
2958
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018

PAPER Special Section on Parallel and Distributed Computing and Networking

Avoiding Performance Impacts by Re-Replication Workload
Shifting in HDFS Based Cloud Storage∗

Thanda SHWE†a), Nonmember and Masayoshi ARITSUGI††b), Senior Member

SUMMARY Data replication in cloud storage systems brings a lot of
benefits, such as fault tolerance, data availability, data locality and load
balancing both from reliability and performance perspectives. However,
each time a datanode fails, data blocks stored on the failed datanode must
be restored to maintain replication level. This may be a large burden for
the system in which resources are highly utilized with users’ application
workloads. Although there have been many proposals for replication, the
approach of re-replication has not been properly addressed yet. In this pa-
per, we present a deferred re-replication algorithm to dynamically shift the
re-replication workload based on current resource utilization status of the
system. As workload pattern varies depending on the time of the day, sim-
ulation results from synthetic workload demonstrate a large opportunity for
minimizing impacts on users’ application workloads with the simple algo-
rithm that adjusts re-replication based on current resource utilization. Our
approach can reduce performance impacts on users’ application workloads
while ensuring the same reliability level as default HDFS can provide.
key words: re-replication, fault tolerance, data reliability, HDFS

1. Introduction

With the increasing demand of cloud storage year by year,
storing, processing and managing a large amount of data ef-
ficiently on cloud storage have raised significant concerns
especially in maintaining certain level of guarantee for data.
Node failures are common in cloud computing infrastruc-
tures which are accommodated on commodity servers. As
node failures occur frequently, cloud storage file system,
such as Google File System [1] and Hadoop Distributed File
System [2] employ data replication, i.e., storing a single data
block in several different locations for fault tolerance.

Although data replication brings a lot of benefits, such
as providing fault tolerance, data locality, data availability
and concurrent access to the data for load balancing, each
time a datanode fails, data blocks on the failed node must be
re-replicated to other nodes to maintain the minimum repli-
cation level. If datanodes fail frequently under independent

Manuscript received January 6, 2018.
Manuscript revised May 29, 2018.
Manuscript publicized September 18, 2018.
†The author is with Department of Computer Science and Elec-

trical Engineering, Graduate School of Science and Technology,
Kumamoto University, Kumamoto-shi, 860–8555 Japan.
††The author is with Big Data Science and Technology, Fac-

ulty of Advanced Science and Technology, Kumamoto University,
Kumamoto-shi, 860–8555 Japan.

∗This paper is an extended version of the paper published in
the proceedings of 10th IEEE/ACM International Conference on
Utility and Cloud Computing.

a) E-mail: thandashwe@gmail.com
b) E-mail: aritsugi@cs.kumamoto-u.ac.jp

DOI: 10.1587/transinf.2018PAP0017

or correlated failure and failed datanodes hold millions of
data blocks, the resources needed to support data restoration
processes can be high and users’ application workloads will
compete with re-replication workloads for resources. It may
incur performance impacts on users’ application workloads,
resulting in introduction of QoS violation. Triggering re-
replication with slow rate can be a simple solution to solve
this problem. However, the ultimate goal of replication is
to give full guarantee for fault tolerance, hence triggering
re-replication with slow rate can decrease the durability of
data. Thus, two opposing trends come into play when re-
replication is performed. Speedy re-replication alone can
minimize data loss which increases reliability and data dura-
bility but performance also degrades. There is a trade-off in
performing re-replication.

Servers in data center have high variations in resource
usage and resource usage varies in different period of the
day [3], [4]. In [3], the authors studied load variations in
different types of server workloads for one day period and
proved that server workloads have high variability in dif-
ferent period of the day. In [4], average hourly and daily
web access logs were studied for 5 weeks and reported that
web access pattern tends to follow the similar trend and peak
hours are between 11:00 and 17:00.

In view of this, it is necessary to perform the re-
replication process effectively based on resource usage sta-
tus of the whole cluster that allows us to reduce performance
impacts on users’ application workloads while ensuring the
durability of data. The strategy must need to consider care-
fully both reliability and performance issues.

To address this problem, other studies [5], [6] demon-
strated that data block restoration processes created a high
load on a small number of nodes and suffered load im-
balance in the system. They presented replica reconstruc-
tion schemes with the purpose of balancing re-replication
jobs among the nodes in the cluster in order to reduce load
imbalance during re-replication phase. Balancing only re-
replication jobs without considering current running users’
application jobs can decrease the performance of the cur-
rent running users’ application jobs. Contrary to their work
that only considers balancing re-replication jobs, our previ-
ous work [7] considered to balance both users’ application
workload and re-replication workload during re-replication
time as well as scheduled re-replication based on perfor-
mance status of datanodes and popularity and reliability of
data blocks. Although this approach succeeded in balancing
all the servers workloads and achieved high re-replication

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

SHWE and ARITSUGI: AVOIDING PERFORMANCE IMPACTS BY RE-REPLICATION WORKLOAD SHIFTING IN HDFS BASED CLOUD STORAGE
2959

throughput, reduction of re-replication time and probabil-
ity of overload condition, this re-replication strategy utilized
the fact that server utilization in the cluster is under 50%
and performed the speedy re-replication by consuming re-
sources more than baseline HDFS. Thus, if the cluster is
highly or fully utilized with regular users’ workload, speedy
re-replication can decrease the performance of users’ jobs.

Inspired by our previous work, in this paper, we go a
step further and investigate a re-replication scheme called
deferred re-replication which adjusts re-replication based on
the average utilization of the whole cluster. The main con-
tributions of this paper are as follows:

1. We present deferred re-replication scheme that can
minimize performance impacts on users’ application
workloads while ensuring reliability level as default
HDFS re-replication.

2. We develop a simple algorithm that adjusts re-
replication based on current resource utilization of the
whole cluster and performs re-replication during idle
periods.

3. We employ priority based replicas grouping that re-
stores popular and critical data first which conse-
quently improves the performance and reliability of the
system.

4. We evaluate the deferred re-replication algorithm on
CloudSim with various parameter choices in a 400-
nodes cluster. We show that our deferred re-replication
algorithm can reduce performance impacts on users’
application jobs and maintain the reliability as default
HDFS re-replication.

We explore the possibility of deferring some portions
of re-replication to a later time and investigate this deferred
re-replication scheme can reduce the performance impacts
on the users’ application workloads and maintain the same
reliability level as the default re-replication scheme. The
deferred re-replication performs re-replication based on the
observation of average utilization of the whole cluster. In
particular, if the resources are under-utilized, re-replication
will be performed quickly. Thus, current running users’ ap-
plication jobs do not need to compete with re-replication
jobs, resulting in minimizing performance impacts on cur-
rent running users’ jobs. If the resources are highly uti-
lized at the time of re-replication, immediate re-replication
is performed for some high priority groups, i.e., for the
data blocks which have only one replica and are popular.
For other replica groups, re-replication will be deferred by
shifting the time at which re-replication is performed. The
re-replication scheme observes the utilization status of the
cluster periodically in the background and schedules re-
replication when the average utilization of the cluster is un-
der pre-defined threshold.

The rest of the paper is organized as follows. The re-
lated work is discussed in Sect. 2, and how Hadoop dis-
tributed file system does replication and re-replication is

presented in Sect. 3. Problem formulation and motivating
example is described in Sect. 4. In Sect. 5, we present the
design and approach used for deferred re-replication. The
simulation results are reported in Sect. 6. Finally, the paper
is concluded in Sect. 7.

2. Related Work

In this section, we discuss relevant studies in the following
three main categories:
Data re-replication: Most of the studies in data replica-
tion has targeted for data locality, reliability and energy ef-
ficiency issues. Very limited studies focused on the specific
cases of re-replication in HDFS based storage system. Hi-
gai et al. [5] proposed replica reconstruction schemes for a
single rack cluster that balanced the workloads of replica-
tion processes by minimizing the difference of the amount
of data transfer of each node during the re-replication phase.
In their work, the nodes were connected with ring topology
virtually and data blocks were transferred based on this one-
directional ring structure. This work succeeded in improve-
ment of replica reconstruction throughput for the single rack
cluster and then they continued their work for multiple racks
cluster [6]. During data restoration process, data transfer
withing a rack was performed based on the one-directional
ring structure and inter-rack data transfer was carried out in
a round robin manner. The source and destination datan-
odes were selected to balance re-replication workloads on
each datanode. Although these works are the closest studies
to our proposed deferred re-replication, their work focused
on balancing the load of re-replication jobs, and the impacts
on the foreground process was rarely considered. Our de-
ferred re-replication differs from the studies in a way that re-
replication jobs are scheduled based on current resource uti-
lization status of the whole cluster and re-replication work-
loads are allocated to datanodes with the goal of minimizing
impacts on the users’ application jobs while maintaining re-
liability guarantees.
Reliability in distributed storage system: As the cloud
storage system scales up, assuring and maintaining relia-
bility has become critical concerns. These cloud storage
systems are built from commodity servers in which com-
ponent failures occur in a daily basis. Thus, several stud-
ies have addressed the issue of reliability in data storage
system. Cidon et al. [8] presented copyset replication that
split the datanodes into copysets and stored a single chunk
of data only on one copyset. The data loss event occured
only when all nodes of same copyset failed simultaneously
under correlated failures, resulting in reduction of probabil-
ity of data loss. They also proposed tiered replication [9]
that split the cluster into primary and backup tiers. In that
work, they demonstrated that two replicas were enough for
protecting data loss under independent node failure while
three replicas were enough to protect data under correlated
failure and stored the first two replicas on primary tier and
the third replica on backup tier without effecting the perfor-
mance. In [10], Wang et al. proposed a comprehensive re-

2960
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018

liability model that considered not only probability of data
loss but also bandwidth allocation in the recovery process.
They used proposed reliability model for analyzing reliabil-
ity and system repair rate for different data layout schemes,
namely copyset replication, shifted declustering and random
declustering layouts. In [11], Li et al. proposed a novel cost-
effective data reliability management mechanism based on
proactive replica checking (PRCR) that checked the avail-
ability of replicas to maintain reliability. They showed
that default three way replication strategy consumed stor-
age space for rarely accessed files. Thus, they proposed a
reliability model with the aim of reducing storage cost and
demonstrated that wide range of data reliability can be as-
sured with the maximum of two replicas stored in the cloud.
Most of these works have focused on developing an ana-
lytical model that can give accurate reliability results and
the impact of data layout on reliability. Their approaches
targeted to evaluate the reliability of the system and to re-
duce the data loss probability but the aspect of restoring the
lost blocks effectively was not studied. In contrast to these
works, we consider to restore data blocks effectively in con-
sideration of both reliability of the system and performance
impacts on the users’ application workloads.
Performance impact in case of data recovery: Replica-
tion in HDFS is not only providing fault tolerance but also
serving of multiple parallel requests for higher data access
rate. Replication improves read performance as it can load-
balance read requests across multiple replicas. Thus, some
of the studies proposed schemes to recover popular data im-
mediately. Wu et al. [12] proposed Intelligent Data Out-
sourcing (IDO) that dynamically determined the popular-
ity of data during normal operation state and proactively
migrated them from the degraded RAID set to surrogate
RAID set in data centers. The proactive migration of pop-
ular data blocks was based on the fact that occurrence of
background tasks, such as RAID reconstruction, RAID re-
synchronization, disk scrubbing, and RAID reshape was
predictable and proactive migration could improve perfor-
mance of both foreground and background tasks. The
main concepts of this two studies was migration or recov-
ery of popular data proactively by predicting the occur-
rence of background tasks. However, minimizing perfor-
mance impacts on users’ application jobs while performing
data recovery and migration was not addressed. In [13],
popularity-based proactive data recovery for HDFS RAID
systems(PP) was studied and it was proactive in the sense
that popular data were determined before data failure to re-
duce the preparation time. In case of failure, popular data
were recovered first. In the whole, PP intended to reduce
the data block reconstruction time in HDFS RAID, conse-
quently reducing execution time of users’ requests that ac-
cessed the missing data. In HDFS RAID, accessing missing
data blocks needs to wait reconstruction of the data blocks
to be completed whereas in original HDFS, users’ request
can be re-directed to another copy. In PP, recovery of data
blocks in a single data file was mainly addressed because
this is primary role of data reconstruction in HDFS RAID

environment. Generally, PP focused on minimizing per-
formance impacts only on specific tasks that requested the
missing data but it did not address the impact of massive
re-replication workloads on all of normal cluster workloads
due to several data nodes failure. In contrast to this, our
deferred re-replication pays attention to minimize perfor-
mance impacts of re-replication workloads on all of users’
application workloads in the system during re-replication.
Although our deferred re-replication has the same intention
with PP in increasing performance by restoring popular data
first, PP applied it to reduce the execution time of tasks
that will directly access the popular data blocks whereas our
deferred re-replication strategy applies it to balance future
access load to popular data on many replicas as possible.
Hence, our work is not directly comparable as the data block
reconstruction objective and context differs significantly.

3. HDFS Revisited

Hadoop distributed file system(HDFS) is installed on the
clusters to store, process and manage large files. Files on
HDFS are divided into multiple data blocks and stored in
different datanodes that can access them in parallel, enabling
to give faster speed for data processing. HDFS operates with
a single namenode and multiple datanodes. The namenode
is responsible for metadata management of all the files and
periodically checkup of healthy status of datanodes through
heartbeat message. Datanodes store and retrieve data blocks
as files of their local file system. They report the list of
blocks they hold to the namenode and they also send heart-
beat message regularly to inform the namenode that they are
alive [14]. Figure 1 shows the architecture of HDFS.

HDFS stores multiple copies of single data in differ-
ent datanodes to protect against data loss. Although one of
the ultimate goals of data replication in HDFS is providing
fault tolerance, it is also meant for performance issues, such
as data locality which means accessible to the nearest data
block with the node where computation is performed and
load balancing which means increase of read performance
by sharing file requests on multiple replicas. HDFS stores
three replicas of data by default with rack aware replica
placement policy and replication factor can also be config-

Fig. 1 HDFS Architecture.

SHWE and ARITSUGI: AVOIDING PERFORMANCE IMPACTS BY RE-REPLICATION WORKLOAD SHIFTING IN HDFS BASED CLOUD STORAGE
2961

ured by the user. The rack aware replica placement policy
allocates primary replica on one node in the local rack. The
second replica is placed on a node in a different remote rack.
The third replica is placed on a different node in the same
remote rack. Datanodes do not hold same replicas. Except
these two conditions, HDFS selects source and destination
datanodes in random manner [14].

Since HDFS clusters can be built on commodity hard-
ware, failure of datanodes occurs frequently. When the na-
menode detects node failure or detects some of the data
blocks that fall under replication level, it restores lost data
blocks to remaining datanodes. This data restoration pro-
cess is called re-replication and there are many potential
candidate nodes to be the source and destination datan-
odes. But HDFS selects source and destination datan-
odes randomly. HDFS configuration parameters, such as
dfs.namenode.replication.work.multiplier.per.iteration and
dfs.namenode.replication.max-streams can be adjusted and
throttled depending on how much the re-replication process
wants to be speed up.

4. Problem Formulation and Motivating Example

The burden incurred by re-replication is significant if the
failed datanode holds several thousands of data blocks.
Copying data blocks from one node to another during re-
replication process can have impacts on cluster normal jobs
and keeps the system busy. The re-replication strategy in
our previous work [7] consumed more resources than base-
line HDFS for its speedy re-replication. This could not be
a problem if the cluster is lightly utilized. But if the cluster
is fully or highly utilized, it may have impact on the perfor-
mance of users’ application workloads.

We illustrate this issue by a motivating example. Con-
sider a system that consists of 3 nodes as in Fig. 2. Assume
that if node(s) failure occurs at time T1 and it may be a sin-
gle node failure or correlated failure with several nodes. At
that time, cluster is lightly utilized with average utilization
around 30%. Most of the nodes are lightly utilized and some

Fig. 2 Re-replication based on average utilization.

of the nodes may be over-utilized. Restoring large amount
of blocks by consuming high amount of resources could not
be significant burden for the system. But if node failure oc-
curs at time T2, at that time cluster is highly utilized with
average utilization around 70%. Thus, performing all the
re-replication jobs at that time may be a burden for the sys-
tem. At next time, time T3, the cluster is lightly utilized and
deferring re-replication jobs to time T3 will be potential so-
lution to minimize the performance impacts on cluster nor-
mal jobs incurred by re-replication jobs. There are several
factors to be considered in order to defer the re-replication
to next time.

• Reliability: From the reliability perspective, deferring
re-replication to later time can increase the probability
of data loss. Thus, system must be able to maintain
reliability level for any type of failure.

• Load balancing: Deferring re-replication itself cannot
get load balancing among the nodes in the system be-
cause it can only decide whether the whole system
is highly or lightly utilized. Thus, re-replication pol-
icy must consider variability of utilization among the
nodes and balance both for user application workload
and re-replication workload.

As our previous work appropriately solved load imbal-
ance among the nodes, our focus of this paper is to investi-
gate whether shifting re-replication workload to a later time
can reduce performance impacts on the users’ application
workloads without sacrificing reliability of the system.

5. Designing Deferred Re-Replication

A key design decision in deferred re-replication scheme is to
defer re-replication based on current utilization of the whole
cluster while maintaining the same reliability level as default
re-replication. In this section, we motivate this design deci-
sion by presenting facts which demonstrate that deferred re-
replication can potentially lead to reduced impacts on cluster
foreground tasks.

• Reduce impact on foreground task: At the time when
the cluster is being fully or highly utilized, a node fail-
ure will lead to the unavoidable fact that user jobs will
compete with re-replication jobs for resource usage.
By adjusting re-replication jobs based on the resource
usage, impact on foreground task by re-replication can
be reduced.

• Provide reliability as baseline: In spite of shifting
the time of re-replication to later time, deferred re-
replication can provide same reliability level as base-
line because the high priority group is always re-
replicated immediately, while re-replication to other re-
replication priority groups can only be deferred.

• Improve performance: As data replication in HDFS is
more than reliability and is also meant for performance,

2962
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018

deferred re-replication can support performance im-
provement by re-replicating popular data first.

5.1 Deferred Re-Replication Based on Resource Utiliza-
tion

The deferred re-replication selectively performs based on
average utilization of the whole cluster. In this paper, we
propose a simple approach to minimize performance im-
pacts on users’ applications jobs while ensuring the reliabil-
ity level as baseline HDFS. In particular, we use average uti-
lization of the whole cluster to decide the time re-replication
is scheduled. Since the re-replication process incurs over-
head to the system, it should be activated with careful man-
ner. Thus, in our approach, re-replication for low priority
groups will only be triggered whenever the system average
utilization is under pre-defined utilization threshold while
re-replication for high priority groups will be performed im-
mediately. Our previous work in [7] utilized the fact that
average resource utilization of servers in the cluster is under
50% [15], [16] and performed re-replication very quickly by
consuming high amount of resources, causing high work-
load in the system. However, the study [16] also reported
that although it is seldom, servers are also utilized near their
maximum utilization level. In addition, the study [17] pre-
sented that overall peak-to-trough variation of CPU utiliza-
tion in data center is about 30%. Thus, as a supplementary
to our previous work, in this paper, we consider for the situ-
ation when the cluster is highly utilized, that means utilized
beyond 50% and we set the utilization threshold as 50%.
The detailed procedure to re-replicate in balanced manner
among the nodes for each priority group follows our previ-
ous work [7]. We briefly present our previous work in the
next section.

5.2 Our Previously Proposed Proactive Re-Replication
Strategy

Our previous work [7] used predicted CPU utilization, pre-
dicted disk utilization and popularity of replicas to perform
proactive re-replication as we briefly discuss in Sect. 5.2.1.
The priority grouping of replicas we employed is discussed
in Sect. 5.2.2.

5.2.1 Resource Utilization Prediction

Resource usage of datanodes changes frequently from time
to time. Hence, in our previous work, we selected appropri-
ate nodes for re-replication based on predicted CPU and disk
utilization information at next time interval in order to avoid
the occurrence of overload condition during re-replication
phase.

Each datanode sends the current CPU and disk utiliza-
tion to the namenode through heartbeat message periodi-
cally. When a node failure occurs, the namenode predicts
future resource utilization of all datanodes in the system us-
ing local regression method. Resource utilization prediction

Table 1 Replicas’ priority grouping

Group Category Data Popularity Replicas Remaining

G1 High 1
G2 Low 1
G3 High 2
G4 Low 2

based on local regression uses current CPU and disk uti-
lization of each datanode along with historical values and
predicts CPU and disk utilization for the next time inter-
val. The re-replication scheduler decides how much re-
replication workloads will be allocated to which nodes us-
ing predicted CPU and disk utilization in order to balance
the server utilization during the re-replication phase and can
avoid the occurrence of overload condition.

5.2.2 Replicas’ Priority Grouping

Priority based replicas grouping is generally aimed to con-
sider both reliability of data block and performance degra-
dation of the foreground jobs and proposes scheduling re-
replication based on different priority groups. Priority is de-
fined based on the number of current replicas available in
the system and popularity of the replicas. The data blocks
that need to be re-replicated are grouped into four priority
groups as in Table 1.

The reason behind determining one of the attributes,
remaining replicas, for priority grouping is quite clear that
if there is only one remaining replica, we need to restore
the lost replicas immediately in order to prevent data loss.
Another attribute, popularity is mainly concerned for the
system performance. Restoring popular data first can in-
crease the system performance which is supported by the
findings in [13] which showed that increase performance
and load balance by recovering popular data firstly. Thus,
quick restoration of popular block is important and we con-
sider this issue in our re-replication strategy.

In order to determine whether a data block is popular
or unpopular, we employ the approach in [18] to define the
threshold value to decide data block’s popularity. The aver-
age number of accesses NOA is used as the threshold. NOA
can be calculated as NOA = 1

|H|
∑

h∈H NOA(h), where | H |
is the number of records in H that is the access history ta-
ble, and each record h in H indicates the number of accesses
NOA(h) for data block h.

5.3 Deferred Re-Replication Algorithm

The key insight our deferred re-replication algorithm builds
on is that at the time of low resource utilization of the sys-
tem, re-replication can be performed quickly. If the sys-
tem is fully or highly utilized, re-replication of high prior-
ity groups is performed immediately but re-replication of
lower priority groups can be deferred to a later time in or-
der to minimize performance impacts on users’ application
jobs. To implement this, we simply pick an average uti-

SHWE and ARITSUGI: AVOIDING PERFORMANCE IMPACTS BY RE-REPLICATION WORKLOAD SHIFTING IN HDFS BASED CLOUD STORAGE
2963

Algorithm 1: Deferred re-replication based on aver-
age utilization

Require: replicaList: data blocks that are stored in failed node
Require: nodeList: datanodes with their predicted CPU and disk

utilization
1 Divide replicaList into four priority groups;
2 while replicaList � 0 do
3 Checkaverageutilization();
4 if averageutilization > 50 then
5 Perform re-replication only for groups G1 and G2;

/* use Algorithm 2 to schedule

re-replication for each group */

6 wait for t sample;
7 else
8 Perform re-replication by group order;

/* use Algorithm 2 to schedule

re-replication for each group */

9 end
10 end

lization threshold of the whole cluster to decide whether the
system is highly or lightly utilized. The re-replication al-
gorithm runs periodically at fixed epochs, and measures av-
erage resource utilization. Based on this measurement, it
decides whether re-replication is performed or not. Algo-
rithm 1 implements this functionality. Firstly, we record the
lost data blocks on failed node as replicaList and record the
list of datanodes with their predicted CPU and disk utiliza-
tion as nodeList. The re-replication scheduling algorithm
requires that replicas are categorized into priority groups be-
fore scheduling. Thus, we divide the replicas that need to be
re-replicated into four priority groups based on popularity
of the replicas and number of remaining replicas as we dis-
cussed in Sect. 5.2.2. When a node failure occurs, the aver-
age utilization of the whole system is checked and if the av-
erage utilization is over 50%, we perform re-replication only
for high priority groups, groups G1 and G2 as in Line [4-6].
Detailed re-replication scheduling for each priority group
among the nodes is carried out by Algorithm 2 which adjusts
the numbers of blocks that will be assigned to each node by
calculating migrating value of each node based on predicted
CPU and disk utilization. Then re-replication is scheduled
with number of blocks assigned to each node for each pri-
ority group. After performing re-replication for higher pri-
ority groups and deferred re-replication waits for specified
period of time and check the average utilization again. If
the average utilization is under 50%, re-replication for other
remaining groups is performed.

5.4 Discussion

As this paper has concentrated on minimizing impacts on
cluster normal jobs, decision to schedule re-replication at
a certain period of time is performed based on the average
utilization of the whole system which is too general to de-
termine utilization status of each node in the system. But we
argue that allocating data blocks to nodes which have high
utilization variations among nodes is appropriately handled

Algorithm 2: Balancing resource utilization among
nodes
1 for replica in each priority group do
2 Assign equal number of replicas in each node
3 end
4 Diff = 1;
5 while Diff <= 1 do
6 for each node in nodeList do
7 Calculate MigratingValue;

/* MigratingValue =
weightValue ∗ predictedCPU + weightValue ∗
predictedDisk + numbero f assignedblocks */

8 end
9 Find max and min MigratingValues;

10 Diff = max.MigratingValue − min.MigratingValue;
11 if Diff > 1 then
12 Add one replica to node of min.MigratingValue;
13 Remove one replica from node of max.MigratingValue;
14 end
15 end
16 Schedule re-replication with number of blocks assigned to each

node;

by our previous work and this work mainly focuses on pro-
viding solution for the condition when the cluster is highly
or fully utilized. In addition, we employ static threshold
value to determine whether the system is busy with clus-
ter normal jobs or not. But if the system is occupied with
quick variations in utilization, this may result in poor re-
replication schedule. If the system keeps high utilization
for some period of time, cluster normal jobs which does
not have high QoS requirement should be ignored and re-
replication should be performed immediately. This kind of
strategies could be implemented easily just by looking at the
history of utilization.

6. Evaluation

6.1 Simulation Setup

To evaluate the effectiveness of our deferred re-replication,
we simulated the cloud computing infrastructure which
was composed of 400 homogeneous nodes by using
CloudSim [19] and CloudSimEx [20]. The reason behind
creating simulation environment that consists of 400 nodes
is that the work in [8] showed that there is almost guarantee
to occur data loss event if the cluster scales up beyond 300
nodes.

The work in [21] designed and developed HDFS simu-
lator to simulate HDFS environment, such as metadata man-
agement on the namenode and heartbeat monitoring mech-
anism to detect whether the datanode is alive or not. This
simulator is event based and mainly targeted for simulation
of data durability and data loss condition in HDFS in pres-
ence of node failure. As both CloudSim and that simulator
are event-based and language of implementation is java, we
extracted some of the functions from that simulator and in-
tegrated into CloudSim with little adaption.

In order to achieve a realistic simulated environment,

2964
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018

Table 2 Simulation parameters

Parameter Value

Total Data 750000*64MB
No.of.Datanodes 400

Replication Factor 3
Disk/Ram/CPU Capacity CPU=2660

(MIPS= HP ProLiant ML110 G5 server)
RAM=4GB
Disk=1TB

Network 1Gbps

the detailed simulation configurations were set as shown in
Table 2. We run the simulation for 24-hour period. A cluster
with 400 datanodes was created in the simulation environ-
ment. For simplicity and ease of evaluation, at the begin-
ning of the simulation, blocks were equally distributed on
nodes in the cluster. It is assumed that one data block is the
replication element and the block also represents one data
file. With above simulation parameter settings, 10 simula-
tion runs were performed. The simulation results give the
mean of 10 simulation runs.

We applied synthetic web application workload, pro-
posed by Magalhaes et al. [22]. As distributions and pa-
rameters that represent the resource utilization of a single
session was presented in that work, we injected this work-
load into the simulator to analyze the impact of our deferred
re-replication algorithm to the reliability and performance
of the system. The dynamic arrival pattern of sessions was
simulated based on the data provided by the work in [20].
The workload data was obtained from small web site and
applied poisson distribution for session arrival.

In addition, in order to simulate as close as possible
to realistic environment, we used the following distributions
and parameters:

• Zipf distribution to mimic the file access pattern [23].

• Exponential distribution to determine failure’s inser-
tion time to the system.

• 1% of node failures in the system except the experi-
ment that is tested for effect of varying percentage of
node failures in the system because recent research [24]
measured the failure percentage of the cluster and
showed the failure percentage was about 0.5% to 1%.

For priority grouping, we did not fix the number of data
blocks belonging to G1 and G2 in the experiments. The data
blocks are assigned to the group based on two attributes,
namely, popularity and the number of remaining replicas.
To determine popularity, we applied Zipf distribution with
scale factor 0.8 which is realistic according to the study in
[23]. Thus, around 10% of the total simulated data blocks is
popular data. However, we found that the second attribute,
the number of remaining replicas, depends largely on per-
centage of failures. It means that the more percentage of
failure, the more data blocks will be under this attribute. For
example, under 1% of failure, data blocks are rarely seen in
groups G1 and G2 but under 10% of failure, about 20% of

data blocks that need to be re-replicated are in groups G1
and G2 which will be re-replicated immediately to ensure
the reliability of the system.

In all experiments, we compared our deferred re-
replication algorithm with both baseline HDFS and Balance
that is our previous re-replication strategy [7] which tried
to balance resource utilization during re-replication stage.
Thus, firstly, we implemented the default baseline HDFS re-
replication policy with the following configuration parame-
ters:

(a) Three replicas were allocated with rack aware replica
placement policy.

(b) The source and destination datanodes were chosen ran-
domly at the time of re-replication.

(c) The HDFS configuration parameter to control speed
of re-replication, dfs.namenode.replication.work.mul-
tiplier.per.iteration, was set to its default value, 2.
It means that the number of blocks that will be re-
replicated at every scheduling interval is 2*number of
nodes in the system.

(d) Re-replicate the data blocks first that remains only one
block.

6.2 Results

The following sections present results to comprehend the
impact of deferred re-replication on the system. We are
mainly interested in two aspects: performance impacts of
re-replication jobs on the cluster normal jobs and the capac-
ity to assure durability of data blocks.

6.2.1 Performance Impacts on the Users’ Jobs

To asses the performance impacts of re-replication jobs on
the users’ jobs, we define the following metrics.

Slow down: This metric represents performance degra-
dation of users’ jobs because of the competition for re-
sources with re-replication jobs. It is calculated by the fol-
lowing equation.

slow down of a job =
running time with failure

running time without failure

Completion rate: This metric represents the rate that
the tasks are completed by their deadline. It can be calcu-
lated by the following equation.

completion rate =
no.of .jobs completed by deadline

no.of .submitted jobs

Slow Down: In this experiment, in order to investigate
the performance impacts on the users’ jobs by re-replication
jobs, we allocated user job to each node in the system each
time node failure occurs and then we examine average slow
down of the job. In Fig. 3, we observe that deferred re-
replication can reduce performance impacts on users’ jobs

SHWE and ARITSUGI: AVOIDING PERFORMANCE IMPACTS BY RE-REPLICATION WORKLOAD SHIFTING IN HDFS BASED CLOUD STORAGE
2965

Fig. 3 Slowdown of jobs.

Fig. 4 Completion rate.

by reducing slowdown of jobs according to the equation
mentioned above. This is consistent with our expectations.
It is because users’ jobs do not need to compete with the
re-replication jobs for resources.

Completion Rate: In order to satisfy the service level
agreement (SLA) imposed on each job, in this experiment,
we determine whether our deferred re-replication algorithm
can satisfy SLA by ensuring that tasks are completed by
their deadlines. We simply set task deadline rounded up to
20% more than their minimum execution time. Figure 4
shows the completion rate the users’ jobs submitted during
re-replication time. As we can see clearly from this figure,
completion rate of users’ jobs using deferred re-replication
is higher than the other two re-replication schemes. This is
because deferred re-replication scheme shifted certain por-
tion of re-replication to a later time based on the average
utilization of the whole cluster.

As shown in Figs. 3 and 4, HDFS and Balance each
had advantage and disadvantage for the two metrics, while
our proposal outperformed them in terms of both of the two
metrics.

Table 3 shows the average completion time for all re-
replication strategies. In the experiments, we observe that
Balance can perform re-replication quickly because it con-
sumed system resources in a greedy manner. The comple-
tion time of deferred re-replication largely depends on the

Table 3 Average Completion Time of Re-replication

Re-replication Strategies Completion Time(Sec)

HDFS 215.4
Balance 34.5
Deferred 7557.6

Fig. 5 Utilization of the whole system during re-replication.

resource utilization status of the system. If the system is
highly utilized, re-replication will be deferred to later time,
resulting in longer completion time. If the system is lightly
utilized, completion time of deferred re-replication will be
comparable to Balance re-replication. But the experiments
in this paper were evaluated only for high utilized condition.

Figure 5 shows the average utilization change of the
whole system during re-replication process. In order to
see the utilization change during re-replication, we injected
node failures at time 45002 that the system was highly uti-
lized with average utilization around 78%. As shown in
the figure, although the system was highly utilized, Bal-
ance re-replication started immediately by consuming high
amount of resources with its maximum value to 97% within
short time frame (from 45009 to 45039) and performed
the re-replication. As average utilization of the system ex-
ceeded the threshold value, deferred re-replication did not
re-replicate immediately and checked the resource utiliza-
tion continuously. The cluster was highly utilized until time
frame 50400. At time 50400, system utilization dropped
from 78% to 40%. At that time, as system utilization was
under 50%, deferred re-replication started the replication
process and re-replication was finished at 50433. For HDFS,
it did not consume resource utilization as Balance and it took
longer time than Balance with resource utilization around
81%.

6.2.2 Reliability

In order to measure the effects of deferred re-replication on
the reliability level of the system, we carried out a set of
experiments.

2966
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018

Fig. 6 Durability.

Varying percentage of failure: In this experiment, we
vary the failed percentage from 1% to 10%.Although only
1% of node fails in the production cluster [24], we examine
the condition for extreme failure case by setting failure per-
centage of node until 10%. We fix the number of datanodes
and number of data blocks on each node. Figure 6 shows the
results of our experiment. We surprisingly found that under
failure percent from 1 to 5, there is no data loss for all three
re-replication schemes. Starting from 6% of node failure,
there was data loss in the system. As we can see from Fig. 6,
it is difficult to describe that which re-replication strategy
is better than other ones because all of three replicas may
be lost due to the failure injected to three nodes that holds
three replicas. But we observe that deferred re-replication
can provide same reliability level as baseline HDFS under
failure percentage of 1% to 5% which is realistic failure con-
dition for production clusters.

Varying number of nodes: As the number of datan-
odes increases, the aggregate rate of datanodes failures
would also increase. If too many datanodes fail, the prob-
ability of data loss would be high. Thus, we investigate
whether deferred re-replication can provide the same reli-
ability level as baseline HDFS and Balance re-replication
scheme for varying number of nodes as 200, 400, 600, 800,
and 1000 nodes. Here, we set the fail percentage to 1%. We
found that both three re-replication scheme does not lose
data under these settings and can provide full durability.

Varying Mean Time Between Failure (MTBF): Al-
though we set MTBF(Mean Time between Failure) as 7
hours in our previous experiment, in order to investigate the
reliability capability of deferred re-replication, we change
the values of MTBF from 1 hour to 5 hours and we injected
1% of data nodes failure [24] to the system. Then, we mea-
sured the durability of data blocks for each re-replication
strategy. We found that there was no occurrence of data loss
event for all re-replication strategies so that full durability
can be provided. This is consistent with what we expected
for Balance and baseline HDFS. We found that deferred re-
replication can also provide full durability although its data
blocks restoration process took longer time than baseline
HDFS and Balance. This is because deferred re-replication

performed immediate re-replication for critical data blocks
which remain only the last copy without deferring them to
later time.

Varying number of data blocks: In this experiment,
we fix the number of fail percent to 1% and the number of
nodes to 400 nodes. And then we change the number of
blocks hold by each datanode in the system to 100G, 200G,
300G, 400G and 500G. Although we increase the amount
of blocks stored in each node, we found that there is no data
loss and the system can provide full durability for the data
blocks for all three re-replication methods. From this exper-
iment, we report that deferring re-replication to later time
can get the same reliability level as baseline HDFS and Bal-
ance re-replication approach. From all these experiments
for reliability, we confirm that deferred re-replication can
provide the same reliability level as other schemes.

7. Conclusion

We presented our deferred re-replication scheme that can
provide reducing performance impacts on users’ applica-
tion jobs without sacrificing reliability guarantees. The cur-
rent work was based on our previous work which achieved
servers’ utilization balance during re-replication phase. It
was extended to take into consideration time varying work-
loads and triggered re-replication on the average utilization
of the whole system. This simple extension enables us to re-
duce impact on cluster normal jobs by the re-replication jobs
while ensuring reliability. Our results indicate that deferred
re-replication achieved significant minimization of perfor-
mance impacts on the cluster jobs while ensuring the same
reliability level as the baseline. We conclude that deferred
re-replication based on resource usage of the whole clus-
ter can be an effective way of reducing impacts on cluster
normal jobs which have high QoS requirement. In the fu-
ture work, we plan to consider for controlling re-replication
rate based on continuous arrival of workloads at different
times. Additionally, it is oriented towards consideration of
node heterogeneity with different performance values and
thermal balancing which is important metric for green cloud
computing.

References

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file sys-
tem,” Proceedings of the 19th ACM Symposim on Operating Sys-
tems Principles, 2003.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” Proceedings of the IEEE 26th Symposium
on Mass Storage Systems and Technologies, pp.1–10, 2010.

[3] P. Bohrer, E.N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. Mc-
Dowell, and R. Rajamony, Power aware computing, Kluwer Aca-
demic Publishers Norwell, MA, USA, 2002.

[4] A. Abraham and V. Ramos, “Web usage mining using artificial ant
colony clustering and linear genetic programming,” Proceedings of
the 2003 Congress on Evolutionary Computation, pp.1384–1391,
2003.

[5] A. Higai, A. Takefusa, H. Nakada, and M. Oguchi, “A study of effec-
tive replica reconstruction schemes at node deletion for hdfs,” Pro-

http://dx.doi.org/10.1145/945449.945450
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1109/cec.2003.1299832
http://dx.doi.org/10.1109/ccgrid.2014.31

SHWE and ARITSUGI: AVOIDING PERFORMANCE IMPACTS BY RE-REPLICATION WORKLOAD SHIFTING IN HDFS BASED CLOUD STORAGE
2967

ceedings of the 14th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing, pp.512–521, 2014.

[6] A. Higai, A. Takefusa, H. Nakada, and M. Oguchi, “A study of
replica reconstruction schemes for multi-rack hdfs clusters,” Pro-
ceedings of the IEEE/ACM 7th International Conference on Utility
and Cloud Computing, pp.196–203, 2014.

[7] T. Shwe and M. Aritsugi, “Proactive re-replication strategy in hdfs
based cloud data center,” Proceedings of the 10th IEEE/ACM Inter-
national Conference on Utility and Cloud Computing, pp.121–130,
2017.

[8] A. Cidon, S.M. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and M.
Rosenblum, “Copysets:reducing the frequency of data loss in cloud
storage,” Proceedings of the 2013 USENIX Annual Technical Con-
ference, pp.37–48, 2013.

[9] A. Cidon, R. Escriva, S. Katti, M. Rosenblum, and E. Sirer,
“Tiered replication: a cost-effective alternative to full cluster geo-
replication,” Proceedings of the 2015 USENIX Annual Technical
Conference, pp.31–43, 2015.

[10] J. Wang, H. Wub, and R. Wand, “A new reliability model in replica-
tion based big data storage systems,” Parallel and Distributed Com-
puting, vol.108, pp.14–27, 2017.

[11] W. Li, Y. Yang, J. Chen, and D. Yuan, “A cost-effective mechanism
for cloud data reliability management based on proactive replica
checking,” Proceedings of the 12th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing, pp.564–571, 2012.

[12] S. Wu, H. Jiang, and B. Mao, “Proactive data migration for improved
storage availability in large-scale data centers,” IEEE Trans. Com-
put., vol.64, no.9, pp.2637–2651, 2015.

[13] S. Wu, W. Zhu, B. Mao, and K.-C. Li, “PP: popularity-based proac-
tive data recovery for hdfs raid systems,” Future Generation Com-
puter Systems, vol.86, pp.1146–1153, 2018.

[14] T. White, Hadoop: The Definitive Guide, 3rd. ed., O’ Reilly Media,
Inc, 2012.

[15] D. Meisner, B.T. Gold, and T.F. Wenisch, “Powernap: eliminating
server idle power,” Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems, 2009.

[16] L.A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, vol.40, no.12, pp.33–37, 2007.

[17] C. Kilcioglu, J.M. Rao, A. Kannan, and R.P. McAfee, “Usage pat-
terns and the economics of the public cloud,” Proceedings of the 26
th International Conference on World Wide Web, pp.83–91, 2017.

[18] M. Tang, B.-S. Lee, X. Tang, and C.-K. Yeo, “The impact of data
replication on job scheduling performance in the data grid,” Future
Generation Computer Systems, vol.22, no.3, pp.254–268, 2006.

[19] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F.D. Rose, and
R. Buyya, “Cloudsim: A toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provision-
ing algorithms,” Software-Practice and Experience, vol.41, no.1,
pp.23–50, 2011.

[20] N. Grozev and R. Buyya, “Performance modelling and simulation of
three-tier applications in cloud and multi-cloud environments,” The
Computer Journal, vol.58, no.1, pp.1–22, 2015.

[21] C. Debians, P.A.T. Togores, and F. Karakusoglu, “Hdfs replication
simulator,” https://github/peteratt/HDFS-Replication-Simulator,
2012.

[22] D. Magalhaes, R.N. Calheiros, R. Buyya, and D.G. Gomes, “Work-
load modeling for resource usage analysis and simulation in cloud
computing,” Journal of Computers and Electrical Engineering,
vol.47, no.C, pp.69–81, 2015.

[23] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: evidence and implications,” Proceedings
of the 18th Annual Joint Conference of the IEEE Computer and
Communications Societies, 1999.

[24] R.J. Chansler, “Data availability and durability with the hadoop dis-
tributed file system,” The USENIX Magazine, vol.37, no.1, pp.16–
22, 2012.

Thanda Shwe received her B.E. and
M.E. degrees in Information Technology from
Mandalay Technological University, Myanmar
in 2004 and Yangon Technological University,
Myanmar in 2006, respectively. From 2009 to
2014, she was with the Department of Informa-
tion Technology, Yangon Technological Univer-
sity, Myanmar. She is now Ph.D. candidate at
Kumamoto University, Japan.

Masayoshi Aritsugi received his B.E. and
D.E. degrees in computer science and commu-
nication engineering from Kyushu University,
Japan, in 1991 and 1996, respectively. From
1996 to 2007, he was with the Department of
Computer Science, Gunma University, Japan.
Since 2007, he has been a Professor at Kuma-
moto University, Japan. His research inter-
ests include database systems and parallel/dis-
tributed data processing. He is a senior mem-
ber of IPSJ, and a member of ACM, IEEE, and

DBSJ.

http://dx.doi.org/10.1109/ccgrid.2014.31
http://dx.doi.org/10.1109/ucc.2014.28
http://dx.doi.org/10.1145/3147213.3147221
http://dx.doi.org/10.1016/j.jpdc.2017.02.001
http://dx.doi.org/10.1109/ccgrid.2012.33
http://dx.doi.org/10.1109/tc.2014.2366734
http://dx.doi.org/10.1016/j.future.2017.03.032
http://dx.doi.org/10.1145/1508244.1508269
http://dx.doi.org/10.1109/mc.2007.443
http://dx.doi.org/10.1145/3038912.3052707
http://dx.doi.org/10.1016/j.future.2005.08.004
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1093/comjnl/bxt107
http://dx.doi.org/10.1016/j.compeleceng.2015.08.016
http://dx.doi.org/10.1109/infcom.1999.749260

