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SUMMARY As energy efficiency has become a major design constraint
or objective, heterogeneous manycore architectures have emerged as main-
stream target platforms not only in server systems but also in embedded
systems. Manycore accelerators such as GPUs are getting also popular
in embedded domains, as well as the heterogeneous CPU cores. How-
ever, as the number of cores in an embedded GPU is far less than that of a
server GPU, it is important to utilize both heterogeneous multi-core CPUs
and GPUs to achieve the desired throughput with the minimal energy con-
sumption. In this paper, we present a case study of mapping LBP-based
face detection onto a recent CPU-GPU heterogeneous embedded platform,
which exploits both task parallelism and data parallelism to achieve maxi-
mal energy efficiency with a real-time constraint. We first present the par-
allelization technique of each task for the GPU execution, then we propose
performance and energy models for both task-parallel and data-parallel ex-
ecutions on heterogeneous processors, which are used in design space ex-
ploration for the optimal mapping. The design space is huge since not only
processor heterogeneity such as CPU-GPU and big.LITTLE, but also vari-
ous data partitioning ratios for the data-parallel execution on these hetero-
geneous processors are considered. In our case study of LBP face detection
on Exynos 5422, the estimation error of the proposed performance and en-
ergy models were on average −2.19% and −3.67% respectively. By system-
atically finding the optimal mappings with the proposed models, we could
achieve 28.6% less energy consumption compared to the manual mapping,
while still meeting the real-time constraint.
key words: CPU-GPU heterogeneous execution, performance and energy
estimation, task mapping, face detection

1. Introduction

In this dark silicon era, heterogeneous manycore architec-
ture has become a mainstream in order to achieve bet-
ter energy efficiency. CPU vendors have released hetero-
geneous multi-core chips such as big.LITTLE [1] and 4-
PLUS-1 [2] where the LITTLE cluster or Battery Saver core
in each architecture is utilized for low performance appli-
cation to maximize the overall energy efficiency. In ad-
dition to such heterogeneous multi-core CPUs, the recent
embedded GPUs support general-purpose computing like
the server GPUs: many embedded GPUs including Mali,
Adreno and PowerVR support OpenCL, and Tegra supports
CUDA. As GPUs are specialized for throughput computing,
they achieve high GFLOPS/Watt when executed in a fine-
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grain data-parallel fashion. As a result, most high perfor-
mance chips in these days are heterogeneous architectures
and it is expected that more complex SoCs will emerge with
the increasing number of heterogeneous cores in CPU-GPU
architectures.

While the newly introduced heterogeneous architec-
tures allow the potential for the better energy-efficiency, it
is another matter to actually achieve it: one has to map the
given application carefully onto the heterogeneous platform.
Typically, task-parallel executions in a pipelined fashion and
data-parallel executions are considered to exploit both CPUs
and GPUs. Since designers must consider not only the dif-
ferent types of CPU cores and GPUs, but also the various
data partitioning ratios for the data-parallel execution on
theses cores, the design space for the optimal mapping is
huge.

Although there have been a number of researches for
the design space exploration methodology which finds opti-
mal mappings for throughput and energy, many frameworks
consider only task-parallel execution, not the data-parallel
execution. In this paper, we present a case study of map-
ping the LBP-based face detection application onto a recent
CPU-GPU heterogeneous platform to demonstrate the chal-
lenge in finding the optimal mapping of the real-life exam-
ple onto the contemporary platform. We first introduce how
we parallelized and optimized each task of the application
for data-parallel execution on a GPU. Then, we propose the
models for estimating response time and energy consump-
tion considering both task-parallel and data-parallel execu-
tion on heterogeneous cores, so that they can be used in the
design space exploration process. We use a Genetic Algo-
rithm (GA) approach to systematically find the optimal map-
ping which minimizes the energy consumption while satis-
fying the given throughput constraints.

Exynos 5422 is used as a target platform, where an
octa-core big.LITTLE CPU and two asymmetric Mali GPUs
are integrated in a single chip. We have verified our mod-
els by actually measuring the performance and energy con-
sumption of the implementations directed by GA. We com-
pared the results with those obtained with the manually
mapped implementations, and confirmed that the GA di-
rected mapping result outperformed the manual mapping
result of the face detection application in maximizing the
throughput. Moreover, the proposed GA-based approach
can find the minimal energy consumption mapping that
meets a given throughput constraint, which is very difficult
to achieve manually. Compared to manually optimized im-
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plementation, we could achieve 28.6% of reduction in en-
ergy consumption while still meeting 30 FPS constraint for
Full HD (FHD) images.

The rest of the paper is organized as follows. Section 2
reviews the related work, and the background for the appli-
cation and the target platform is given in Sect. 3. Section 4
introduces the optimized parallelization techniques for the
LBP-based face detection algorithm, and the proposed mod-
els for throughput and energy estimation are explained in
Sect. 5. The experimental results are shown and discussed
in Sect. 6, followed by a conclusion in Sect. 7.

2. Related Work

2.1 Real-Time Face Detection

There have been a lot of efforts to describe a face with Lo-
cal Binary Pattern (LBP) [3], [4], and also many works exist
to achieve real-time performance over high definition im-
ages. Oro et al. [5] presented a real-time face detector sus-
taining 35 fps while decoding H.264 video on GTX470.
Sharma et al. [6] proposed Haar-based face detector using
CUDA. Cho et al. [7] also proposed face detector based on
Haar features but using FPGA. Hefenbrock et al. [8] pro-
posed an Integral Image based face detector using multiple
GPUs, and achieved 15.2 FPS with 4 GPUs for a VGA im-
age. Especially, Li et al. [9] presented Haar-based face de-
tector utilizing both CPU and GPU, but they only exploited
task-parallelism without data-parallel execution. As a result,
they achieved 556 ms of latency for a FHD image. All of
these works accelerated Haar-like face detection algorithm
using server GPUs or FPGA. Recently, Gao et al. [10] pre-
sented a parallel implementation of LBP based face detec-
tion on an embedded platform called Parallela that consists
of Zynq and Epiphany. By offloading the classification task
onto Epiphany manycore device with some data prefetching,
they achieved 4.3 FPS for FHD images, which corresponds
to 3.8 times of speedup compared to OpenCV’s CPU imple-
mentation.

We had previously proposed optimization tech-
niques [11] that achieved real-time processing of LBP-based
face detection in embedded GPUs for HD (720p) images,
where 3.8 times of speedup was achieved and both the
OpenCL and CUDA implementations on two different de-
vices were compared. In that work, only GPU accelera-
tion using CUDA or OpenCL was discussed. In our re-
cent work [12], we achieved real-time processing for Full
HD (1080p) images by exploiting both the multicore CPU
and the GPU in Tegra K1 SoC. However, the mapping was
done manually and did not consider energy consumption. In
contrast, this paper proposes the execution time and energy
consumption models for task- and data-parallel executions
on heterogeneous PEs and finds the optimal mapping sys-
tematically.

2.2 Task Mapping

It has been one of the most addressed problems in embed-
ded system designs to map tasks optimally onto various pro-
cessing elements while meeting various design constraints.
A number of task mapping frameworks that support system-
atic design space exploration have been proposed [13], and
the need for adopting such a design flow is rapidly increas-
ing as heterogeneous and manycore architectures have be-
come a mainstream. In particular, stream based multimedia
applications are well suited to such a design flow, and they
are usually modeled as data flow graphs so that the perfor-
mance can be estimated or some properties can be verified
statically [14], [15]. Also, pipelined parallel execution tech-
niques have been widely used and studied for heterogeneous
processors to solve throughput-oriented problems [16]–[18].
Performance and energy consumption tradeoff: There
have been many works which focused on multiple objectives
such as execution time, energy consumption, reliability, ac-
curacy and so on. One of the most common optimization
goals is performance and energy consumption [19]–[22].
Especially, Ascia et al. [21] proposed a GA-based technique
to find Pareto-optimal points and verified it with an MPEG-
2 encoder/decoder system. However, those approaches tar-
geted homogeneous architectures.
Heterogeneous architecture: With the advent of the gen-
eral purpose accelerators, exploiting the heterogeneous ar-
chitecture has become important to meet various design ob-
jectives. There are many works that tackle the optimization
on the heterogeneous platforms [23]–[26]. Singh et al. [23]
proposed a design-time and run-time hybrid mapping ap-
proach to optimize throughput and energy consumption in
MPSoC systems. Park et al. [26] proposed a run-time sys-
tem for heterogeneous computing which partitions workload
and finds the optimal frequency based on performance and
power estimations. Those approaches, however, take into
account only task-parallelism or data-parallelism.
Task- and data-parallelism: For some workloads includ-
ing multimedia applications, exploiting both task- and data-
parallelism can result in a significant improvement. Yang
et al. [27] proposed a task mapping heuristic that considers
data-parallel execution as well as task-parallel and pipelined
executions. However, it is assumed that a task graph has a
static sample rate such as in SDF graph and the data-parallel
nodes are mapped to the same type of processors, and that
the data partitioning are done evenly, meaning the ratios are
assumed to be the same. Zhou et al. [28] proposed a task
mapping heuristic for CPU-GPU heterogeneous systems to
minimize the completion time. However, data partitioning
of a task can be considered only if the estimated time is
larger than the predefined threshold. In contrast to these
works, our proposed approach considers data-parallel par-
titioning with arbitrary ratios across heterogeneous proces-
sors. While the design objective in both works is either to
minimize completion time or to maximize throughput with-
out considering energy consumption, the proposed approach
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considers energy consumption and throughput at the same
time.

In this paper, we extend our recent work of real-time
face detection [12] such that energy consumption is consid-
ered as well as throughput, and that the tasks can be mapped
automatically meeting the design constraint. In such a
way, we could obtain a highly energy-efficient and real-time
LBP-based face detector for FHD images on Exynos 5422.
Although the main focus in this paper is to achieve real-time
yet energy efficient face detection on heterogeneous embed-
ded systems, the proposed model in task mapping which
considers both task-parallel and data-parallel execution on
heterogeneous PEs can be used also for other general stream
based applications.

3. Backgrounds

3.1 Face Detection Algorithm

Figure 1 illustrates the overall structure of a conventional
LBP-based face detection algorithm. As a typical pre-
processing step, an input image is first converted to a gray
image, and Histogram equalization is applied so that a more
sharpened image can be obtained. After pre-processing, a
set of tasks called Resize, LBP, and Scanning are executed
to find a face with LBP features. To find a face of arbitrary
size, the algorithm resizes the input image while having a
fixed search window, rather than resizing the search win-
dow with a fixed-sized input image. Finally, the Grouping
task simply groups the same faces detected by nearby search
windows into one.

It is a chain-like task graph with incoming input im-
ages, but has a cycle from the Scanning task back to the
Resize task since an input image is resized recursively with
a constant factor. This concept of resizing images for scale-
invariant processing is referred to as Pyramid of Images.
The scale factor determines the number of images and their
sizes in the pyramid of images; the original image is first
resized such that the relative size of the fixed-sized search
window is not smaller than minSize, which is the minimum
possible face size. Then, the image size is recursively di-
vided by scale factor until it reaches the size in which the
relative size of the search window is not larger than maxSize,
the maximum possible face size.

Since LBP-based face detection uses LBP feature to
classify whether the search window contains a face or not,
LBP task needs to convert the input image into an LBP im-
age. LBP operation compares the center pixel with each of
the eight neighbor pixels, and assigns 1 to the pixel whose
value is greater than that of the center pixel, and 0 otherwise.
Then, 8-bit binary value so called LBP is generated by con-
catenating them. In such a way, each pixel in the original
input image is transformed into an LBP image.

The Scanning task goes through all the search win-
dows, comparing some LBP values in a search window with
the pre-trained LBP features for a face. It employs a cas-
cade classifier proposed by Viola and Jones [29], where the

Fig. 1 The conventional task pipeline structure of LBP-based face de-
tection. After pre-processing (Grayscale and Histogram equalization), the
processing of Resize, LBP, and Scanning is repeated to extract LBP fea-
tures of each resized image and compare them with the pre-trained features
for a face. Finally, the detected candidates for the same face are grouped
into one.

Fig. 2 The overview of the target architecture. It has four types of het-
erogeneous PEs and a shared memory.

cascade classifier uses a set of weak classifiers in a series of
stages.

3.2 Target Architecture

The target platform used in this work is Exynos 5422, which
adopts big.LITTLE architecture. It has two different set of
processors called big and LITTLE clusters in order to sat-
isfy both performance and power efficiency. Such a het-
erogeneous solution has been driven to mitigate the prob-
lem of mobile processors that the total amount of energy
is limited. Global Task Scheduling (GTS), also known as
Heterogeneous Multi-Processing (HMP) techniques [1], en-
ables each core in any cluster to be activated individually,
making it possible to run all cores at the same time.

Exynos 5422 has a quad-core Cortex-A15 as a big pro-
cessor and a quad-core Cortex-A7 as a LITTLE processor.
Also, Mali-T628 MP6 GPU is integrated in the single chip.
It is a hexa-core GPU that supports OpenCL 1.1 full profile.
However, this hexa-core is not a single GPU, but consists of
a quad-core and a dual-core GPUs. Therefore, users need to
specify both GPU devices and launch the kernels separately
to fully exploit Mali-T628 MP6.

Exynos 5422 has four different types of processing ele-
ments (PEs) which have significantly different capacities in
processing their workloads: a quad-core Cortex-A15 CPU,
a quad-core Cortex-A7 CPU, a quad-core Mali T628 GPU
and a dual-core Mali T628 GPU.

4. Parallelization of Face Detection Algorithm

We have previously proposed efficient parallelization strate-
gies for face detection and recognition using embedded
GPGPUs [11]. In order to achieve real-time processing for
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FHD images, we have recently proposed CPU-GPU coop-
erative approach [12]. In this section, we introduce some
of the main ideas for parallelizing face detection exploiting
both CPU and GPU.

4.1 Aggregation

In the original structure of the algorithm, LBP and Scan-
ning are repeated for each resized image. If we map each
task in this structure onto a core, the communications be-
tween cores would be too frequent. Moreover, the execution
time for each resized image varies depending on its size,
making it harder to achieve the maximum throughput of the
pipelined execution. In addition, too small images cannot
fully utilize the GPU.

To mitigate these problems, we aggregate the resized
images into single one. Resize now generates a pyramid of
images at once, not one by one recursively. Since the gen-
erated pyramid of images as a whole are treated as a single
large input for the subsequent tasks such as LBP and Scan-
ning, those tasks can be launched only once, reducing com-
munication overheads.

More importantly, we can now exploit the data paral-
lelism in pixel level rather than in image level with different
size. This allows flexibility in data partitioning: each task
can be divided into sub-tasks with an arbitrary ratio for the
single large input, making it possible to have an optimal par-
titioning ratio for better load-balancing.

4.2 Multi-Phase Scanning

A cascade classifier consists of several weak classifiers in
a series of stages, and evaluates an image patch in a search
window to detect an object. If the patch passes through the
last stage in the cascade classifier, the patch is assumed to
have a face. If it does not pass the threshold at any stage,
it terminates immediately without further processing the re-
maining stages and moves on to the next patch. The number
of passed stages tends to increase as the search window ap-
proaches the image patch containing a face. It would be
more efficient if we could skip the ones that seem to have no
face.

In order to exploit this characteristic on GPU, multi-
phase kernel launching has been suggested [11]. In this
scheme, we make a kernel deal with only parts of its in-
put data, and launch it multiple times sequentially with dif-
ferent input indices. A work-item in the kernel, which is
assigned a search window, runs the cascade classifier only
if the neighboring search window did not terminate at the
very first stage in the cascade classifier. This can be figured
out since the neighboring search window has been already
processed in the previous kernel launch.

4.3 Pipelined Execution

The Fig. 3 illustrates an example of the pipelined execution

Fig. 3 An example of pipelined execution for LBP based face detec-
tion [12].

Fig. 4 A single pipeline with 5 stages for LBP-based face detection. The
arrows indicate data transferring.

for the LBP-based face detection application. Since the ef-
ficiency of the pipelined execution becomes optimal when
the execution time of each pipeline stage is identical, it is
very important to have a load balance among the various
PEs in the heterogeneous platforms. The execution time of
a task in a stage differs depending on the type of a PE it is
running on and the characteristic of the assigned task. For
example, compute-intensive task on a LITTLE core empir-
ically shows roughly four times slower performance than a
big core. To have a good load balance, a big core should
be assigned four times larger workload than a LITTLE core.
However, it is difficult to have a good load balance in such a
heterogeneous platform if we only consider task parallelism.
Data parallelism should be also considered: if the execution
time of a task on a PE is too large, it can be divided into
multiple sub-tasks, each with only parts of the original data,
running on multiple PEs. In this way, one can achieve better
performance by alleviating the performance bottleneck in a
pipelined task-parallel execution, with data-parallel execu-
tion. The aggregation makes it easy for each task to run in
this fashion and allows fine-grain data partitioning. Figure 4
shows an example of the pipelined execution of the LBP-
based face detection on Exynos 5422 with data-parallel ex-
ecution.

5. The Estimation Model and Mapping Strategy

Our goal is to find the optimal mapping of the face detec-
tion application onto the recent CPU-GPU heterogeneous
platform, which consumes the minimal energy while meet-
ing the given throughput constraint. In order to achieve this
objective, as mentioned earlier, each task should be divided
into sub-tasks for data-parallel execution with an arbitrary
data partitioning ratio. Thus the design space for mapping
such tasks onto multiple heterogeneous PEs is huge, and it
is necessary to explore the design space efficiently and sys-
tematically to find the optimal mapping. In this section, we
propose a performance and energy consumption estimation
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model of the heterogeneous architectures, which are used in
GA as the fitness functions.

5.1 Performance Estimation of the Pipelined Execution

Estimating an accurate throughput of the pipelined execu-
tion is key to finding the optimal mappings in design space
exploration. We model the throughput of the pipelined exe-
cution of an application, considering both task-parallel and
data-parallel executions. We use the notations and defi-
nitions introduced in [16]. R is defined as maximal re-
sponse time, which in turn determines the performance of
the pipeline (i.e., the maximum throughput, T H(·)), as fol-
lowing:

R = max
1≤ j≤N

{e j + c j + o j} (1)

T H(·) = 1
R

(2)

where N is the number of pipeline stages and e j denotes the
time for receiving input data, c j the time for computation,
and o j the time for sending output data in the stage j. The
throughput of the pipelined execution is related only to the
stage j which has the maximal sum of e j, c j, and o j. Note
that the throughput of a single stage j is denoted as T H( j).

Jahn et al. also introduced the malleability property
to pipeline models. By combining multiple consecutive
pipeline stages into a single stage, the fusion operation re-
duces communication overheads. And its inverse operation,
fission, restores a fused stage to the original multiple stages.

Basically, the performance of a pipelined execution can
be estimated using Eq. (1). However, the Eq. (1) assumes
that the task cannot be divided into sub-tasks since they do
not consider data-parallel execution. Note that the fission
operation defined in [16] is to restore the fused task back
to the original tasks, not dividing a task into arbitrary size
of sub-tasks. Also, only one task or a fused task can be as-
signed to a processor. In contrast, we propose that a task
can be divided into multiple sub-tasks with an arbitrary par-
titioning ratio, and more than one (sub-)task or a fused task
can be assigned to a processor. We call it partitioning to di-
vide a task τ j into a subtask τi

j. Figure 5 (a) and (b) illustrate
the fusion operation, and (b) and (c) illustrate partitioning
operation.

In order to estimate the execution time of the proposed
task- and data-parallel executions, we define the following
equations. Let Ri be the response time of each stage i,
and Rp the sum of the response time of the stages that are
mapped to processor p. Then, we denote Ri and Rp as fol-
lows:

Ri = ν
i
kek + ν

i
lol

+

l−1∑

j=k

{νijc j + ν
i
j(1 − νij+1)o j + (1 − νij)νij+1o j}

= νikek + ν
i
lol

Fig. 5 An example of fusion and partitioning operation in our model.
(a)-(b) The fusion operation combines consecutive tasks in the task graph
into one task. (b)-(c) The partitioning operation divides a task into multiple
sub-tasks for data-parallel execution. (d) A general case for fusion and
partitioning is illustrated.

+

l−1∑

j=k

{νijc j + (νij + ν
i
j+1 − 2νijν

i
j+1)o j} (3)

Rp =
∑

i

Ri (4)

Rmax = max
1≤p≤M

Rp (5)

where νij is the partitioning ratio of the original task τ j into a
subtask τi

j which is assigned to the stage i. Thus,
∑

i ν
i
j = 1.

When a task is not partitioned at all, νij is simply 1. We as-
sume that the transfer time and size as well as the execution
time of a sub-task is proportional to the partitioning ratio.
The first two terms in Eq. (3) denote the transfer time for
input and output data respectively. The remaining terms in
Eq. (3) account for the execution time of a (sub-)task (i.e.,
when l=k) or the execution time of a fused task that consists
of l − k + 1 (sub-)tasks, as well as the time for sending the
output data from (sub-)task τi

j in this fused task to another

(sub-)task τh
j+1that does not belong to this fused task (h � i),

and the time for receiving the input data from (sub-)task τh
j to

(sub-)task τi
j+1 . Figure 5 (d) illustrates this general case of

a fused task with multiple partitioned sub-tasks, where each
task τi

j is denoted together with its partitioning ratio νij for
convenience. Note that (1 − νij+1) or (1 − νij) in Eq. (3) still

holds for the cases in which there are more than one τh
j+1 or

τh
j .

Since multiple (sub-)tasks or a fused task can be
mapped to a processor in our execution model, the response
time of the processor is defined as the sum of the response
time of the stages that are assigned to the processor (Eq. (4)).
Finally, we find the largest Rp among M processors as
Eq. (5), which is the maximal response time Rmax for our
case. Note that the transfer time considered in Ri is refined
later in GA framework depending on whether it transfers
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data to the task on the same processor or not.
Although the illustrated example for fusion and parti-

tioning operations is a chain-like task graph, the proposed
model is also applicable to any type of task graphs such as
one with cycles or with multiple paths since the model con-
siders only the amount of incoming data, computation, and
outgoing data of each stage. In such cases, ek or ol would be
the total transfer time for multiple incoming paths or outgo-
ing paths.

5.2 Energy Consumption

In this subsection, we propose an energy consumption
model. Basically, the total energy consumption of the sys-
tem is the sum of dynamic energy consumption and static
energy consumption.

Etotal = Edynamic + Estatic (6)

Dynamic energy consumption can be estimated by
adding all the energy required to run the tasks mapped onto
each PE. In addition to this general idea, we have intro-
duced a correlation factor that needs to be multiplied when
multiple PEs of the same type are used. We observed that
the power demand does not increase linearly as the number
of active processing cores increases. In fact, when multi-
ple processing cores are utilized, the power consumption is
slightly less than the linearly projected amount. This is be-
cause they share some logics among the cores in the same
cluster. By conducting the experiments for each PE type,
we can figure out the rate at which the power consumption
increases as another core becomes active and utilized. As a
result, the proposed dynamic energy consumption is defined
as following Eq. (7).

Edynamic =

M∑

p=1

Cn(Type(p))Ep (7)

where M is the number of PEs in the platform and Type()
is processor type and Cn() is the correlation factor when n
cores are utilized in the processor. As mentioned, Cn() < 1
regardless of processor type.

Ep, the energy consumption of a processor p, is esti-
mated using Eq. (11). It is calculated by adding the energy
consumption of each task i that is mapped onto the proces-
sor p, which can be divided into the computation part and
the communication part. The former is obtained by multi-
plying the power consumption of processor p that a task i is
running on (Pi), with the response time of the computation
part (Ri,comp). The latter is obtained similarly with the power
consumption of the communication channel in processor p
(Pcomm) and the response time of the communication part
in task i (Ri,comm). As Eq. (3) can be simply rewritten as
Eq. (8), Ri,comp and Ri,comm are defined as Eq. (9) and (10)
respectively.

Ri = Ri,comp + Ri,comm (8)

Ri,comp =

l−1∑

j=k

νijc j + ν
i
lcl (9)

Ri,comm = ν
i
kek + ν

i
lol

+

l−1∑

j=k

{(νij + νij+1 − 2νijν
i
j+1)o j} (10)

Ep =
∑

i

(PiRi,comp + PcommRi,comm) (11)

On the other hand, the static energy consumption is
calculated by multiplying the static power consumption re-
quired for operating devices in idle state, with the total ex-
ecution time for the application. As the application is exe-
cuted in a pipelined way with streaming input (images), if
we neglect the initial delay to fill the pipeline, the total ex-
ecution time of an image is equal to the maximal response
time. Thus, the static energy consumption can be defined as
Eq. (12). Consequently, Eq. (6) can be rewritten as Eq. (13).

Estatic = PIDLERmax (12)

E =
M∑

p=1

Cn(Type(p))Ep + PIDLERmax (13)

Note that we did not consider the thermal effect on the
energy consumption. Although the actual energy consump-
tion will vary depending on thermal conditions, we found
that the proposed model without thermal conditions satis-
fied our purpose.

5.3 GA-Based Task Mapping

As we mentioned earlier, the design space is huge due to
the arbitrary partitioning ratio and the heterogeneity of PEs.
Therefore, we adopt Genetic Algorithm (GA) to explore the
design space. The task or sub-task mappings are encoded
as a gene and their execution time and energy consumption
are estimated using the Eq. (5) and (13) in the fitness func-
tion. A certain portion of the fittest are selected and the new
population for the next generation are obtained from these
survivals.

Figure 6 shows two genotypes that we configured as an
example. The first one is of integer type which represents
the processor ID that a (sub-)task is mapped onto. We start
with five tasks in five stages like in Fig. 4: GrayScale (GS),
EqualHist (EH), ReSize (RS), LBP (LB), and Scanning
(SC). Then, we assume each task can be divided into two
sub-tasks with an arbitrary partitioning ratio with two excep-
tions; EH is not partitioned at all and SC can be partitioned
into three sub-tasks and the more details will be explained
in Sect. 6. As a result, the total number of (sub-)tasks is 10,
and Fig. 6 (a) shows one example of the processor mapping
of 10 sub-tasks in the LBP-based face detection application.

The second one is of double type which represents the
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Table 1 Average dynamic power consumption of each device as the number of active cores varies.
From the measurements, Cortex-A15 and Mali-T628 seem to have relatively large sharing among the
cores, while Cortex-A7 has little sharing among the cores.

A7 A15 T628

# of active cores 1 2 3 4 1 2 3 4 Quad Dual Both
Avg. dynamic power [W] 0.14 0.28 0.42 0.55 1.45 2.69 4.15 4.50 0.84 0.58 1.17

factor - 1.00 1.00 0.98 - 0.93 0.95 0.78 - - 0.82

Fig. 6 An example of genes and its corresponding mapping result. GS
denotes the Grayscale task, EH the Histogram equalization task, RS for the
Resize task, LB for the LBP task, and SC for the Scanning task, respec-
tively. (a) ProcMapGene encodes a processor mapping of 10 sub-tasks,
where the integer value represents a PE ID: 0-3 for A7, 4-7 for A15, 8 for
T628 Quad and 9 for T628 dual. (b) PartitionRatioGene encodes the parti-
tioning ratio of each task. (c) visualizes the mapping result that (a) and (b)
imply.

ratios for data partitioning when a task is divided into sub-
tasks. For example, the first value in Fig. 6 (b) is the parti-
tioning ratio for GS, and the second for RS, and so on. If
an individual has the set of genes as shown in Fig. 6 (a) and
(b), then it means the mapping illustrated in Fig. 6 (c) was
obtained.

6. Experimental Result

In the experiments, we used ODROID-XU3 as a target
platform. It has an Exynos 5422 SoC as a main proces-
sor in which Cortex-A15 (big) cores and Cortex-A7 (LIT-
TLE) cores run at 2.0 GHz and 1.4 GHz respectively,
and equipped with 2 GB of LPDDR3 memory. Note that
ODROID-XU3 does not support DVFS. Instead, it migrates
a task from big cores to LITTLE cores in order to achieve
a similar effect to DVFS. The design space for a DVFS-
supported target platform would be even larger, making it
more necessary to use the proposed approach.

Input images used in the face detection application are
in FHD, which were extracted from an official movie trailer
titled ‘50/50’, and each frame generally contains one or two
faces [30]. The minSize, maxSize, and scale factor were set
to 30x30, 720x720, and 1.2 respectively, resulting in 19 im-
ages in the image pyramid of a single FHD image. Opt4J
framework [31] was used for GA implementation.

Fig. 7 Execution time and speedup of the LBP based face detection
application on different PE types. CPU+GPU, a manual mapping by
an expert, achieves 2.11 times higher throughput than GPU-only. How-
ever, we cannot guarantee the optimality of energy efficiency in a manual
CPU+GPU.

Figure 7 shows the execution time of the proposed
LBP-based face detection application on an each PE in
Exynos 5422: a single Cortex-A7, a single Cortex-A15, and
a quad-core Mali-T628. Then, CPU+GPU denotes the task-
and data-parallel implementation explained in Sect. 4 with
the manual mapping shown in Table 4, which will be ex-
plained later. Compared to a single-threaded Cortex-A15
version, a quad-core GPU version is 3.26 times faster and
CPU+GPU is about 6.88 times faster. However, we can-
not guarantee whether the achieved speedup or energy effi-
ciency is the optimal or not. This necessitates the proposed
approach to systematically find the mapping that minimizes
the energy consumption while meeting the throughput con-
straint.

Now, let us show the mapping results obtained by the
proposed GA-based design space exploration process. First,
details about the energy consumption model is given. As
explained earlier, when multiple PEs in the same cluster are
utilized at the same time, the power consumption does not
increase proportionally to the active number of PEs. We de-
fined such a correlation factor as Cn() in Eq. (7), which is
obtained by using regression: To figure out Cn of each PE
type as n varies, we conducted an experiment in which ma-
trix multiplication with 800 × 800 matrices are executed on
each PE type. For the case of CPU cores, OpenMP was
used. As shown in Table 1, utilizing two cores of Cortex-
A15 requires 1.86 (= 93% × 2 cores) times of the power
consumption of the single core, rather than the twice of it.
Likewise, utilizing all the four cores has a correlation factor
of 78%. In contrast, Cortex-A7 cores seem to affect rarely
each other, showing the correlation factor to be almost 1.0.
For Mali-T628 MP6 GPU, we used OpenCL implementa-
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Table 2 Execution time (unit: ms) and dynamic power consumption (unit: W) of each task in LBP
based face detection on various PEs in Exynos 5422, when processing single FHD image.

A7 A15 T628 Quad T628 Dual

Task Time Power Time Power Time Power Time Power

Grayscale 33.94 0.15 15.06 1.96 INF INF INF INF
EqualHist 22.99 0.14 7.31 1.56 INF INF INF INF

Resize 157.98 0.12 36.80 1.74 10.57 1.43 17.92 0.93
LBP 129.36 0.16 42.87 1.74 6.21 1.42 11.90 0.96

Scanning 395.16 0.23 108.71 2.24 32.56 0.84 61.10 0.58

Table 3 Some of the mapping results by GA and their corresponding estimates.

# Gene Task Time Energy
GS GS EH RS RS LB LB SC SC SC [ms] [mJ]

Mapped Processor 3 3 1 2 9 9 9 9 0 8
1 Partitioning Ratio 0.50 0.50 - 0.08 0.92 0.31 0.69 0.12 0.03 0.85 37.7 112

Mapped Processor 3 6 4 7 9 9 9 9 5 8
48 Partitioning Ratio 0.50 0.50 - 0.00 1.00 0.50 0.50 0.04 0.24 0.72 33.1 156

Mapped Processor 1 6 4 7 9 9 9 9 5 8
100 Partitioning Ratio 0.50 0.50 - 0.50 0.50 0.32 0.68 0.23 0.19 0.58 27.2 198

tion, and the correlation factor is defined between a quad-
core GPU and a dual-core GPU, not among the shader cores
inside each GPU since a GPU is used as a whole and an
OpenCL kernel would occupy as many cores in the GPU as
possible when it is launched. It shows 1.17 Watts of average
dynamic power consumption, which corresponds to 82% of
the sum of power consumption in both GPUs. Note that Ta-
ble 1 describes only dynamic power consumption excluding
static power consumption.

To estimate the execution time in Opt4J, Eq. (3) is used.
Substituting each term with the corresponding value in Ta-
ble 2, results in Rp. Then, Rmax is obtained using Eq. (4)
and (5). Similarly, energy consumption is estimated using
Eq. (13), referring to Table 2. Table 2 shows the profil-
ing information of our face detector in each PE type. We
measured the power consumption of each task processing
a single FHD image, through the built-in energy monitor.
ODROID-XU3 has four sensors which can measure the cur-
rent in big.LITTLE CPUs, memory, and GPUs. Assuming
that the voltage is uniform, we can calculate the energy con-
sumption of each PE. Note that we chose not to execute
Grayscale and Histogram equalization on GPUs since they
are not suitable for GPU: Grayscale does not show meaning-
ful improvement due to its poor arithmetic intensity and His-
togram equalization cannot be parallelized efficiently due
to the inherent sequential characteristics. Those tasks are
marked as unavailable by assigning infinity as shown in the
Table 2.

In Table 3, we present some of the Pareto optimal map-
ping results when Opt4J was executed with the default pa-
rameters except for the generation value; it was raised to
15,000 to make sure that it was saturated. The exploration
time is less than one minute. We restricted a task to be
divided into only two sub-tasks since dividing a task into
many sub-tasks would increase the synchronization over-
head. There are two exceptions though: the Histogram
equalization task cannot be divided due to the dependency,

Fig. 8 Pareto-optimal graph between latency (x-axis, ms) and energy
consumption (y-axis, mJ), which is denoted as Opt4J Estimates. It includes
the results presented in Table 3. Opt4J Implementation denotes the actual
latency and energy consumption pair measured with the implementations
directed by the Opt4J mapping results. Manual denotes the manual map-
ping results by an expert who has a comprehensive understanding of both
the application and the target platform.

and the Scanning task is divided into three sub-tasks as its
workload is too large.

Finally, Fig. 8 plots all the estimates obtained from GA
that form the Pareto-optimal graph of latency and energy
consumption pairs. It also plots the actual measured val-
ues of the implementations directed by the GA mapping re-
sults, which is denoted as Opt4J implementation. They are
slightly inferior to the estimated results since the proposed
model used in GA estimation assumed no overheads, con-
sidering only the computation time and the memory transfer
time between stages. For example, the overhead for offload-
ing input images onto the memory is not considered in the
model, nor the kernel launching overhead even if a GPU
task is partitioned into several sub-tasks. Nevertheless, we
can clearly see a high correlation between our estimates and
the measured values. The average errors of the GA esti-
mates are −2.19% and −3.67% for throughput and energy



2886
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018

Table 4 Manual mapping results for energy minimization (EN) and throughput maximization (TH)
solutions, and their measured execution time and energy consumption.

# Gene Task Time Energy
GS GS EH RS RS LB LB SC SC SC [ms] [mJ]

Mapped Processor 0 3 1 2 9 9 9 8 8 8
EN Partitioning Ratio 0.50 0.50 - 0.20 0.80 0.50 0.50 0.30 0.30 0.40 43.2 111

Mapped Processor 4 4 0 9 9 5 6 7 9 8
TH Partitioning Ratio 0.50 0.50 - 0.50 0.50 0.50 0.50 0.15 0.09 0.77 30.6 222

consumption, respectively. The ranges of the errors are from
−11.51% to 16.21%, and from −13.47% to 12.42%, respec-
tively. The estimated minimal energy consumption by the
model is 111.8 mJ with 37.7 ms of latency. The measured
energy consumption from the same mapping is 122.6 mJ
with 39.8 ms of latency. Likewise, the estimated maximal
throughput by the model is 36.7 FPS (27.2 ms) with 197.8
mJ, while the measured value is 34.5 FPS (29.0 ms) with
223.1 mJ. For energy minimization with 30 FPS (i.e., 33.3
ms) of a throughput constraint, the estimate by the model is
159.3 mJ while the measured energy consumption is 158.6
mJ, which is only 0.43% of error.

For maximizing throughput, the experiment shows that
GA-based result (28.97 ms) is faster than the manual map-
ping one (30.64 ms) by 5.7% while consuming almost the
same energy. On the other hand, the manual mapping re-
sult for minimizing energy consumption (111.0 mJ) is bet-
ter than the GA-based one (122.6 mJ). It turns out that the
model disregard this mapping during the evaluation since its
estimated energy consumption is 126.7 mJ, which is 12.42%
of error and is higher than the lowest estimate.

As for manual mappings, we partitioned and mapped
each task onto PEs as shown in Table 4, with the following
strategies. For the throughput-oriented mapping, we first
mapped the Scanning task to the quad-core GPU as it takes
too long on the other PEs. Then, we distributed Resize and
LBP to the dual-core GPU and Cortex-A15 CPUs since, re-
gardless of their mappings, the execution time of Scanning
on the quad-core GPU would be larger anyway, not affecting
the overall throughput. The other tasks such as Grayscale
and EqualHist can be assigned to any of the remaining
PEs. Note that we also fine-tuned the mappings. After the
aforementioned mapping, a fractional part of the most time-
consuming task was further partitioned and mapped to the
remaining PE in order to reduce the overall latency. The
fine-tuning was repeated until the total execution time was
saturated.

For energy-oriented manual mapping, we mapped
again the Scanning task to the quad-core GPU which has the
highest energy efficiency as well as the highest throughput.
The energy consumption of Resize or LBP is similar on the
dual-core GPU or on Cortex-A7 CPUs. Thus we mapped the
most portion of those tasks to the dual-core GPU since the
execution time is much shorter on the GPU than on Cortex-
A7 CPUs.

Figure 9 summaries the experimental results with the
various solutions. We are now able to find the most energy-
efficient solution for a given throughput (e.g., real-time con-

Fig. 9 Execution time and energy consumption of various implementa-
tions. The manual and GA-based solutions correspond to those in Tables 3
and 4.

straint). With a real-time constraint of 30 FPS, our GA-
based solution (GA #48) shows 28.6% less energy consump-
tion, compared to the manually designed CPU+GPU ver-
sion.

7. Conclusion

Embedded systems have entered heterogeneous manycore
era, where manycore accelerators such as GPUs are in-
tegrated with heterogeneous CPU cores to satisfy various
design objectives, especially minimizing energy efficiency
with a throughput-constraint. In this paper, we have pre-
sented real-time and energy-efficient LBP-based face detec-
tion for FHD input images on a recent CPU-GPU hetero-
geneous embedded platform. Not only have we shown the
optimized parallelization techniques to achieve such a high
throughput, but also we have proposed models for energy
consumption and throughput estimation that can be used in
design space exploration frameworks. The proposed mod-
els consider data-parallel execution with arbitrary partition-
ing ratios, in addition to the task-parallel execution in a
pipelined fashion.

We have verified the proposed models with a GA
framework in mapping the LBP-based face detection appli-
cation onto Exynos 5422, where 10 PEs with four different
types exist. Compared to the manual mapping results ob-
tained by the experts, the output of GA-based mapping re-
sult excelled in throughput by 5.5%. Moreover, we demon-
strated we can easily find an energy-efficient solution with a
throughput constraint, which in contrast would be very diffi-
cult or infeasible to find manually. Our GA-based mapping
consumed 28.6% less energy still meeting the real-time con-
straint.
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