
2968
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018

LETTER Special Section on Parallel and Distributed Computing and Networking

Hardware Based Parallel Phrase Matching Engine in Dictionary
Compressor

Qian DONG†a), Student Member

SUMMARY A parallel phrase matching (PM) engine for dictionary
compression is presented. Hardware based parallel chaining hash can elim-
inate erroneous PM results raised by hash collision; while newly-designed
storage architecture holding PM results solved the data dependency issue;
Thus, the average compression speed is increased by 53%.
key words: parallel chaining hash, dictionary compression, phrase match,
hash collision, hardware algorithms

1. Introduction

In order to cope with the explosion of data along with the
popularity of cloud computing, a number of real time dic-
tionary compression scheme are proposed by exploiting the
parallel computing ability of hardware structure [1]–[10].
The central part of the dictionary compression consists of
two serial steps: Phrase matching (PM) step positions the
phrases in the dictionary that matched to the data to be com-
pressed (raw data); replacement (RP) step analyses PM re-
sults and chooses the longest phrase to encode raw data. The
dictionary, also known as the sliding window, changes dur-
ing compression reflecting newly encoded raw data.

The most difficult issue of dictionary compression is
an efficient search for duplicated phrases in PM step, both
FPGA and ASIC based PM acceleration engines were pro-
posed. Parallel matching algorithms based on content ad-
dressable memories (CAMs) and systolic arrays were pro-
posed for optimal PM speeds [3]–[6], parallel dictionar-
ies approaches based on generic hardware resources (dis-
tributed registers and on-chip memories) were also proposed
and enhanced compression speeds to some extent [7]–[10].
These PM engines are resource intensive with trade-offs be-
tween compression speeds and hardware resources.

We propose a resource-efficient PM engine in this let-
ter. The accuracy of PM results was advanced efficiently by
using parallel chaining hash method; while a FIFO struc-
ture holding PM results was introduced for implementa-
tions that support the full parallel operation of RP and PM
step. Experimental data shows that our parallel PM engine
accelerates average compression speed by 53% compared
with the traditional approaches based on a single hash func-
tion [1], [2].

Manuscript received December 6, 2017.
Manuscript publicized September 18, 2018.
†The author is with School of Integrated Circuits, Southeast

University, Nanjing, 210046, P.R. China.
a) E-mail: ic qiand@seu.edu.cn

DOI: 10.1587/transinf.2018PAL0001

2. Parallel Chaining Hash

Hash function is often used to simplify the PM step. The
phrases in dictionary are arranged in linked lists indexed by
the hash values of their prefix (first-3-byte); thus, accord-
ing to raw data’s hash value, a linked list of the duplicated
phrases can be selected for RP step. The selected linked list
also needs to be maintained reflecting newly encoded raw
data.

A hash function maps M entries to N buckets [11]. In
dictionary compression, N is defined smaller than M to save
memory resource, but it induces a negative effect of erro-
neous PM results. For instance, the hash function in LZ77
can be denoted as Eq. (1) or (2), M and N are 24 and 15 in
bit width. It is obvious that the hash value h in Eq. (2) does
not change with the high 3-bit input: P[23 : 21] Based on
this, the phases that do not really match each other could
be assigned to a same linked list according to the same hash
value, resulting in erroneous PM results, which is commonly
known as wrong matches induced by hash collision.

h[14 : 0] = H(P[23 : 0]) (1)

h = ((P[23 : 16] << 10) ⊕ (P[15 : 8] << 5)

⊕ (P[7 : 0]))&15′b1
(2)

The parallel chaining hash method is proposed to re-
move the wrong matches for accelerating the data compres-
sion, which is based on an assumption that the phrase can
be reconstructed from its two hash values. For instance, Ha

and Hb, which outputs all the odd and even bits of the input
data respectively, is such a pair of hash functions. Thus, the
sufficient and necessary condition of pi = p j is shown in
Eq. (3).
{

Ha(pi) = Ha(p j)

Hb(pi) = Hb(p j)
(3)

Under the guidance of such pair of hash functions, each
phrase in dictionary is parallel assigned into two groups of
linked lists. In a PM loop, one linked list can be selected
from each group according to raw data’s hash value, and
a coincidence of an element in the two selected linked lists
suggests that the corresponding phrase matches with the raw
data.

A didactic example is shown in Fig. 1: pa is the prefix
of raw data at 201; linked list A is maintained based on the
hash function Ha, while linked list B is according to Hb.

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers



LETTER
2969

Fig. 1 Two selected linked lists in parallel chaining hash method.

Fig. 2 The FIFO memory used for storing PM results.

Suppose that because of hash collisions, Ha(pa) = Ha(pb) =
Ha(pc) and Hb(pa) = Hb(px) = Hb(py). In the PM loop for
the raw data at 201, the same element 055 can be queried
by traversing linked list A and B, although wrong matches
exist in each selected linked lists. As a result, pa at 055 is
found as the correct matched phase.

3. Storage Mode of Phrase Matching Results for Par-
allel Compression

When the matched phrase is found, a maintained linked list
that consists of the phrases’ direct addresses will be exported
to support RP step. Typically, PM and RP steps can only run
serially and alternately. Any PM step ahead of schedule is
likely to overwrite useful information required by RP step,
and this data dependency limits the full parallelization of
data compression.

Careful observation of PM results in the linked list for-
mat reveals certain degrees of freedom, which can be ex-
ploited to achieve fine-grain parallelism in dictionary com-
pression. These observations lead to the following key idea:
the newly generated PM result is inserted in the head of the
old linked list, without changing the pre-existing linking re-
lationships; it’s like the new nodes grow out from the old
linked lists’ heads.

In our design, a FIFO memory is added to save the
head of the linked list that is being maintained, and guar-
antee RP step to index an appropriate fragment in the main-
tained linked lists. As shown in Fig. 2, even if PM step has
processed raw data up to 207, at the same time, RP step for
raw data at 180 still can find the accurate linked list indexed
by the output of the FIFO. In this way, PM and RP steps are
fully parallel and no longer restrict each other.

4. Hardware Architecture of Phrase Matching Engine

A pipelined architecture of dictionary compressor is shown
in Fig. 3, which includes PM engine and RP block. Raw data

Fig. 3 Diagram of hardware based dictionary compressor.

is processed by two hash modules of PM engine simultane-
ously and independently, which employ two hash functions
in Eq. (4). The two groups of the linked lists (Ga and Gb)
generated by Ha and Hb are processed by the backtrack &
compare module, producing a group of linked lists without
wrong matches as the PM result, which are indexed by the
heads of linked lists storing in the FIFO. Based on this, RP
block pipelined selects the longest match, encodes raw data
into compressed data.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ha : h = ((P[23 : 16] << 10) ⊕ (P[15 : 8] << 5)
⊕ (P[7 : 0])) &15′b1

Hb : h =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
(P[23 : 16] ∗ 0.618 << 10)
⊕ (P[15 : 8] ∗ 0.618 << 5)
⊕ (P[7 : 0] ∗ 0.618)

⎞⎟⎟⎟⎟⎟⎟⎟⎠&15′b1

(4)

5. Experimental Results

The evaluation of our parallel PM engine leads to the
resource utilizations for Xilinx Virtex-6 FPGA devices
(XC6vlx240tffU56-l): 917 (0.30%) registers, 1681 (1.12%)
LUTs, and 120 (28.84%) block RAMs. Dictionary compres-
sion (LZ77) tests were performed using Canterbury Corpus,
the performance measures are wrong match ratio (WMR),
compression ratio (CR), and compression speed (CS), which
are expressed as Eqs. (5), (6) and (7).

WMR =
number of wrong matches

number of all matches
× 100% (5)

CR =
compressed data size

raw data size
× 100% (6)

CS =
raw data size

total time consumed in compression
(7)

For illustration, Table 1 summaries obtained results
with our parallel PM engine compared to those using tradi-
tional PM methods with only a hash function in [1], [2]. The
average WMR sharply decreased from 16.39% to 0.10%,
when the traditional PM methods changed to parallel PM
engine. WMR reaches 0.10% indicates that almost all the
wrong matches were eliminated. At the same time, a very



2970
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018

Table 1 Comparative results in terms of wrong match ratio (WR),
compression ratio (CR), and compression speed (CS).

few number of wrong matches infiltrated the PM result; we
believe the reason is that there is still a slight correlation be-
tween the hash function in Eq. (4). The more accurate PM
results and the advantages of parallel computing can accel-
erate dictionary compression. Table 1 also shows the CS of
the dictionary compressor using the two PM engines under
the same test condition. The average improvement of CS
using our parallel PM engine is 53.12%. In the previous
studies of accelerating data compression, the great improve-
ment of CS was usually at the expense of CR [5], [6]. In our
study, the situation is different though; a slightly better CR
is also obtained, which is shown in the 3th and 6th columns
of the Table 1.

6. Conclusion

We present a hardware based PM engine for dictionary com-
pression, which uses two hash functions to guide the main-
tenance of two groups of linked lists, and then eliminates
the wrong match by recursively comparing the linked lists.
Moreover, the storage mode of PM results enables the full
parallel operation of PM and RP steps. Coupled with the
advantages of pipeline structure, the PM results with few
numbers of wrong matches is extremely advantageous to
improve CS in the hardware implementations.

Acknowledgments

This work is supported by the national natural science foun-
dation of China (No. 61571116).

References

[1] B. Li, L. Zhang, Z. Shang, and Q. Dong, “Implementation of LZMA
compression algorithm on FPGA,” Electron. Lett., vol.50, no.21,
pp.1522–1524, 2014.

[2] S. Rigler, W. Bishop, and A. Kennings, “FPGA-based lossless data
compression using Huffman and LZ77 algorithms,” IEEE Canadian
Conference on Electrical and Computer Engineering (ICCECE),
pp.1235–1238, 2007.

[3] D.-H. Le, K. Inoue, and C.-K. Pham, “Design of a parallel
CAM-based multi-match search system using 0.18-µm CMOS pro-
cess,” IEEE Fifth International Conference on Communications and
Electronics (ICCE), pp.336–339, 2014.

[4] P. Manikandan, B.B. Larsen, and E.J. Aas, “Design of embedded
TCAM based longest prefix match search engine,” Microprocessors
and Microsystems, vol.35, no.8, pp.659–667, 2011.

[5] M.A.A.E. Ghany, A.E. Salama, and H.A. Khalil, “Design and imple-
mentation of FPGA-based systolic array for LZ data compression,”
IEEE International Symposium on Circuits and Systems (ISCAS),
pp.3691–3695, 2007.

[6] S.-A. Hwang and C.-W. Wu, “Unified VLSI systolic array design for
LZ data compression,” IEEE Trans. Very Large Scale Integr. Syst.
(VLSI), vol.9, no.4, pp.489–499, 2001.

[7] S.M. Lee, J.H. Jang, J.H. Oh, J.K. Kim, and S.E. Lee, “Design of
hardware accelerator for Lempel-Ziv 4 (LZ4) compression,” IEICE
Electronics Express, vol.14, no.11, 20170399, 2017.

[8] J. Fowers, J.-Y. Kim, D. Burger, and S. Hauck, “A scalable high-
bandwidth architecture for lossless compression on FPGAs,” IEEE
International Symposium on Field-Programmable Custom Comput-
ing Machine (FCCM), pp.52–59, 2015.

[9] M.S. Abdelfattah, A. Hagiescu, and D. Singh, “Gzip on a chip: High
performance lossless data compression on FPGAs using OpenCL,”
International Workshop on OpenCL 2013 & 2014 (IWOCL ’14),
no.4, 2014.

[10] K. Liao, M. Petri, A. Moffat, and A. Wirth, “Effective construc-
tion of relative Lempel-Ziv dictionaries,” International Conference
on World Wide Web, WWW ’16, pp.807–816, 2016.

[11] Z. Shi, C. Ma, J. Cote, and B. Wang, “Hardware implementation
of hash functions,” Introduction to Hardware Security and Trust,
pp.27–50, Springer New York, 2012.

http://dx.doi.org/10.1049/el.2014.1734
http://dx.doi.org/10.1109/ccece.2007.315
http://dx.doi.org/10.1109/cce.2014.6916726
http://dx.doi.org/10.1016/j.micpro.2011.08.002
http://dx.doi.org/10.1109/iscas.2007.378644
http://dx.doi.org/10.1109/92.931226
http://dx.doi.org/10.1587/elex.14.20170399
http://dx.doi.org/10.1109/fccm.2015.46
http://dx.doi.org/10.1145/2664666.2664670
http://dx.doi.org/10.1145/2872427.2883042
http://dx.doi.org/10.1007/978-1-4419-8080-9_2

