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Cycle Embedding in Generalized Recursive Circulant Graphs

Shyue-Ming TANG†a), Yue-Li WANG††b), Chien-Yi LI††, Nonmembers, and Jou-Ming CHANG†††c), Member

SUMMARY Generalized recursive circulant graphs (GRCGs for short)
are a generalization of recursive circulant graphs and provide a new type of
topology for interconnection networks. A graph of n vertices is said to be
s-pancyclic for some 3 � s � n if it contains cycles of every length t for
s � t � n. The pancyclicity of recursive circulant graphs was investigated
by Araki and Shibata (Inf. Process. Lett. vol.81, no.4, pp.187–190, 2002).
In this paper, we are concerned with the s-pancyclicity of GRCGs.
key words: interconnection networks, generalized recursive circulant
graphs, recursive circulant graphs, cycle embedding, pancyclicity, bipan-
cyclicity

1. Introduction

Interconnection networks are usually modeled as undirected
simple graphs G = (V, E), where the vertex set V(= V(G))
and the edge set E(= E(G)) represent the set of processors
and the set of communication channels between processors,
respectively. For graph embedding, it has many practical
applications such as allocating concurrent processes to pro-
cessors in networks, transplanting or simulating parallel al-
gorithms developed for one network to a different one, and
so forth. In particular, cycle embedding is an extension of
the theoretical research on Hamiltonicity in graph theory.
A ring structure is often used as a interconnection architec-
ture for local area network and as a control and data flow
structure in parallel and distributed networks. Many effi-
cient algorithms with low communication cost have been
developed based on the ring structure. Accordingly, cycle
embedding is an important measurement in evaluating the
efficiency of interconnection networks (see [13], [28], [29]
and quotes therein).

Adding chords to a ring is to enhance its fault-tolerance
capability. A circulant graph C(n; c1, c2, . . . , ck) is a ring of
n (� 3) vertices in which vertices u and v are adjacent if and
only if u ≡ v±ci (mod n) where u, v ∈ {0, 1, . . . , n−1} and 1 �
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ci < ci+1 � �n/2� for 1 � i � k − 1 (see [7] and [8, pp. 73–
75]). For example, two circulant graphs C(24; 1, 3, 12) and
C(24; 1, 4, 8) are shown in Figs. 1 (a) and 1(b), respectively.
In this figure, vertices are labeled by serial numbers within a
circle. Since the two graphs belong to a class of generalized
recursive circulant graphs (defined later in Sect. 2), there is
another labeling of vertices to simplify the structure repre-
sentation. Circulant graphs, which are vertex-symmetric,
form a subclass of Cayley graphs [1], [4].

A subclass of circulant graphs with recursive struc-

Fig. 1 Two generalized recursive circulant graphs: (a) GR(2, 4, 3) and
(b) GR(3, 2, 4)
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ture was proposed by Park and Chwa [22] in the earlier
stage. A circulant graph is called a recursive circulant
graph (RCG for short), denoted by R(cdm, d), if n = c · dm

with positive integers c < d such that ci = di−1 for
i = 1, 2, . . . , k and k = �logd n�. Note that if c > 1,
then k = m + 1; otherwise, k = m. An RCG can also
be constructed by d disjoint copies of R(cdm−1, d) recur-
sively, this is the reason why the name of these graphs
contains the word “recursive”. In R(cdm, d), since c1 =

d0 = 1, all edges of (u, u + 1 (mod n)) form a Hamilto-
nian cycle and we call this Hamiltonian cycle the basic cy-
cle. As a famous network topology, properties and algo-
rithms on RCGs have been widely studied, such as Hamilto-
nian decomposition [5], [20], super-connectivity [27], fault-
tolerant Hamiltonicity [10], [21], [26], independent span-
ning trees [30], [31], disjoint path covers [16], [17], and rou-
tine and broadcasting schemes [12], [15], [23], [24]. More-
over, embedding schemes on RCGs are of particularly in-
terested for many researches, e.g., path and cycle embed-
dings [2], [3], [21], tree embeddings [14], [18], and hyper-
cube and meshe embeddings [23].

Although the class of RCGs can provide a good flex-
ibility on designing network systems, due to the restriction
of 0 < c < d we can find that C(12; 1, 4) is an RCG (i.e.,
it is isomorphic with R(3 · 41, 4)), while C(12; 1, 3) is not.
To remove this restriction, Tang et al. [25] proposed a more
generalized definition of RCGs, called generalized recursive
circulant graphs (defined later in Sect. 2), which can also be
constructed recursively.

To study cycle embedding, we need the following
graph terminology. A graph of n vertices is said to be s-
pancyclic for some 3 � s � n if it contains cycles of every
length t for s � t � n. If s = 3, then s-pancyclic is the
so-called pancyclic [3], [21], [29]. A graph is called bipan-
cyclic if it has cycles of every even length.

2. Generalized Recursive Circulant Graphs

A k-dimensional generalized recursive circulant graph (k-
GRCG for short) is denoted by GR(hk, hk−1, . . . , h1), where
hi � 2 is the size of the ith dimension for 1 � i � k. Every
vertex x in the graph is labeled by a k-tuple (xk, xk−1, . . . , x1)
with 0 � xi � hi − 1 for 1 � i � k, which is a mixed radix
number representation, such that it is adjacent to vertices
(xk, xk−1, . . . , xi + 1, . . . , x1) and (xk, xk−1, . . . , xi − 1, . . . , x1),
where the addition and subtraction in each dimension are
with the carry and borrow. That is, for x = (xk, xk−1, . . . , xi+

1, . . . , x1), if xi + 1 = hi, then a carry occurs at dimension i
and x is indeed (xk, xk−1, . . . , xi+1 + 1, 0, xi−1, . . . , x1). Sim-
ilarly, for x = (xk, xk−1, . . . , xi − 1, . . . , x1), if xi = 0, then
xi−1 will borrow 1 from xi+1, and the resulting label will be
(xk, xk−1, . . . , xi+1−1, hi−1, xi−1, . . . , x1). Furthermore, when
the carry and borrow operations occur at dimension k, it is
manipulated as that there is an invisible dimension k + 1 in
which no carry and borrow will occur. This means that ver-
tices (0, xk−1, . . . , xi, . . . , x1) and (hk −1, xk−1, . . . , xi, . . . , x1)
are adjacent.

Fig. 2 The embedding of an 8 × 3 mesh on GR(2, 4, 3).

Clearly, GR(hk, hk−1, . . . , h1) contains Πk
i=1hi vertices,

and in general, it is 2k-regular except for (2k − 1)-regular
when hk = 2 (since xk + 1 ≡ xk − 1 (mod hk) in this case). In
[25], Tang et al. gave a mapping from GR(hk, hk−1, . . . , h1)
to C(n; c1, c2, . . . , ck) which is described as follows.

Theorem 1 ([25]): A circulant graph C(n; c1, c2, . . . , ck) is
GR(hk, hk−1, . . . , h1) if and only if ci = n/

∏k
j=i h j for i =

1, 2, . . . , k.

By Theorem 1, we can find that C(24; 1, 3, 12) and
C(24; 1, 4, 8) shown in Figs. 1 (a) and 1 (b), respectively, are
GR(2, 4, 3) and GR(3, 2, 4).

The following lemma provides a simple rule to deter-
mine whether a k-GRCG is bipartite or not.

Lemma 2 ([25]): GR(hk, hk−1, . . . , h1) is a bipartite graph
if and only if hk is even and hi is odd for i = 1, 2, . . . , k − 1.

A mesh network is defined as the Cartesian product
Pr × Ps of undirected paths Pr and Ps, denoted by Mr×s.
Lemma 3 gives a condition that a mesh can be embedded
in a k-GRCG. For example, we consider mesh embedding
in GR(2, 4, 3). According to this lemma, all subgraphs of
mech M2×12 or M8×3 can be embedded in GR(2, 4, 3). See
Fig. 2 as an example.

Lemma 3 ([25]): For a mesh Mr×s and a k-GRCG
GR(hk, hk−1, . . . , h1), if there exists an integer j with 1 �
j � k such that 2 � r �

∏ j
i=1 hi and 2 � s �

∏k
i= j+1 hi, then

Mr×s can be embedded in GR(hk, hk−1, . . . , h1).

For more results related to k-GRCGs, we refer to [9],
[11].

3. The Pancyclicity of k-GRCGs

In [3], Araki and Shibata addressed the pancyclicity on
RCGs. In this section, we are concerned with the pancyclic-
ity of k-GRCGs. Since the class of RCGs is a subclass of
k-GRCGs, our results also hold for RGCs. We first exam-
ine the bipancyclicity of k-GRCGs. Clearly, a 1-GRCG is
a cycle and is not pancyclic except GR(3). Thus, we con-
sider hereafter only k-GRCGs with k � 2. For simplicity,
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hereafter GR(hk, hk−1, . . . , h1) is abbreviated as GR when the
context is clear.

By Lemma 3, we know that a mesh Mr×s with r, s � 2
and r · s =

∏k
i=1 hi can be embedded in a k-GRCG. It has

been proved that a mesh Mr×s is bipancyclic if both r, s � 2
(see [19, Lemma 2.1]). Since, by definition, the size of each
dimension in a k-GRCG is at least 2, the following result
directly holds.

Lemma 4: For k � 2, any k-GRCG with n (� 4) vertices is
bipancyclic.

In the following, we shall investigate the existence con-
ditions of odd cycles in k-GRCGs. For ease of description,
we define some terms for using later. Hereafter, we assume
that there are n vertices in a k-GRCG, i.e., n =

∏k
i=1 hi. A

cycle of t vertices is called a t-cycle and is denoted by Ct. If t
is even, then Ct is called an even cycle; otherwise, an odd cy-
cle. Obviously, for a t-cycle and a w-cycle, if there is exactly
one common edge between them, then removing the com-
mon edge results in a (t + w − 2)-cycle., denoted by Ct ◦Cw.
We say that vertex x = (xk, xk−1, . . . , xi, . . . , x1) takes jump
i+ (resp., i−) to reach vertex y = (xk, xk−1, . . . , xi + 1, . . . , x1)

(resp., y = (xk, xk−1, . . . , xi − 1, . . . , x1)) and denote by x
i+−→ y

(resp., x
i−−→ y). In case of hk = 2, jumps k+ and k− reach

the same vertex and thus are viewed as one single jump
k−. When a jump ip where p ∈ {+,−} is used consecu-

tively j times from vertex x to vertex y, we use x
ip j

−→ y to
denote it. Let δ stand for the minimum odd number, if it
exists, in the set {hk, hk−1 + 1, hk−2 + 1, . . . , h1 + 1}. A cy-
cle Ct passing through vertices x1, x2, . . . , xt is denoted by

(x1, x2, . . . , xt, x1) or in the simplified jump form x1
j1 j2··· jt−−−−−−→ x1

where ji is the jump between xi and xi+1.
For example, we consider GR(2, 4, 3) in Fig. 2. Vertex

(1, 3, 0) reaches vertices (0, 3, 0), (0, 0, 0), (1, 2, 0), (1, 3, 1)
and (1, 2, 2) by taking jumps 3−, 2+, 2−, 1+, and 1−, re-
spectively. The 4-cycle ((0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0),

(0, 0, 0)) can be represented as (0, 0, 0)
1+3

−−→ (0, 1, 0)
2−−→ (0, 0, 0)

or (0, 0, 0)
1+32−−−−−→ (0, 0, 0). The minimum odd number δ in the

set {h3, h2 + 1, h1 + 1} = {2, 4 + 1, 3 + 1} is 5.

Proposition 5: For any two jumps j1 and j2, if x
j1 j2−−−→ y,

then x
j2 j1−−−→ y.

Lemma 6: For GR(hk, hk−1, . . . , h1), there exist cycles of
lengths hi + 1 for i = 1, 2, . . . , k − 1. Furthermore, there is a
cycle of length hk if hk � 3.

Proof. Let x = (xk, xk−1, . . . , xi, . . . , x1) be any vertex in GR.
If we can prove that no vertex appears more than once in the

path x
i+hi−−→ y

(i+1)−−−−−−→ z for i = 1, 2, . . . , k − 1 except that x = z,
then the existence of (hi + 1)-cycle holds. By definition, all

vertices in the path x
i+hi−−→ y are distinct and, further, y =

(xk, xk−1, . . . , xi+1 + 1, xi, . . . , x1). Thus, after y taking jump
(i + 1)−, the label of z will be (xk, xk−1, . . . , xi+1, xi, . . . , x1)
which is exactly x. Therefore, there exist cycles of lengths

Fig. 3 Illustrations for Lemma 7.

hi + 1 for i = 1, 2, . . . , k − 1.
To prove the existence of Chk , it suffices to show that

x
k+hk−−−→ z is an hk-cycle. By using a similar argument as the

previous case and the boundary property of dimension hk,
this case is also true. This completes the proof. �

Lemma 7: If GR(hk, hk−1, . . . , h1) has hk = δ, then it con-
tains odd cycles of every length in the range from δ to n.

Proof. By Lemma 3, a mesh Mr×s with r = hk and
s =

∏k−1
i=1 hi can be embedded in GR. By definition, ver-

tices in the first column of Mr×s form an r-cycle. Let

Cr = (0, 0, . . . , 0)
k+hk−−−→ (0, 0, . . . , 0) be the r-cycle in the

first column, and let C4 be the cycle (0, 0, . . . , 0)
1+k+1−k−−−−−−−−−→

(0, 0, . . . , 0) in Mr×s. Then, Cr ◦ C4 results in a Cr+2 (see
Fig. 3 (a)). Again, Cr+2 ◦ C′4 for the above Cr+2 and C′4 =

(0, 0, . . . , 1)
1+k+1−k−−−−−−−−−→ (0, 0, . . . , 1) will result in a Cr+4. By

using the similar technique repeatedly on the first two rows
of Mr×s, we can build odd cycles with lengths in the range
from (r + 6) to (r − 2 + 2s) (see Fig. 3 (b)). Then, by us-
ing the above technique on every two rows of Mr×s, every
odd cycle in the range from (r + 2) to (r − 1)s + 1 can be
built (see Fig. 3 (c)). To include the vertices in the last row
into the above ((r − 1)s+ 1)-cycle, we can construct disjoint
4-cycles in the last two rows one by one from the second
column of Mr×s. Then use the combining operator “◦” to
combine the newly created cycle and a 4-cycle for obtaining
a larger odd cycle (see Figs. 3 (d) and 3 (e) for n is even and
odd, respectively). This establishes the lemma. �

Lemma 8: If GR(hk, hk−1, . . . , h1) has h1 = δ − 1, then it
contains odd cycles of every length in the range from δ to n.

Proof. By Lemma 3 again, a mesh Mr×s with r =
∏k

i=2 hi

and s = h1 can be embedded in GR. By Lemma 6,

(0, 0, . . . , 0)
1+h1 2−−−−−−→ (0, 0, . . . , 0) is a δ-cycle (see Fig. 4 (a)).

To construct cycles of lengths in the range from δ + 2 to
δ + 2(r − 1), we can use the vertices in the second and third
columns of Mr×s to build adjacent C4’s one by one from
the first row to the last row of Mr×s. Note that the bot-
tom edge of a 4-cycle will be the top edge of the successive
4-cycle. Then use the combining operator “◦” to combine
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Fig. 4 Illustrations for Lemma 8.

the newly created cycle and a C4 for getting a larger odd
cycle (see Figs. 4 (b) and 4 (c)). By using a similar tech-
nique on every two columns, i.e., columns 4 and 5, 6 and 7,
etc., we can construct odd cycles with lengths in the range
from δ + 2r to δ + (s − 2)(r − 1) (see Fig. 4 (d)). In the
above construction, we can find that only two vertices in the
first column and one vertex in the last column, namely ver-
tices (0, 0, . . . , 0), (0, 0, . . . , 1, 0), and (0, 0, . . . , h1 − 1), are
used in constructing aforementioned odd cycles. By com-
bining the previous constructed Cδ+(s−2)(r−1) and the C4 =

(0, 0, . . . , 1, 0)
1−2+1+2−−−−−−−−−→ (0, 0, . . . , 1, 0), an odd cycle of length

δ + (s − 2)(r − 1) + 2 is built (see Fig. 4 (e)). Similarly, by
shifting down the above C4 one row, another C4 can be con-
structed, and, then combining with the newly created cycle,
a larger odd cycle is built. By repeating the above proce-
dure until the vertex in the lower left corner, namely vertex
(hk − 1, hk−1 − 1, . . . , h2 − 1, 0), is included, we have con-
structed all odd cycles for every length in the range from δ
to r · s − 1 (see Fig. 4 (f)). This completes the proof. �

Lemma 9: If GR(hk, hk−1, . . . , h1) is not a bipartite graph,
then it contains odd cycles of every length in the range from
δ to n.

Proof. Since GR is not bipartite, by Lemma 2, either hk is
odd or hi is even for some i ∈ {1, 2, . . . , k − 1}. By Lem-
mas 7 and 8, if hk = δ or h1 = δ − 1, then this lemma
holds. It remains to consider the case that hi = δ − 1 for
some 1 < i < k. Let GR j(hk, hk−1, . . . , hi) (GR j for short)
be the jth copy of GR(hk, hk−1, . . . , hi), and, by definition,
there are

∏i−1
x=1 hx such copies. By Lemma 3, there exists a

mesh M(= Mr×s) with r =
∏k

x=i hx and s =
∏i−1

x=1 hx such
that GR j is embedded in the jth column of M. Note that
the vertices in each column of M are arranged according to
their corresponding ordering in the largest odd cycle, say
C�, in GR1. We use M′(= Mr×s′ ) to denote the submesh of
M which is the mesh without containing the first column of
M (i.e., s′ = s − 1). Also, we denote M(p, q) the vertex at
the pth row and the qth column of M. By Lemma 8, there
exist odd cycles of every length in the range from δ to r in
GR1. All we have to prove is that there exist odd cycles of
every length in the range from � + 2 to n. Since r is an even
number, C� = Cr − 1. We consider the following cases.

Case 1. s > 2. In this case, M′ is still a mesh having
more than one column. Since M′ is bipancyclic, it con-
tains every cycle of even length in the range from 4 to r · s′.
It is obvious that we can construct every even-length cy-
cle in M′ such that there is an edge in the first column of
M′. Let Cx be such an even cycle with an edge in the
first column of M′ which connects vertices M′(y, 1) and
M′(y + 1, 1), namely M(y, 2) and M(y + 1, 2), respectively.
Let C4 = (M(y, 1),M(y, 2),M(y+1, 2),M(y+1, 1),M(y, 1)).
Since the cycle C� in GR1 has an edge between M(y, 1) and
M(y + 1, 1) for some y, we can find that (C� ◦C4) ◦Cx is an
odd cycle of length �+ x. Note that C� ◦C4 is an odd cycle of
length � + 2. Therefore, in this case, there exists every odd
cycle with length in the range from δ to n − 1.
Case 2. s = 2. In this case, there is only one col-
umn in M′. However, there exists every even-length cy-
cle, say Cx for 4 � x � r, in GR2 passing through the
edge between vertices M(1, 2) and M(2, 2). Let C4 =

(M(1, 1),M(1, 2),M(2, 2),M(2, 1),M(1, 1)). Thus, C� ◦ C4

is an odd cycle of length � + 2, and (C� ◦C4) ◦ Cx is an odd
cycle of length � + x. This establishes the lemma. �

Lemma 10: If GR(hk, hk−1, . . . , h1) is not a bipartite graph,
then no odd cycle has length smaller than δ.

Proof. If k = 1, then there is exactly one cycle Ch1 in GR,
and this lemma holds directly. Therefore, we consider the
case where k � 2 in the following. Suppose to the con-
trary that there is an odd cycle C� in GR with � < δ and
no smaller odd cycle (including C�) is totally contained in
some GRi(hk, hk−1, . . . , h2) for 1 � i � h1; otherwise, we can

consider the subgraph GRi. Assume that C� = x
j1 j2··· j�−−−−−−→ x

where ji is a jump for i = 1, 2 . . . , �. By Proposition 5,
we can swap jumps in j1, j2, . . . , j� such that all jumps
1+ are in the beginning, then follow by all jumps 1−, fi-
nally all other jumps appear without changing their order.
For simplicity, we assume that the resulting jump sequence
is 1+t1 , 1−t2 , jt1+t2+1, . . . , j� for some nonnegative integers t1
and t2 and ji � {1+, 1−} for t1 + t2 + 1 � i � �. Clearly,

x
1+t1 1−t2 jt1+t2+1··· j�−−−−−−−−−−−−−−−−−−→ x.

In the following, we only consider the case where t1 � t2.
The case where t1 � t2 can be handled similarly. By the
possible values of t2, there are two cases to be considered.
Case 1. t2 = 0. In this case, t1 cannot be equal to 0 either; for
otherwise, C� will be totally contained in some GRi which
is a contradiction. Therefore, t1 must be equal to h1. If

h1 is even, then x
1+h1 2−−−−−−→ x will be an odd cycle of length

h1 + 1 � �. However, by the definition of Cδ and the above
inequality, δ � h1 + 1 � �. This contradicts the assumption
that � < δ. Therefore, h1 must be an odd number. However,
in this case, by replacing 1+t1 with 2− in the jump sequence

1+t1 , jt1+1, . . . , j�, this results in a path P = x
2− jt1+1··· j�−−−−−−−−−→ x

which is totally contained in some GRi. Note that the length
of P is equal to � − t1 + 1 which is less than � and is an odd
number. If every vertex in P appears at most once, then P
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is actually an odd cycle which contradicts the assumption.
If some vertex in P appears more than once, then a smaller
odd cycle can be found in P. This is also a contradiction.
Therefore, this case is impossible.
Case 2. t2 � 0. Obviously, if t2 � 0, then x taking
jumps 1+t2 1−t2 will reach itself. This means that x tak-
ing the remaining jump sequence 1+(t1−t2), jt1+t2+1, . . . , j� still
can reach itself, namely

x
1+(t1−t2) jt1+t2+1··· j�−−−−−−−−−−−−−−−−−→ x.

Note that � − 2t2 is still an odd number. Then, by a simi-
lar argument as Case 1, this case is also impossible. This
completes the proof. �

By combining Lemma 4 and Lemmas 7∼10, we sum-
marize our results as the following theorem.

Theorem 11: GR(hk, hk−1, . . . , h1) is δ-pancyclic if δ ex-
ists, where δ is the minimum odd number in the set
{hk, hk−1 + 1, hk−2 + 1, . . . , h1 + 1}.
Corollary 12: A generalized recursive circulant graph
GR(hk, hk−1, . . . , h1) is pancyclic if and only if δ = 3.

4. Conclusion Remarks

In this paper, we study the cycle embedding in a class of
circulant graphs, which is a generalization of the class of
RCGs. At first, we prove that a k-GRCG with two or more
dimensions must be bipancyclic. Further, if we can deter-
mine the smallest odd s-cycle in a k-GRCG, then the graph
also contains all odd cycles with length greater than s.

With a structure similar to multidimensional torus net-
works [6], the topology of the k-GRCGs provides an alter-
native for designing the parallel computer. For a future re-
search, many network properties, as well as combinatorial
problems can be studied on k-GRCGs.
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