
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018
2933

PAPER Special Section on Parallel and Distributed Computing and Networking

Distributed Video Decoding on Hadoop∗

Illo YOON†, Saehanseul YI†, Chanyoung OH†, Hyeonjin JUNG†, Nonmembers, and Youngmin YI†a), Member

SUMMARY Video analytics is usually time-consuming as it not only
requires video decoding as a first step but also usually applies complex
computer vision and machine learning algorithms to the decoded frame.
To achieve high efficiency in video analytics with ever increasing frame
size, many researches have been conducted for distributed video processing
using Hadoop. However, most approaches focused on processing multiple
video files on multiple nodes. Such approaches require a number of video
files to achieve any speedup, and could easily result in load imbalance when
the size of video files is reasonably long since a video file itself is processed
sequentially. In contrast, we propose a distributed video decoding method
with an extended FFmpeg and VideoRecordReader, by which a single large
video file can be processed in parallel across multiple nodes in Hadoop.
The experimental results show that a case study of face detection and SURF
system achieve 40.6 times and 29.1 times of speedups respectively on a
four-node cluster with 12 mappers in each node, showing good scalability.
key words: distributed video processing, Hadoop, extended FFmpeg

1. Introduction

As we entered Big Data era, efficient processing of those
data on a distributed computing environment such as
Hadoop has become a must. Traditionally, most of the data
were text, but recently video data is rapidly increasing with
the wide spread of surveillance cameras and also with the
advent of many smart devices capable of video recording.
In addition, the frame resolution is constantly increasing:
1080p is already common also in commodity CCTVs, and
many devices now support 4K.

On the other hand, as more and more powerful machine
learning algorithms are developed, applying such algorithms
to video processing has been widely attempted and video
analytics applications can be easily found in many domains
nowadays. For example, face detection and recognition is
widely used not only in security but also in commercials
and marketing purposes. Most machine learning algorithm
is compute-intensive and takes much time even for a single
frame. And, it requires to decode the video frames first to
process them further in the execution pipeline.

Manuscript received January 6, 2018.
Manuscript revised May 22, 2018.
Manuscript publicized September 18, 2018.
†The authors are with the School of Electrical and Computer

Engineering, University of Seoul, Korea
∗This work was supported by Institute for Information &

communications Technology Promotion (IITP) grant funded by
the Korea government (MSIT) (No. R0190-16-2012, High Per-
formance Big Data Analytics Platform Performance Acceleration
Technologies Development), and by the 2016 sabbatical year re-
search grant of the University of Seoul.

a) E-mail: ymyi@uos.ac.kr (Corresponding author)
DOI: 10.1587/transinf.2018PAP0014

Thus, efficiently processing video data has become of
keen interest. GPUs have gained much popularity with its
huge computational power and the characteristics that suits
well to video processing. However, a single GPU or even
multiple GPUs in a single machine cannot excel the perfor-
mance achievable through the distributed computing. Since
Hadoop emerged, many attempts were made to use Hadoop
for video processing, especially for transcoding. However,
many works simply applied video decoding in Hadoop by
using Java-based FFmpeg, and focused on input file-level
parallelism, or job-level parallelism, where a video file it-
self is processed conventionally in each node: a job itself is
not processed in parallel in those approaches. Such an ap-
proach which we will denote Multi-file approach is simple
and can scale well only when there are many small video
files of similar length. However, it could easily suffer from
the load imbalance as the granularity for distributed process-
ing is too coarse.

In contrast, the proposed approach in this paper divides
a single input video file into multiple InputSplits. Thus, as
many workers as the number of InputSplits can run concur-
rently, fully utilizing the resources in a cluster. In Multi-
file approach such as [1], however, each input video file is
mapped to a single InputSplit, and thus employs only as
many workers as the number of video files. And an input
video file itself is processed sequentially by a MapTask, and
is not processed in a distributed manner.

In this paper, we propose an efficient distributed video
decoding method by which a single large video file can
be processed in parallel across multiple nodes in Hadoop,
hence achieves very good scalability without any load im-
balance. To enable this, the following contributions have
been made:

1) FFmpeg, a widely used video decoder, was modified
and extended carefully so that it can construct a decod-
ing context and can decode video data in the buffer of
key-value pair.

2) VideoRecordReader that can distinguish the variable
sized Group-Of-Picture (GOP) boundary has been im-
plemented.

The rest of the paper is organized as follows: the re-
lated work is reviewed in Sect. 2, and the backgrounds for
Hadoop and FFmpeg is given in Sect. 3. The proposed
method is explained in detail in Sect. 4 and the application
used in the experiments are introduced in Sect. 5. Experi-
mental results are discussed in Sect. 6, followed by a con-

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers



2934
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018

clusion Sect. 7.

2. Related Work

2.1 Video Processing in Hadoop

Recently, there have been some efforts to process videos us-
ing Hadoop frameworks. Kim et al. proposed a distributed
video transcoding system [2], which converts various in-
put video formats into a MPEG-4 format using FFmpeg
on Hadoop. Since FFmpeg is C/C++ based library while
Hadoop is Java based framework, they used Xuggler [3], an
open-source Java wrapper of FFmpeg library. They assume
that a job transcodes multiple video files, in which scenario,
a mapper only needs to read the given file and can decode it
straightforwardly using Xuggler.

Tan et al. also proposed a distributed video process-
ing framework on Hadoop [4]. They used JavaCV [5] which
provides a Java wrapper of FFmpeg and OpenCV. Since
JavaCV cannot read the video files in HDFS [6] directly,
Fuse-DFS which can mount HDFS to local file system was
used. In this approach of using JavaCV, it is necessary to
transform the data type from JavaCV frames to Hadoop key-
value pairs. They also assume that multiple video files are
distributed and each file is decoded conventionally. Only
as many map tasks as the number of files run for decod-
ing, and the decoded frames are stored in HDFS. Then, re-
duce tasks read these frame data to process it for analytics.
In this way, time-consuming analytics can be done in more
distributed manner but large overhead of storing and retriev-
ing each frame data to and from HDFS is unavoidable. In
our approach, as many map tasks as the number of Input-
Splits run concurrently, thus the parallelism is already high
and video analytics can be directly done in the map tasks
immediately after the decoding, without storing and reading
frames to/from HDFS.

Zhao et al. proposed a Hadoop Video Processing In-
tefrace (HVPI) [1], which also adopted Xuggler and em-
ploys Multi-file approach. Since each InputSplit is a sep-
arate video file, a mapper would process the given video
file by decoding it sequentially using Xuggler. They com-
pared different JNI [7] implementations to bridge Hadoop
and OpenCV, and provides an efficient JNI implementation
in HVPI.

Although the work proposed by Ryu et al. [8] is not
clearly described, it is somewhat similar to our approach in
that it assumes that a job decodes a single large video file
and uses GOP-level parallelism within a video file, and also
in that FFmpeg was extended. However, InputSplits have
to end at GOP boundary so that TaskTrackers can read the
GOP directly when an InputSplit is received. To do so, Job-
Tracker has to partition the input video file into InputSplits
at GOP boundaries, which is done sequentially before the
MapReduce starts. As a larger video file is used, the splitting
overhead by a JobTracker in [8] could increase. In contrast,
our approach can find out the GOP boundaries in parallel by
each YarnChild in a node, and hence is more scalable.

The approach in [9] is similar to ours in that InputSplits
do not need to align at the GOP boundary. However, it ex-
tracts the sequence header information by executing a sep-
arate job, of which the launching overhead would not be
negligible. Only the first InputSplit would be executed to
extract the sequence header information and the other In-
putSplits should be skipped. For example, a 10GB video
file would be divided into 157 InputSplits of 64MB size, out
of which the 156 TaskTrackers or Mapper processes have
to be launched in order to be simply skipped to the end of
each InputSplit. This overhead in the first job processing
could become a performance bottleneck unless the cluster
has very large number of nodes.

Pereira et al. [10] proposed Split & Merge framework,
a distributed video encoding system in the cloud. Although
they presented video encoding framework, the main idea
of splitting a large video into multiple chunks so that they
can be processed in a distributed manner in the cluster is
similar to ours. They also address identifying key-frames
in the input is important if the input to be encoded already
have some form of temporal compression, which is always
the case in video decoding. However, they implemented
their framework for the inputs without temporal compres-
sion, and only fixed interval splitting is presented, which
cannot support GOP based distributed decoding. In con-
trast, our proposed approach aims at supporting GOP based
chunking in Hadoop, discussing the design and implemen-
tation of distributed video processing in a detailed manner.

3. Backgrounds

3.1 Hadoop 2

Hadoop is a widely used distributed framework that supports
MapReduce programming model, and the Hadoop 2 pro-
vides not only MapReduce but also many other frameworks
such as SQL, Graph, etc [11]. The daemons and processes
in Hadoop 2 MapReduce framework are shown in Fig. 1.

Fig. 1 Hadoop 2 daemons and processes



YOON et al.: DISTRIBUTED VIDEO DECODING ON HADOOP
2935

Fig. 2 Structure of AVC video format.

The two daemons, ResourceManager (RM) and NodeMan-
ager (NM), manage the resource in the cluster and in the
node, respectively. While a RM resides in the master node,
an NM resides in the each worker node. ApplicationMas-
ter (AM) and YarnChild are processes that are executed per
job. RM and AM altogether play the role of JobTracker in
Hadoop 1, and a separate AM is invoked for different jobs.
And YarnChild corresponds to a Child JVM in Hadoop 1,
and is a process that MapTask or ReduceTask is running for
the actual computations.

RM produces input chunks called InputSplits, each of
which will be consumed by a MapTask. The number of In-
putSplit is identical to the number of MapTasks. A Map-
Task, or a YarnChild, iterates executing nextKeyValue() and
map() until it consumes all the data in the assigned Input-
Split. The nextKevValue() method returns one record for the
map function.

Figure 1 illustrates the overview of Hadoop 2 architec-
ture and the sequence for processing a job. When a client
submits a job, RM allocates an AM, which in turn allocates
YarnChilds in multiple nodes in the cluster with the help of
NM in each node. Note that, as shown in figure, each node
has the same number of Containers that can contain either
AM or YarnChild.

3.2 FFmpeg and AVC Video Format

FFmpeg is a widely used open source C++ library for video
encoding and decoding which supports various video for-
mats as well as audio formats [12]. Since it is well opti-
mized, it is widely used across many platforms from servers
to embedded devices.

In the library, ffmpeg is the main set of APIs for en-
coding and decoding video and audio, while ffprobe is used
to obtain information such as key-frames and packet size.
The decoding process of ffmpeg mainly consists of three
steps: reading the video header, finding the codec informa-
tion, and decoding the actual frames. Once the video header
is read and codec information is found enough to initialize
the codec, decoding function is called repeatedly in the loop
until all the necessary frames are decoded.

Figure 2 illustrates that an AVC video format (i.e., mp4
file), which is one of the most widely used video coding for-
mat, consists of multiple atoms: ftyp atom contains informa-
tion about video file type, and mdat contains encoded video
frame data which consists of a sequence of GOPs (Group
Of Pictures). The moov atom contains information such as
whether or not a frame is a key-frame (i.e., I-frame), the byte
offset of the frame, and so forth.

Note that, although we used FFmpeg as our video de-
coder to apply the proposed technique, in principle, our ap-

proach can be applied to any video decoder based on GOP
since GOP can be processed in parallel and a decoding con-
text could be constructed in a similar way, which will be
explained later.

4. The Proposed Hadoop Video Decoding Framework

4.1 Challenges

Several challenges arise when a video file is to be decoded
on multiple nodes in a distributed system, which can be
phrased mainly into two parts: First, the size of each GOP
in a video file varies since it is encoded data, while Hadoop
InputSplit is generated as a fix-sized chunk such as 128MB.
Thus, it is required to tokenize GOPs in an InputSplit, al-
though a generic InputSplit has no information about the
boundaries of each GOP.

Second, the decoding context, which is a structure in
FFmpeg library required to decode frames in a GOP, must be
reconstructed in a distributed environment. Each InputSplit
is a fragmentation of the original input video without any
meta information needed to construct the decoding context.
Thus, we should be able to reconstruct the decoding context
in each MapTask.

To solve these problems, we propose a distributed
video processing framework on Hadoop that extends the
FFmpeg library and is comprised of the following three
steps, of which the overall architecture is shown in Fig. 3

1) Generation of Video auxiliaries

2) Partitioning an InputSplit into GOPs

3) Reconstructing a decoding context

4.2 VideoRecordReader

A typical AVC format video file has a number of GOPs.
Each GOP is made up of one I-frame (i.e., key-frame),
which can be decoded by itself without referencing any
other frame. It is followed by more than one P-frames which
reference the preceded I-frame in order to be decoded. Since
a GOP does not depend on other GOPs, it is a natural unit
of parallel processing.

As mentioned in the previous section, nextKeyValue()
defined in Hadoop RecordReader tokenizes a record from
the InputSplit. When InputSplit consists of text data such as
in WordCount example, it is easy to distinguish sentences,
hence easy to tokenize the InputSplit. However, GOP is a
set of encoded video frame data whose size differs frame
by frame depending on the encoding efficiency, which in
turn depends on the nature of the original frame data. Thus,
the size information for each GOP is needed to correctly
tokenize them from the InputSplit.

For this purpose, auxiliary file called MetaFrameInfo
which contains size information for each GOP is generated
by a modified ffprobe. The modified ffprobe can find out ef-
ficiently the packet information such as byte position, packet
size, key-frame info, and the width and height of the video



2936
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018

Fig. 3 Structure of Hadoop video decoding framework.

frame. Among them, we store packet position and size in
MetaFrameInfo file. Then, the generated file is scattered to
the local file system of each node in the Hadoop cluster us-
ing archives option so that each MapTask can access this file
later from the local disk of each node.

VideoRecordReader, to which we extended the Recor-
dReader of Hadoop for GOP tokenizing, reads the informa-
tion in the MetaFrameInfo file and keeps them in its data
structure for later use in nextKeyValue() method. In our case,
a record is a GOP with variable length, and now nextKey-
Value() in VideoRecordReader can partition correctly each
of GOPs in the InputSplit, referencing the size and the byte
offset kept in its data structure. Also, it can partition cor-
rectly the GOP across the boundaries of the InputSplits. A
GOP belongs to a MapTask depending on the start position:
if it starts within an InputSplit of a MapTask, then the GOP
belongs to the MapTask, even if the GOP ends in another
InputSplit. Note that, even the part of a record resides in an-
other InputSplit, Hadoop provides an API that returns such
data. This is illustrated in Fig. 4.

4.3 Distributred Decoding by Extending FFmpeg APIs

To decode video frames, the decoder in map() function
should construct the decoding context: i.e., the encoded

Fig. 4 The proposed VideoRecordReader can correctly partition each
GOP of variable sizes, as well as InputSplit boundary handling.

type, the location of key-frames in a GOP, and the size and
the location of each GOP. Moreover, the context construc-
tion should be done while accessing GOPs in the record de-
livered as a key-value pair.

The information that can construct the decoding con-
text are kept not only in the header of the original encoded
video file but also in the rear of the file, or even in the actual
mdat data atom. To provide a decoding context to each Map-
Task in the distributed environment, we preprocess the video
file in advance, and the required information is stored in a
file named ContextStub.mp4 which is scattered to each node
in the cluster along with MetaFrameInfo file using Hadoop
archives option. It contains only the required header and the
fraction of data in the original mp4 file sufficient to construct
a decoding context. Note that the size of ContextStub.mp4
file is only about 10MB for a video clip of tens of GB and
the processing time for generating the ContextStub.mp4 is
trivial as will be explained in the later section.

We directly modified and extended the FFmpeg library
instead of using Xuggler since the proposed framework as-
sumes JNI through which C libraries such as OpenCV are
executed. Setting up the decoding context in the extended
FFmpeg can be done in the following steps:

1) avformat open input() reads the atoms in the Con-
textStub.mp4 file and parses each atom. While parsing the
atoms, the byte offsets of each frame including frame in-
formation such as key-frame (I-frame) info and the encoded
frame size are retrieved and built as a table, which we call
entry table.

To perform avformat open input() successfully, all the
atoms in the video file except mdat atom are needed: it is
provided in ContextStub.mp4, which is illustrated in Fig. 5.
The video file always starts with ftyp atom, and most of the
.mp4 file has mdat atom in the middle, followed by the in-
dex information in moov atom which is usually located at
the end of the file as the index information can be decided
only after the encoding is finished. Thus, the original video
file needs to be cropped around the front and the rear of the
mdat atom, and then merged again. In fact, the locations
of mdat atom and moov atom can change depending on the
files. Some .mp4 video files have moov atom in the middle,



YOON et al.: DISTRIBUTED VIDEO DECODING ON HADOOP
2937

Fig. 5 ContextStub.mp4 generated by the modified ffprobe.

Fig. 6 Entry table.

while mdat atom is in the end of the file. We considered such
variation in generating the auxiliaries using the modified ff-
probe. It accepts any .mp4 format files and successfully
generates ContextStub.mp4. After avformat open input() is
called, the basic information in the decoding context is con-
structed.

2) The second step is to find out the frame id from the
given key-value pair, referencing the entry table built in the
previous step. As shown in Fig. 6, the table contains the byte
offset of the packet and key-frame info. The nextKeyValue()
method reads one GOP and passes it to map() function as a
key-value pair, where the key is the byte offset of the GOP
relative to the original sequential video file, and the value is
the content of the GOP as in memory buffer. For example,
if the key value is 4164261, then by referencing the entry
table, the map function finds out that the id of the first frame
in the given GOP is 240. Since the GOP no longer resides
in the original sequential file but in the buffer, the byte off-
set of the first frame in the GOP is now truncated to 0, also
adjusting the offset of the subsequent frames accordingly.

3) The decoding context is essentially constructed in AV-
FormatContext object, a data structure in FFmpeg library.
In the original FFmpeg library, after avformat open input()
completes, AVIOContext structure in the object is filled with
the file pointer that locates the current frame in the origi-
nal sequential video file. However, in our distributed frame-
work, it simply locates the ContextStub.mp4, which does not
contain any frame data except the first GOP. Thus, this struc-
ture needs to be modified so that it can point to the buffer
where the given GOP is stored, not the ContextStub.mp4.
In addition, the structure contains the functions that define
how the video frame data can be read, written, and sought.

Fig. 7 Sequence of filling decoding context.

Thus, these functions should be redefined so as to operate
on the memory buffer, not in the file. To do that, we intro-
duced MemAVIOContext, which replaces the AVIOContext
structure in AVFormatContext object.

4) In addition to replacing AVIOContext, another member
variable of AVFormatContext object that points to the cur-
rent frame should be modified by av seek frame() function
so that this variable can point the exact frame to be decoded.

5) avformat find stream info() function finds the codec pa-
rameters and the stream information such as a codec type
and a real frame rate, and initializes the codec object by ac-
tually reading the encoded frames. Thus, this function needs
to read at least one GOP in mdat atom to retrieve the infor-
mation.

Figure 7 summarizes the aforementioned steps to con-
struct the decoding context of FFmpeg decoder in a dis-
tributed environment using ContextStub.mp4. Once the
decoding context has been successfully constructed, av-
codec decode video2() is finally called to decode a frame,
and the subsequent tasks can process the decoded frame.
Whenever map() is called again with a new GOP, only step
2) and 4) need to be done to adjust the byte offsets and the
pointer to the current frame in the GOP. Other steps do not
need to be repeated since the information have been already
stored in the global variables. These are illustrated as init()
and init middle() in Fig. 3.

Although we explained our approach using specific
FFmpeg APIs, the concept of reproducing the decoding con-
text to enable distributed decoding, which is summarized in
Fig. 7, can be applied to other GOP-based video decoders.

5. Applications

In this section, we briefly introduce the two video analytics
applications that we used for the experiments: face detec-
tion application and SURF based object detection applica-
tion. The processing is applied to the decoded frame using
process frame() as explained in Fig. 3.

5.1 Face Detection

Face detection is a typical video analytics and can be used
in various applications. For example, it is often necessary to
find a target subject in a large surveillance video sequence as
soon as possible. Since it is usually very time-consuming to
search through the entire video frames manually by human



2938
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018

beings, efficient processing of automatic face detection and
recognition is necessary. In the experiments, we used the
CPU implementation of Local Binary Pattern (LBP) based
face detection presented in [13]. For the given frame, a pre-
trained face classifier searches a face of any size using LBP
features, varying the search window size.

5.2 SURF (Speed Up Robust Features)

SURF is a feature detection algorithm [14] that uses scale
and rotation invariant features in the images. SURF is faster
than SIFT by using Hessian detector, thus widely used in
object detection and classification. Unlike face detection,
no pre-trained classifier is required. Once target object is
given, the SURF feature vectors are extracted. The same
SURF feature extraction is applied to all the search win-
dows in the given video frame, and if the distance calcu-
lated by the matching operation using both features from
the target object and the one in the current search window
is below threshold, the two objects are considered to be the
same. We used SURF based object detection application in
OpenCV 3.1.0 [15]. Since SURF involves a number of op-
erations and is time-consuming, the GPU implementation in
OpenCV was used.

6. Experimental Result

Experiments were performed in a Hadoop 2.7.1 cluster
which consists of one master node and four worker nodes.
As described in Table 1, each node has 12 CPU cores and
64GB memory, and are connected through Infiniband.

As input video files, up to 96 TV show video clips of
720p resolution were used. The duration of each video file
is in the range of 1h 10m to 1h 30m, which corresponds to
1.2GB to 1.8GB.

6.1 Comparison of the Proposed with multi-file Approach

First, we compared our approach with multi-file approach
where a video file is not split but the whole file is processed
by a single MapTask: i.e., a job has only one MapTask and
one InputSplit, thus multiple input files can only be pro-
cessed by multiple jobs in the multi-file approach. Note that
mapping the whole file into an InputSplit can be done by
overriding isSplitable method in FileInputFormat class to
return false, as addressed in [1].

We used 1, 24, 48, 72, 96 video files so as to compare
execution time of our proposed approach with multi-file ap-
proach. The execution time of the workload is defined to be
the difference between the start time of the first job and the
end time of the last job completed.

As the cluster configuration, we set 24 containers per
node for multi-file approach since each node has 12 CPU
cores and a job needs one MapTask as well as one Applica-
tion Master. With this configuration, up to 12 video files or
jobs can run simultaneously in a node, fully utilizing the un-
derlying cores in the machine. For the proposed approach,

Table 1 Specification of each node in the cluster.

CPU 12-core Xeon E5-2630
RAM 64GB

Network Infiniband
GPU NVIDIA K20c

Fig. 8 Execution time of face detection application when processing var-
ious number of video clips using the proposed approach and the multi-file
approach

we set 14 containers so that a job consists of 13 MapTasks
as well as one ApplicationMaster: with 12 MapTasks, when
a MapTask is completed, the CPU core would be idle for
short time until it receives a new MapTask. Having one more
MapTask than the number of CPU cores can avoid this idle
situation. And 128MB of the default HDFS block size was
used.

Figure 8 shows the execution times of the face detec-
tion application with the proposed approach and multi-file
approach. The execution time of the proposed approach
when the number of input video files decreases, the execu-
tion time of our approach decreases linearly since the work-
load is fine grained and very well balanced across the nodes
in the cluster with a number of GOPs even for a single job.
However, the execution time of multi-file approach does not
decrease linearly but decreases only at the multiple of 48.
That is because the cluster has four nodes, each with 12
CPU cores. Thus, when the number of video files is 24 or
even one, the execution time is more or less similar to the
one with 48 files, meaning that the remaining 47 or 24 CPU
cores are idle.

Note that the Infinitband network overhead in multi-file
approach turned out to be negligible and as low as about 10
seconds for 1 GB file. This includes the replication transfer
overhead: with the default replication number of three, each
block is replicated and distributed across three nodes in the
four-node cluster. Since the network overhead is negligible,
it is confirmed that the inefficiency of multi-file approach
mainly comes from the load imbalance mentioned before.

A more detailed analysis revealed that the load imbal-
ance is caused not only by the coarse-grained workloads but
also by the fact that Hadoop scheduler treats AM (Appli-
cationMaster) and YarnChild without distinction when al-
locating them to the nodes: they are simply the same Con-



YOON et al.: DISTRIBUTED VIDEO DECODING ON HADOOP
2939

Fig. 9 Execution time of face detection with a 1.8 GB file when Input-
Split size varies. The number in parenthesis is the total number of Input-
Splits.

Fig. 10 Execution time of SURF with a 1.8 GB file when InputSplit size
varies. The number in parenthesis is the total number of InputSplits.

tainer to Hadoop scheduler. Thus, it is possible that a node
has more YarnChilds (i.e., MapTasks), while another has
much less YarnChilds with more AMs instead. Since an AM
is active only at the arrival of an InputSplit and is idle in the
rest, this aggravates the load imbalance.

6.2 Effect of Changing InputSplit Size

Although it is obvious that the proposed GOP based dis-
tributed decoding approach is always more efficient than the
multi-file approach, the proposed approach can also suffer
from load imbalance when the number of InputSplits is not
sufficient to feed all the Containers in the nodes. The num-
ber of InputSplits is determined by the size of an input video
file and the InputSplit size.

Figures 9 and Fig. 10 show the execution time of the
face detection and SURF applications, varying the size of
InputSplits from 128MB of default size down to 8MB. Then,
the number of InputSplits becomes from 14 to 218 for the
1.8 GB input file. Compared to the case with 128MB In-
putSplits, as the size of InputSplits gets smaller, the total
execution time is decreased with the higher throughputs as
more Containers in the cluster start to work. Beyond 32MB
Split size, there is no further speedup since all the Contain-
ers in the cluster are working and the throughput does not
increase: the number of Containers in the four-node cluster

Fig. 11 Execution time as a number of nodes increases (1.8GB with
32MB InputSplits)

is 56 as we set 14 Containers per node. The slight decrease
in the speedup if any, beyond 32MB Split size, is due to the
process scheduling overhead since as many processes as the
number of InputSplits are created and allocated.

As a result, both the face detection and SURF appli-
cations show 3.55 and 3.60 times of speedups with 32MB
InputSplit size compared to the case with 128MB. It corre-
sponds to 42 times faster processing compared to multi-file
approach when there are one video file.

6.3 Scalability

As shown in Fig. 11, the proposed approach achieves very
good scalability as the number nodes in the cluster increases.
Compared to the single threaded execution without Hadoop,
the speedup of each Hadoop application increases almost
linearly as the number of nodes increases in the cluster. As
12 CPU cores in each node is fully utilized in the face de-
tection application, it achieves about 11 times speedup with
one node and 40.6 times speedup with four nodes. However,
in the SURF application, a GPU is utilized as well as a CPU.
Since the node in the cluster has only one GPU (k20c), it be-
comes the performance bottleneck. Although 12 MapTasks
are executed per node, the speedups are about 8 times with
one node and 29.1 times with four nodes.

A video analytics job for a large video file that would
take several hours now takes only several minutes with our
approach. This makes some applications such as interactive
video search practical.

6.4 Preprocessing Overhead

There are two types of overheads in the proposed distributed
decoding: generation of ContextStub.mp4 and MetaFrame-
Info, and copying these files to all nodes in the cluster us-
ing Hadoop archive option. With the careful extension of
ffprobe, the generation time of the ContextStub.mp4 and
MetaFrameInfo takes only 0.7 second for about 2GB-long
video file. Also, since the size of these files is only about
10MB, the broadcasting overhead is negligible.



2940
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018

6.5 Limitations

Currently, the proposed distributed video decoding frame-
work works for .mp4 format, not .avi nor .mkv. However,
these are the file container formats that contains h.264 en-
coded file. In fact, ffmpeg and ffprobe also support these for-
mats. Thus, the proposed GOP based distributed decoding
can be easily extended to support these formats.

The second limitation is that the preprocessing assumes
the input video files to be on the local file system. If the en-
coding of raw data is written directly to HDFS, then down-
loading of the encoded file from HDFS to the local file sys-
tem is necessary.

7. Conclusion

In this paper, we have presented a distributed video decod-
ing framework, where even a single video file can be de-
coded in parallel in Hadoop. Compared to the conventional
video decoding approaches on Hadoop where a job consists
of a single InputSplit and multiple jobs are distributed in
the cluster, the proposed approach is fine grained at GOP
level so that it does not suffer from load imbalance when the
number of input files is small but achieves good scalabil-
ity in the distributed environment. To enable the GOP level
distributed decoding, the widely used video codec library,
ffmpeg, was modified and extended carefully, assuming JNI
execution in Hadoop.

Specifically, VideoRecordReader has been imple-
mented to tokenize variable-length GOPs correctly. Also,
the decoding context is reconstructed in each MapTask so
that the extended ffmpeg can decode the frames in the tok-
enized GOP in Hadoop. For this purpose, the original video
file is preprocessed efficiently with the modified ffprobe, and
auxiliary files are generated.

It was confirmed with two video analytics applications
that the proposed approach achieves very good scalability
even for a single video file, as long as there are enough In-
putSplits. Compared to the single threaded implementation,
face detection application and SURF based object detec-
tion application achieved over 40 times and about 30 times
speedups respectively, in four-node cluster.

References

[1] X. Zhao, H. Ma, H. Zhang, Y. Tang, and Y. Kou, “HVPI: Extending
Hadoop to Support Video Analytic Applications,” Cloud Computing
(CLOUD), 2015 IEEE 8th International Conference on, pp.789–796,
IEEE, 2015.

[2] M. Kim, Y. Cui, S. Han, and H. Lee, “Towards efficient design
and implementation of a hadoop-based distributed video transcoding
system in cloud computing environment,” International Journal of
Multimedia and Ubiquitous Engineering, vol.8, no.2, pp.213–224,
2013.

[3] Xuggler, “Xuggler api,” Avaliable: http://www.xuggle.com/xuggler/
[Accessed: 25 April 2015], 2012.

[4] H. Tan and L. Chen, “An approach for fast and parallel video pro-
cessing on Apache Hadoop clusters,” Multimedia and Expo (ICME),

2014 IEEE International Conference on, pp.1–6, IEEE, 2014.
[5] “Javacv project page on google code,” Avaliable: http://code.google.

com/p/ javacv [Accessed: 20 Aug. 2012].
[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop

Distributed File System,” Mass storage systems and technologies
(MSST), 2010 IEEE 26th symposium on, pp.1–10, IEEE, 2010.

[7] R. Gordon, Essential JNI: Java Native Interface, Prentice-Hall, Inc.,
1998.

[8] C. Ryu, D. Lee, M. Jang, C. Kim, and E. Seo, “Extensible Video
Processing Framework in Apache Hadoop,” Cloud Computing Tech-
nology and Science (CloudCom), 2013 IEEE 5th International Con-
ference on, pp.305–310, IEEE, 2013.

[9] R. Radhakrishnan, “Using hadoop mapreduce for distributed
video transcoding,” Avaliable: https://content.pivotal.io/blog/using-
hadoop-mapreduce-for-distributed-video-transcoding [Accessed: 22
May 2018], 2013.

[10] R. Pereira, M. Azambuja, K. Breitman, and M. Endler, “An Archi-
tecture for Distributed High Performance Video Processing in the
Cloud,” Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pp.482–489, IEEE, 2010.

[11] A. Hadoop, “Hadoop,” Avaliable: http://hadoop.apache.org [Ac-
cessed: 27 Dec. 2017], 2009.

[12] F. Bellard, M. Niedermayer, et al., “Ffmpeg,” Availabel from:
http://ffmpeg.org, 2012.

[13] C. Oh, S. Yi, and Y. Yi, “Real-time face detection in Full HD images
exploiting both embedded CPU and GPU,” 2015 IEEE International
Conference on Multimedia and Expo (ICME), pp.1–6, IEEE, 2015.

[14] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Ro-
bust Features,” European conference on computer vision, vol.3951,
pp.404–417, Springer, 2006.

[15] OpenCV, “Opencv 3.1.0,” Avaliable: http://opencv.org [Accessed:
27 December 2017], 2015.

Illo Yoon received the B.S. and M.S. de-
grees in Electrical and Computer engineering
from the University of Seoul in 2015 and 2017,
respectively. His research interest includes par-
allel software design and computer vision appli-
cations.

Saehanseul Yi received the B.S. and M.S.
degrees in Electrical and Computer Engineering
from the University of Seoul in 2013 and 2015,
respectively. He is currently a Ph.D. student
in the University of California, Irvine. His re-
search interest includes parallel software design,
heterogeneous computing, embedded GPU plat-
forms, computer vision and high-performance
distributed framework using manycore acceler-
ators.

http://dx.doi.org/10.1109/cloud.2015.109
http://dx.doi.org/10.1109/icme.2014.6890135
http://dx.doi.org/10.1109/icme.2014.6890135
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1017/cbo9780511615948.023
http://dx.doi.org/10.1109/cloudcom.2013.153
http://dx.doi.org/10.1109/cloud.2010.73
http://dx.doi.org/10.1109/icme.2015.7177522
http://dx.doi.org/10.1007/11744023_32


YOON et al.: DISTRIBUTED VIDEO DECODING ON HADOOP
2941

Chanyoung Oh received the B.S. degree in
Electrical and Computer Engineering from the
University of Seoul in 2015. He is currently a
Ph.D. student in the University of Seoul. His re-
search interest includes parallel software design,
heterogeneous computing, embedded GPU plat-
forms, computer vision and medical imaging.

Hyeonjin Jung received the B.S. degree
in Electrical and Computer engineering from
the University of Seoul in 2018. He is cur-
rently a M.S. degree student in University of
Seoul. His research interest includes parallel
software design, heterogeneous computing, and
high-performance computing on a GPU cluster.

Youngmin Yi received the B.S. degree
in Computer Engineering and Ph.D. degree in
Electrical Engineering and Computer Science
from Seoul National University in 2000 and
2007 respectively. He was a Postdoctoral Re-
searcher at the University of California, Berke-
ley from 2007 and 2009, and a senior researcher
at Samsung Advanced Institute of Technology
from 2009 to 2010 before he joined the School
of Electrical and Computer Engineering in the
University of Seoul, where he is currently an

Associate Professor. His research interest includes algorithm/architecture
codesign for heterogeneous manycore platforms, GPU computing, and
computer vision applications.


