changes with circadian and weekly patterns. First
we introduce a relative time from the beginning of the week
d € [0, 6] days for each time . We then use the Gaussian
Naive Bayes approach to model the popularity f,(v|d) of
station v at time d [30]. In particular, we rewrite f,(v[¢) as
Ju(@|t) o< p,(tlv = 2)p,(2) using Bayes’ theorem, where drop-
off station v is regarded as class z € S. We fit a Gaussian
distribution to p,(tlv = z), and a multinominal distribution
to pu(2).

We model 4,(t|W,) as the product of two factors: tem-
poral factors and weather factor «,, ,(W,), as in

AW = " um (W) (D). (3)

meM

Here we introduce the individual functions for each type of
user m based on empirical insight (P3), different user types
have quite different trip demand variations.

Temporal factor: To describe a periodic pattern with
one-week cycle (A1), we define the temporal factor A, ,,,(¢)
by using a mixture of J periodic Gaussian kernels [31]:

J
/lu,m(t) = Z
=1

where w; is the fixed center of the j-th Gaussian kernel,
h is the standard deviation, and x;‘.‘m is the weight for the
Jj-th kernel of user type m at station u. [ is the periodic-
ity hyper-parameter that represents the distance between the
repetitions. For example, by setting the periodicity hyper-
parameter value / = 24 hours, we can enforce a circadian
repetition. In this study, we use / = 168 (i.e., 7 X 24) hours
to capture a weekly repetition. J specifies the approxima-
tion of the periodic pattern. Here we choose J = 168, which
represents the weekly periodic pattern with a granularity of
1-hour. The top row of Fig.7 in the experimental section
depicts the temporal factor 4, ,,(7) learned from a real-world
data. We can see that the mixture-based formulation pro-
vides a flexible model, allowing to capture the complex pat-
tern with a weekly periodicity. In the experiment, we set
h = 60 minutes and w; = j X 60 minutes.

Weather factor: In order to model the the weather in-
fluence (P1), we adopt the following multivariate polyno-
mial regression model:

X" exp (— sinz(ﬂﬂ)/hz), 4)

K
k=1

where W; is the five-dimensional weather vector, b and
by™" are the five-dimensional regression vector and the re-
gression intercept for user type m and station u, A% is the
k-fold Hadamard product (Hadamard power) of A. We use

1639

an exponential function to ensure non-negativity of the in-
tensity. @, ,(W,) represents the non-linear influence of the
weather on trip demand. We choose K = 2 (i.e., the bino-
mial regression) in this paper, and it is sufficient to describe
the weather influence as seen in the experimental section.

Note that this can be easily generalized to high-degree
multinomials. We denote the parameter set of 4,(¢{|W;) as
\P:{{ ;}71}1 l,y’bum ’bl;(,m,bg,m}.

5.2.2  Trip Duration Model

Trip duration model follows the basic assumptions: it fol-

lows a log-normal distribution (A2) and mainly depends on

user type m (P3). We assume that trip duration A between

each pair of stations (station u and v) and each type of user

m is given by the following log-normal distribution:

(- (log A — p1;0))’
20 (m)2

Ltl)

(m)

pUA) = ) ©

1
——————exp
Ao-ff,? V2r

where {ul", %) e mucses are the model parameters.

5.3 Learning

The log-likelihood of the pick-up model can be written by

L= Zlog/lul(mW, Z f L (tIW,)dt

ueS

+ Z log £, (vilt;). )
i=1

We note that this reduces to the independent optimization
problem for 4,(t|W;) and f,(t,v). For A4,(f|W,), because the
objective function is differentiable with respect to all the pa-
rameters, ¥, gradient-based optimization algorithms can be
used. We leverage the stochastic gradient decent (SGD) al-
gorithm to solve the optimization problem. For f,(z,v), fol-
lowing the general procedure described in [30], we obtain
the closed form solution of {6, ¢7}.cs. For our trip duration
model, the simple formulation (Eq. (6)) allows us to derive
a closed form solution for all parameters. Due to the page
limit, we omit details of the inference procedures.

5.4 Prediction

Given the learned intensity function 4,(t, v|W,) and the dis-
tribution of trip durations pi,',"v)(A), we can predict the trip
demand for each station, u. Here, we provide the prediction
procedures for the two sub-tasks, i.e., pick-up and drop-off
number prediction and over-demand prediction.

5.4.1 Pick-Up and Drop-Off Number Prediction

For pick-up number prediction, we directly integrate the
intensity function: f “* A,(t)dt, which gives the expected
number of pick-up events in time window [fgart, fena]. The



1640

drop-off intensity of station v is given by

KW=, 3 [ Wokumopa-rrat. @

ueS meM

For drop-off number prediction, we derive the expected
number of drop-off events at station v by integrating the
drop-off intensity: fl l[e"ld A, (tlW,)dt. As this integration is an-
alytically intractable due to the complexity of A,(¢f|W;), we
perform numerical integration.

5.4.2 Over-Demand Time Prediction

The over-demand time, ,, at station u is given by

, = min {t,, N1 + f W) = Au(lW))]dr < 1},
9

where 7. is the current time and N,,(.) is the current number
of bicycles (or docks) at station u. As ¢, is analytically in-
tractable from Eq. (9), the solution is numerically searched
for by a scan over t, € [t., tf] in stepwise fashion, where ¢,
is the end time of the test period.

6. Experiment

In this section, we evaluate the predictive performance of
our model on real-world datasets with regard to predicting
pick-up/drop-off number and when over-demand will occur.

6.1 Datasets

We used datasets from three cities: New York City,
Washington, D.C. and San Francisco. Each dataset includes
two sub-datasets: bike trip data and weather data. For San
Francisco, bike trip data also contains station status history.
All the bike trip data are publicly available. The weather
data can be downloaded via the weather underground API".
The details are as follow.

e New York City (NY)™': The trip data is taken from the
bike-sharing system in New York City for the period
Sept 2015 to Aug 2016 (The observation period is 1
year). Each trip record contains five fields: pick-up and
drop-off dates/times, pick-up and drop-off stations, trip
duration and type of user (i.e., subscriber or temporary
user).

e Washington D.C. (D.C.)"™": For Washington D.C., we
obtained data from the bike-sharing system for the pe-
riod Jan 2015 to Sept 2016. Each dataset has the same
format as the NY dataset.

o San Francisco (SF)'T: The dataset was collected in

Thttps://www.wunderground.com/weather/api/
TThttps:// www.citibikenyc.com/system-data
T http://www.capitalbikeshare.com/system-data
Tt https://www.fordgobike.com/system-data
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Table 2  Basic dataset statistics.
Data sources NY D.C. SF
Bike trip # Stations 633 402 74
data # Trips 12,906,339 3,252,709 313,685
(Subscriber) 11,367,000 2,581,413 280,091
# Station status - - per minute
Meteo- Temperature (°C) [-18, 35] [-5, 36] [0, 33]
rological Humidity (%) [0, 100] [0, 100] [0, 100]
data Visibility (km) [0, 137] [0, 48] [0, 390]
Wind Speed (mph) [0, 16] [0, 16] [0, 16]
Rain fall (mm) [0, 19] [0, 9] [0, 11]

Observation period 9/1/2015 - 8/31/2016

San Francisco for the period Sept 2015 to Aug 2016.
For each trip, the dataset provides pick-up and drop-off
dates/times, pick-up and drop-off stations and trip du-
ration. SF dataset also contains station status history,
i.e., the number of bicycles and docks available in sta-
tions recorded almost every minute.

It should be noted that prediction performance might de-
pend on test period. Therefore, we split each dataset into 4
chronological subsets each of three month duration (e.g., Jan
2015 - Mar 2015, Apr 2015 - Jun 2015 etc.) and performed
independent runs for each subset. In order to remove the
bias of the day of week, we selected the last 7 days of each
subset as the test set and used the remaining data as train-
ing set. For over-demand prediction, we ran the step-wise
search algorithm described in Sect.5.5 (Eq.(11)) to every
day in the test period.
Table 2 provides the statistics of the datasets.

6.2 Evaluation Metrics

For each subtask, we introduce different metrics. For pick-
up and drop-off number prediction, we discretize time into
1-hour bins and compare the number of pick-up and drop-
off events at each station in each time bin with ground truth
by using mean absolute error (MAE):

ZnN=1 Zf:] mn,r - yn,rl
RN ’

MAE = (10)
where N denotes the number of time steps in the test pe-
riod and R denotes the number of stations. i, , is the pre-
dicted number of pick-ups or drop-offs at the r-th station for
the n-th time step; y,, is the ground truth. For the over-
demand time prediction task, we introduce penalized root
mean square error (PRMSE). Given predicted over-demand
times (7!,...,7M) and actual over-demand times (., ..., )
at r-th station, PRMSE is defined as the square root of the
following equation:

ZR:( Z( —t)2+I[M>N]Z(T
r= i i=N+1
+I[N > M] Z (T—zj)z), (11)

i=M+1

where Q = min(M, N). I[-] is an indicator function, which
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indicates 1 when the condition holds, and O otherwise.
PRMSE measures absolute difference between the predicted
times and the actual times at each station. The second and
third terms respectively penalize excessive and insufficient
number of times predicted by our method [32].

6.3 Baseline Methods

For pick-up and drop-off number prediction, we com-
pare the proposed model with the following five baseline
methods.

e Historical Mean (HM)[21]: Estimates the pick-up
(drop-off) number during the specific time period as av-
eraged pick-up (drop-off) number in historical data.

o Auto-Regressive and Moving Average (ARMA)[33]:
Makes one-step ahead prediction of the pick-up (drop-
off) number based on the historical data by exploiting
its temporal correlation.

o [nhomogeneous Poisson Process Inference (IPPI) [22]:
Constructs individual Poisson process models for pick-
up and drop-off time. These models do not include the
correlation between pick-up and drop-off across sta-
tions, and does not consider trends.

Note that the above three methods do not consider any exter-
nal factors such as weather and user types as they are orig-
inally based on the historical data and cannot be easily ex-
tended to capture the external influences.

o Multi-similarity-weighted k-NN (MSWK) [6]: Outputs
the aggregated number of pick-ups and drop-offs for
the given future time period and weather variables,
where the similarity of the input values is taken into
consideration.

o Random-forest-based method (RF)[5]: Predict the ag-
gregated number of pick-ups and drop-offs based on
time factors (i.e. time of day and day of week) and
weather variables by using Random forest model.

Both MSWK and RF, which are intended to model the ag-
gregated data, do not incorporate influential factors associ-
ated with individual trips (e.g., user type). Hence we only
consider environmental factors (e.g., weather) and time fac-
tors (e.g., day of week) for these methods in the experiment.
Also, all the existing methods, except for IPPI, are focus on
predicting the aggregated number of trips; thus not to ap-
plicable for over-demand time prediction. For this task, we
compare the proposed method and IPPL

6.4 Evaluation Results

6.4.1 Pick-Up and Drop-Off Number Prediction

Figure 5 shows the predictions output by the six different
methods for the three datasets, i.e., NY, D.C. and SF, where

5 (a) presents the MAE for pick-up prediction and 5 (b) is
the MAE for drop-off prediction. In all cases, the proposed
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Fig.5 Mean absolute error (MAE) in predicting (a) pick-up and
(b) drop-off number. Lower is better. Comparison to baselines.

method outperforms the baseline methods and the differ-
ences are significant (two-sided t-test: p < 0.01). This re-
sult suggests the proposed method effectively incorporates
both environmental factors (weather) and individual factors
(user type). On the whole, ARMA performs worse than
the other methods, demonstrating the benefit of considering
periodicity. For pick-up number prediction, the clustering-
based methods, RF and MSWK, yield comparable results
with HM, even though they consider additional factors such
as the weather. RF provides slightly less accurate predic-
tions than HM on two datasets (D.C. and SF). This could be
due to the limited amount of data (see Table 2); for the NY
dataset, RF performs better. Assuming a parametric form
of the underlying process, the proposed method is robust
against data sparsity. For drop-off number prediction, the
proposed method outperforms the existing methods. This
suggests the appropriateness of the trip duration model. We
obtained similar results using other metric (e.g. Mean Aver-
aged Percentage Error).

6.4.2 Over-Demand Time Prediction

To evaluate the effectiveness of the proposed method for
over-demand time prediction, we use the learned intensity
function of IPPI (following the same procedure for over-
demand time predictions as in the proposed method). Be-
cause only the SF dataset contains station status history,
we conduct the experiment on the SF dataset. We used
the timing at which the number of bicycles or docks turns
to be zero as the ground truth for the actual over-demand
time. Table 3 gives the predictions output by IPPI and
the proposed method for the SF dataset. Clearly, the pro-
posed method performs significantly better than IPPI. Ac-
cording to Table 3, the proposed model results in about
13% smaller MAE than the baseline method. This is be-
cause the proposed method captures both environmental and
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Table 3  Mean absolute error (MAE) for over-demand prediction on the
SF dataset. The numbers in parentheses indicate the standard errors.
IPPI Proposed
PRMSE  53.34(0.35) 47.01 (0.31)
Ground truth IPPI Proposed
215
8:19 5:46 5:02
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8:24 1547 : 9437 T

Fig.6  Comparison of the estimated over-demand time by IPPI (middle)
and proposed method (right) with actual time (left) around San Francisco
Ferry Building on a typical weekday (Feb. 24, 2016).
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Fig.7 Learned intensity function. Top row: temporal factor; bottom
row: weather factor. block.

individual factors, while IPPI considers only the periodic
pattern. Figure 6 further supports this, which compares the
estimated over-demand time with the actual time around San
Francisco Ferry Building on a typical weekday, Feb. 24,
2016. The left plot is the actual time, the middle plot is
the prediction results of IPPI, and the right plot corresponds
to the values output by the proposed method. It can be seen
that the proposed method provides more reasonable predic-
tions than IPPI.

6.4.3 Case Study

Figure 7 presents the learned intensity at the most popular
station in Washington D.C. from Aug 20 to Aug 27 2016,
where the top row shows the temporal factor; and the bottom
row is the weather factor. In this figure, the pink line shows
the intensity functions of temporary users and the black line
shows those of subscribers. According to the top row, the
registered subscribers mainly rent bicycles on the weekdays.
Their trip demand has two peaks around 9:00 and 18:00 on
the weekdays. This shows that the temporary users tend to
use bicycles during the daytime. In the bottom row of Fig. 7,
we can see that the trip demand of temporary users changes
more dramatically with the weather than that of subscribers,
as confirmed in the preliminary analysis (Sect.3.2.1).
These results demonstrate that the proposed method yields
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valuable insights about how each type of users responds to
environmental changes. These insights can enhance bicycle
redistribution e.g., making incentives more effective.

7. Conclusion and Future Work

In this paper, we studied the problem of trip demand pre-
diction focusing on the sub-problems of predicting trip de-
mand and over-demand times. We first gathered and ana-
lyzed data from three cites: NY, D.C. and SF. Our empiri-
cal analysis of the real-world bike-sharing datasets demon-
strated that trip demand is jointly influenced by multiple
factors and that modeling them simultaneously is critical to
achieving accurate predictions. Based on the insights, we
used the marked temporal point process framework to con-
struct a novel method that jointly captures the multiple lev-
els of factors including the individual factors such as user
type and environmental factors such as weather. We con-
ducted experiments on the data of three real-world bike-
sharing systems. Our results demonstrated the superiority
of the proposed method for trip demand prediction over five
existing methods. We note that the proposed method is di-
rectly applicable to various other domains, including taxi
dispatch and targeted ad. In future work, we will perform
experiments on a wider variety of datasets including taxis,
car-sharing and public transit to demonstrate the superiority
of the proposed method in various application domains.
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