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SUMMARY This paper intends to reduce duration times in typical col-
lective communications. We introduce logical addressing system apart
from the physical one and, by rearranging the logical node addresses prop-
erly, we intend to reduce communication overheads so that ideal communi-
cation is performed. One of the key issues is rearrangement of the logical
addressing system. We introduce genetic algorithm (GA) as meta-heuristic
solution as well as the random search strategy. Our GA-based method
achieves at most 2.50 times speedup in three-traffic-pattern cases.
key words: parallel computers, interconnection networks, collective com-
munication, communication performance, topology mapping

1. Introduction

Not a few parallel applications involve a set of collec-
tive communications, in which every node sends a certain
amount of packets to a specified destination, and the com-
puting performance is bound by the duration times of the
collective communications. The essential problem comes
from interferences between message packets that traverse at
the same moment in the interconnection network. The prob-
lem remains open since we are not successful in finding a
general and unique solution for eliminating unnecessary de-
lays in communication to maximize the performance of par-
allel computing.

Packet interference occurs when two or more distinct
packets share routing resources. To eliminate the interfer-
ence, we have two options: temporal and spacial arrange-
ment. The former option avoids simultaneous sharing of a
resource by arrangement of timing. The latter one dissolves
the shared status by arranging (physical) position.

We have discussed packet-scheduling by means of par-
ticle swarm optimization (PSO) [1]. This effort tries to find
an (quasi-)optimal schedule that specifies the injection tim-
ing of every packet not to interfere with other packets until
it reaches its destination node. This method is based on the
temporal arrangement.

This paper discusses the spatio-temporal optimization
of packet delivery in collective communication from a dif-
ferent angle, i.e., the spacial arrangement. We consider the
optimization problem as a topology mapping problem. Ev-
ery collective communication has its own topology in com-
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munication pattern such as transpose and perfect-shuffle.
If the specified topology is embedded well on the physi-
cal structure of practical parallel machine, the application
that involves the topology of collective communication runs
without any communication overheads.

The fundamental point of this paper is to introduce log-
ical addressing system apart from the physical one. By re-
arranging the logical node addresses to reduce communica-
tion overheads, the logical addresses show an optimal com-
munication for a (set of) given traffic pattern(s). We further
introduce genetic algorithm (GA) to find (quasi-)optimal so-
lutions of logical addressing.

The rest of this paper is organized as follows. Section 2
formalizes the problem. Sections 3 and 4 discuss random
and GA-based search methods, followed by our evaluation
results in Sect. 5. Section 6 shows related work and Sect. 7
concludes this paper.

2. Topology Mapping

As the previous section briefly introduced, we discuss logi-
cal topology mapping of the applications’ traffic patterns to
the physical machine structure by separating logical node
addresses from physical ones. For a specific pattern, we can
obtain optimized topology mapping easily by hand, if the
traffic consists of peer-to-peer communications. Figure 1
shows a typical example of perfect-shuffle traffic pattern.

Let a mapping function

xL = Γ(xP) (1)

map a logical address xL on a physical location (address)
xP. Collective communication is carried out on the basis of
logical addressing. Assume that a source node xL

S sends a
packet to its destination xL

D. In this case, the packet actually
starts from the physical node xP

S = Γ
−1(xL

S) and it destines

Fig. 1 Topology mapping example of perfect-shuffle traffic
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the logical node xL
D at xP

D = Γ
−1(xL

D).
For simplicity in discussion, we assume two dimen-

sional torus topology for the physical addressing system.
An actual mapping function can be represented as a two-
dimensional matrix:

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xL
0,0 xL

0,1 . . . xL
0,n-1

xL
1,0 xL

1,1 . . . xL
1,n-1

...
...

. . .
...

xL
n-1,0 xL

n-1,1 . . . xL
n-1,n-1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

where xL
i,j = (xi, j, yi, j) and xL

i,j � xL
l,m (i � l or j � m).

3. Random Search

According to the discussions in the previous section, the
problem in this paper is formalized to find an optimal (or
near-optimal) mapping function Eq. (1). The mapping func-
tion can be denoted in a matrix form as Eq. (2) shows. By
generating mapping matrices randomly, we can expect that
some of the generated matrices perform preferable commu-
nications.

We should discuss the search space in the problem be-
fore showing evaluation results in Sect. 5. As shown in
Eq. (2), in an n × n system, the size of search space is pos-
sible number of permutation of n2 items, i.e., O(n2!) that
approximates O(( n2

e )n2
). For example, an 8×8 system should

search a solution in 64! ≈ 1.27e+89 possible combinations.

4. Genetic Approach

To overcome the difficulty in large search space, we intro-
duce Genetic Algorithm (GA). In this paper, we simply rep-
resent a mapping matrix as the representation of a gene.
GA, in general, has variety of gene operations that include
crossover and mutation for wide divergence in the search
space. However, we omit crossover operations by two or
more genes in this paper, since no duplicated members are
not allowed in any mapping matrices and the crossover op-
eration is not natural in our gene representation. Thus, we
basically use self-reproduction operations (mutation).

In this paper, we discuss the GA operations from two
orthogonal angles: mutation methods and surviving meth-
ods.

4.1 Mutation Methods

Due to the strong restriction of duplicated entries, the mu-
tation operation is based on swapping of two members in
the mapping matrix. We introduce the following variants of
swapping operations.

Random swap selects two distinct members in physical
address and swap their logical addresses.

Line swap selects two lines of members in a specified
length and swaps member-by-member.

Box swap selects two box-shaped regions in the same as-
pects and swaps their members.

Fig. 2 Neighboring swap

Table 1 Variants in the mutation operations

percentage of mutation operations
sym- random line box neighbor- random- % sur- note
bol swap swap swap ing swap ize vivors
S00 37.5 25.0 12.5 0.0 25.0 25.0
S01 12.5 12.5 12.5 37.5 25.0 25.0
S02 20.0 20.0 20.0 20.0 20.0 25.0
S03 0.0 0.0 0.0 75.0 25.0 25.0 r = Np

S04 0.0 0.0 0.0 75.0 25.0 25.0 r : randomly selected
S05 100.0 0.0 0.0 0.0 0.0 25.0
S10 0.0 0.0 0.0 100.0 0.0 25.0 r = 2
S11 0.0 0.0 0.0 100.0 0.0 50.0 r = 2
S12 0.0 0.0 0.0 100.0 0.0 12.5 r = 2
S20 0.0 0.0 0.0 100.0 0.0 25.0 r = Np

S21 0.0 0.0 0.0 100.0 0.0 50.0 r = Np

S22 0.0 0.0 0.0 100.0 0.0 12.5 r = Np

S99 0.0 0.0 0.0 0.0 100.0 0.0 random search

Neighboring swap selects a source-destination pair that
has longer distance than a specified radius r and it
further selects near member within the radius r. The
method swaps the longer destination with the near (i.e.,
neighboring) member. Figure 2 illustrates the neigh-
boring swap method.

The optimization process intends to eliminate interferences
of packets and it works to minimize (physical) distances be-
tween source-destination node pairs. Thus, during an op-
timization process, some node pairs are placed adjacently,
where they are locally optimal. Line and box swap oper-
ations intend further optimization, maintaining the locally
optimal structure. These operations allow 90-degree rota-
tion and mirror image in swapping operation.

Table 1 summarizes the mutation operations used in
this paper. In this table, Np shows the number of traffic
patterns. We use 13 variants of mutation operations in this
paper, which are expressed as S00 to S99. Operations from
S00 to S05 intend to evaluate the effects of swap operations,
where one-fourth of genes survive. Operations from S10 to
S22 shows the variants of the neighboring swap. S1* and
S2* differ on the radius r that is represented in Fig. 2. Op-
erations S*0, S*1, and S*2 differ on the surviving strategy
(i.e, ratio of survivors). We can expect that the small sur-
vivor ratio will show a steep characteristic in search, but it
will fall into local-minima. Operation S99 refers to the non-
GA method.

We can expect that the logical node arrangement for a
single traffic pattern is not a difficult task. Thus, we basically
assume multiple traffic patterns for a single arrangement
configuration, as well as a single traffic pattern. We denote
two(three)-traffic-pattern when two (three) traffic patterns
are applied during the optimization process. Even when
the optimization process find an optimal solution for a spe-
cific traffic pattern, the solution (i.e., logical arrangement) is
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not always optimal in other traffic patterns. Thus, although
the neighboring swap operation forces arrangement toward
a specific traffic pattern, the operation is not always success-
ful.

4.2 Surviving Methods

A surviving method specifies how the surviving genes are
selected. In the ordinary GA application, highly-ranked
genes survive and generate their descendant(s). Our method
also follows the principle, however, we should discuss se-
lection method of ranking.

We use duration time to quantitatively represent perfor-
mance in collective communication. Networks have strong
non-linear characteristics and, thus, the duration time does
not necessarily shows the performance linearly.

For simple discussion, here we assume to source-
destination pairs. Each of pairs has its own routing paths. If
the paths share routing resources (physical links, for exam-
ple), exclusive use of the shared resource delays the corre-
sponding packet transfer and results in performance degra-
dation. As a simple assumption, when the two packets fully
interfere, the resulting duration time becomes twice. Fur-
thermore, since the duration time is measured as the worst-
case communication time, the enlarged duration time does
not directly show the number of interferences in the net-
work. In other words, the duration time is not proportional
to the number of interferences.

If any combinations of source-destination pairs do not
share routing resources, communications are performed at
full speed without any interferences. For general condi-
tions, we do not find appropriate metrics to represent the
level of interferences, however, we use average number of
hops (avg.hop) in all of the possible combinations of source-
destination pairs. Small avg.hop suggests that we can expect
small possibilities of interferences. If avg.hop equals to 1, it
means that all source-destination pairs are placed at adjacent
addresses.

In this paper, we use the following surviving methods.

Duration first. (sc) Genes are sorted by the duration-time
order. If the duration is same, avg.hop is used.

Avg.hop first. (ah) Genes are sorted by the avg.hop order.
If the avg.hop is same, duration is used.

Multiplication of duration and avg.hops. (ml) Genes are
sorted by multiplied value of duration time and
avg.hop.

After selecting the survivors, our methods generate
new gene(s) from each of the survivors according to the mu-
tation strategy (Table 1). For example, S02 strategy selects
the top-25 percents of genes for survivals. The survivors
remain alive in the next generation and the 75-percent non-
survivors are substituted by the mutations of the survivors.
In this case (S02), each survivor generates three mutants in
the next generation.

5. Evaluation

5.1 Evaluation Environment and Method

We implemented an evaluation platform for node mapping,
which is extended from our interconnection network sim-
ulator that achieves considerable speed up by the cellular
automata principle [2]. Although the evaluation platform is
based on a fast simulator, GA operations are time consum-
ing and we use a small-size (8 × 8) 2D-torus network.

Packet length is 8 [flits] and four packets are trans-
ferred in each collective communication session. Routing
algorithm is deterministic dimension order and three vir-
tual channels are used. Duration time is measured from
the beginning of the communication session to its com-
pletion. In the GA methods, we use 1,000 genes and run
1,000 generations. Random search runs 1,000×1,000 cases.
We use eight traffic patterns: bit-complement (bcmp), bit-
reversal (brev), bit-rotation (brot), perfect shuffle (shfl), tor-
nado (torn), transpose (trns), random pair (rpar), and random
ring (rrng). In the tornado traffic, each node sends packets
to the node whose distance is (n/2). Random pair selects
two nodes randomly. Random ring forms an n× n-node uni-
directional ring in which all of the nodes are employed in
the ring. GA operations are applied to all possible combina-
tions of traffic patterns, and each combination has ten runs
and average values are used.

5.2 Random Search Results

Figure 3 shows random search results. In this figure, vertical
lines show the minimum and maximum duration times and,
in Fig. 3 (a), vertical short lines at the intermittent part show
the average duration times whereas long lines show minimal
and maximal duration times in physical addressing.

According to the evaluation conditions, the minimal

Fig. 3 Random search results
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Table 2 Best duration results (two-traffic-pattern)

traffic best-case phys. top mutation-
pattern dur. gen. dur. sorting combination
bcmp-brev 68.2 70.0 283 S20-ah
bcmp-brot 98.5 613.3 242 S21-sc
bcmp-shfl 100.9 491.2 252 S10-ah
bcmp-torn 76.3 386.8 228 S22-ah
bcmp-trns 68.0 170.7 225 S20-ah, S03-ah
brev-brot 69.0 110.4 337 S20-ah, S22-sc
brev-shfl 69.0 204.2 347 S21-ah, S22-ah
brev-torn 93.3 548.9 323 S10-ah
brev-trns 68.0 222.7 320 S11-ah, S03-ah
brot-shfl 70.0 14.9 306 S22-ah, S22-ml
brot-torn 129.0 624.4 282 S12-ah
brot-trns 83.4 619.8 279 S11-ml
shfl-torn 129.8 672.1 292 S03-ah
shfl-trns 82.6 427.7 289 S12-ah
torn-trns 102.5 485.8 265 S12-ah

duration time is 34 [cycles] that includes injection and
reception time (one cycle for each) and 8 [flits/packet] ×
4 [packets] = 32 [flits=cycles] transfer time. As Fig. 3 (a)
shows, performance of the random search is far from the the-
oretical best. Furthermore, curves in Fig. 3 (a) shows some
local peaks that corresponds to the packet interferences as
discussed in Sect. 4.2.

In the three-traffic-pattern case, average duration time
of the three patterns is 426.3 [cycles] in the physical address-
ing. Random search achieves average of 287.6 [cycles] (i.e.,
1.48 times speedup) after 1 million random trials.

5.3 GA Results

Table 2 shows the average values of the best duration times
and the achieved generations in two-traffic-pattern cases. In
this table, duration time in physical addressing is also shown
(denoted as “phys. dur.”). Our GA-based method achieves
considerable speed-up, at most 5.03 times in the brev-shfl
traffic. Degree of speed-up depends on the topological char-
acteristics in the traffic patterns: topologies that contain cy-
cles have long duration time. For example, bcmp-brev and
bcmp-trns patterns do not contain cycles and they achieve
shortest (i.e., fully optimized) duration times. On the other
hand, our method fails the shortest duration time in bcmp-
brot and bcmp-shfl cases, since brot and shfl topologies con-
tain cycles.

Table 3 shows the results for mutation operations (in
Table 1) in three-traffic-pattern cases. This table shows av-
erage values with respect to the sorting order. As discussed
in Sect. 4.2, duration time based sorting does not necessarily
achieve good performance due to the strong non-linearity in
the network performance characteristics. Average hop based
sorting sometimes drops hopeful genes that have good du-
ration time scores, however, the sorting method achieves
reasonable performance. Multiplied value based sorting
achieves the best performance, since the sorting method can
distinguish promising genes that have good duration time
or average number of hops. The average duration time in
physical addressing is 426.3 [cycles], thus, our GA-based
method achieves at most 2.50 times speed-up.

Table 3 GA results of three-traffic-pattern

muta- sorting order [cycles]
tion duration avg.hop mult
S00 224.1 211.9 207.5
S01 210.2 191.4 189.5
S02 209.5 189.2 186.7
S03 193.6 175.2 170.2
S04 230.5 221.6 217.3
S05 225.7 216.0 211.6
S10 199.3 180.9 177.8
S11 200.8 180.2 178.0
S12 188.7 174.2 172.4
S20 183.5 174.7 171.4
S21 185.7 174.8 172.0
S22 184.8 177.4 171.1
S99 301.4 301.6 301.3

5.4 Qualitative Comparison with Temporal Arrangement

As described in Sect. 1, we have discussed temporal ar-
rangement in our prior work [1] and proposed an optimal
packet-scheduling method based on PSO. The temporal op-
timization does not handle logical addressing and it only ar-
ranges packet injection timing at every node. Thus, when
two or more packets share the same resource, the method
cannot reduce the duration time less than the multiplicity
degree of packets.

On the other hand, we can expect that the proposed
spacial optimization method performs better than the tem-
poral one, since the logical addressing eliminates the shar-
ing states of packets. Theoretically minimal duration times
are multiple of 34 [cycles] by the number of traffic patterns
in the evaluation condition in this paper. Actually, as shown
in Table 2, many of traffic patterns nearly achieve the theo-
retical minimum (in bcmp-brev, bcmp-trns, brev-brot, brev-
shfl, brev-trns, and brot-shfl patterns).

6. Related Work

Parallel processing research has the old problem in topology
embedding, for example, embedding tree structure in a hy-
percube topology [3]. This formalizes the problem as map-
ping a logical structure to a physical one. If the mapping is
successful and communications on the logical structure are
effective, applications on the specific logical structure run
smoothly and achieve high performance. Topology mapping
shares the core idea with the embedding approach.

We can find similar approach in application mapping
as literature [4]–[9] shows. A typical example is embedding
a specific application, such as encoding process of mov-
ing pictures (MPEG), on a multicore/many-core architecture
with a specific NoC. This also shares the idea of topology
mapping, however, our method assumes one or more collec-
tive communication traffic patterns.

As a different viewpoint from mapping (or embed-
ding), randomization offers an alternative approach to im-
prove communication performance under a specific traffic
pattern. For example, transpose traffic has a quite regular
traffic pattern that leads the traffic to a heavily concentrated
situation, since many communication paths share some lim-
ited portions in the system. Such concentrated communica-
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tion causes severe congestion that drastically degrades the
network performance.

This suggests that introducing some levels of random-
ization (or introducing irregularity) relaxes the concentrated
situation so that it can increase the network performance.
Literature [10], [11] shows randomization effort in the net-
work topology. Alternative idea is oblivious routing [12].

7. Conclusion

This paper aims at improving communication performance
in collective communication. We introduced logical ad-
dressing system apart from the physical one. When the log-
ical addresses are mapped appropriately for objective traffic
patterns, collective communications are performed ideally
without any overheads.

To obtain the appropriate mapping solutions, we intro-
duced genetic algorithm (GA) as a hopeful meta-heuristics
as well as the random search method. Evaluation results
show that our GA-based method achieves at most 5.03 and
2.50 times speedups in two- and three-traffic-pattern cases,
respectively, whereas the random search achieves 1.48 times
speedup.
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