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Modeling N-th Order Derivative Creation Based on
Content Attractiveness and Time-Dependent Popularity

Kosetsu TSUKUDA†a), Masahiro HAMASAKI†b), Nonmembers, and Masataka GOTO†c), Member

SUMMARY For amateur creators, it has been becoming popular to cre-
ate new content based on existing original work: such new content is called
derivative work. We know that derivative creation is popular, but why are
individual derivative works created? Although there are several factors that
inspire the creation of derivative works, such factors cannot usually be ob-
served on the Web. In this paper, we propose a model for inferring latent
factors from sequences of derivative work posting events. We assume a
sequence to be a stochastic process incorporating the following three fac-
tors: (1) the original work’s attractiveness, (2) the original work’s pop-
ularity, and (3) the derivative work’s popularity. To characterize content
popularity, we use content ranking data and incorporate rank-biased pop-
ularity based on the creators’ browsing behaviors. Our main contributions
are three-fold. First, to the best of our knowledge, this is the first study
modeling derivative creation activity. Second, by using real-world datasets
of music-related derivative work creation, we conducted quantitative exper-
iments and showed the effectiveness of adopting all three factors to model
derivative creation activity and considering creators’ browsing behaviors
in terms of the negative logarithm of the likelihood for test data. Third,
we carried out qualitative experiments and showed that our model is useful
in analyzing following aspects: (1) derivative creation activity in terms of
category characteristics, (2) temporal development of factors that trigger
derivative work posting events, (3) creator characteristics, (4) N-th order
derivative creation process, and (5) original work ranking.
key words: user-generated content, derivative creation, latent variable
model, music content

1. Introduction

These days not only professional creators but also amateur
creators who used to be just consumers can easily create
content, which is known as user-generated content (UGC),
and make them accessible via the Web. Since not all amateur
creators can create new content from scratch, it is popular to
use existing original (1st generation) work as the basis for
new content: such content is called derivative work [1] or
2nd generation work. For example, on YouTube∗, there are
many videos in which amateur creators dance to an existing
song, or perform a cover of it [2], [3]. To be more specific,
there have been various cases where an original work gains
more popularity with increasing its derivative works such as
“Nyan Cat∗∗” and “PPAP∗∗∗” phenomena. Although origi-
nal content creators could identify their derivative works by
using the Content ID function and ask YouTube to delete
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them, they do not bother to do that. This is because gaining
the popularity of an original work benefits its creator. Thin-
giverse∗∗∗∗ is a Web service that facilitates derivative work
creation, where amateur creators can share 3D model data
intended for a 3D printer. On Thingiverse, it is popular for
creators to download original 3D model data created by oth-
ers, modify it, and upload their new version [4]. In this kind
of derivative work creation activity, a creator influenced by
2nd generation content can create 3rd generation content.
Similarly, N-th generation content can be transformed into
N+1-th generation content. Such derivative work creation
activity is called “N-th order derivative creation [5].”

When a creator creates a derivative work and uploads
it to the Web, there are various factors that inspire the cre-
ation of the derivative work. However, since the factors
that trigger derivative creation cannot usually be observed
on the Web, they are difficult to detect. To get around this
problem, we assume that when a creator creates a derivative
work, triggering factors can be divided into two categories.
The first one includes factors related to original work fea-
tures. For example, a creator may cover an original song
because he/she likes the melody, even if the song is not pop-
ular among consumers. The second one includes social fac-
tors. For example, a creator may dance to an original song
only because the song is popular. Based on this assump-
tion, we propose a probabilistic model to estimate the factors
that triggered derivative work creation. More specifically,
our model incorporates three factors: (1) an original work’s
attractiveness, (2) an original work’s popularity, and (3) a
derivative work’s popularity. The details of each factor are
given in Sect. 3.2. Since the relative influence of the three
factors varies among creators (e.g., one creator may put a
high priority on factor (1), while another creator may put a
high priority on factor (2)), our model also incorporates the
latent relationships between creators and each of the three
factors. Moreover, our model uses content ranking infor-
mation to take into account the popularity of original and
derivative works. By referring to the examination model of
a Web search result [6], [7], we model popularity based on
the hypothesis that higher ranked content has a larger influ-
ence because such content is, with high probability, viewed
by many creators. By using efficient Bayesian inference
based on the stochastic expectation-maximization (EM) al-

∗http://www.youtube.com
∗∗http://www.youtube.com/watch?v=QH2-TGUlwu4
∗∗∗http://www.youtube.com/watch?v=0E00Zuayv9Q
∗∗∗∗http://www.thingiverse.com
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gorithm [8], we can obtain the latent triggers for derivative
work posts.

Modeling derivative creation activity is worth studying
from various viewpoints.

• Our model can find original work that has a significant
influence on derivative creation activity. This enables
us to generate original work ranking based on popular-
ity among creators, even though it is common to rank
original works based on popularity among consumers
(e.g., rank original works based on the view count).
Such a ranking enables consumers to search for orig-
inal works from a new viewpoint.

• Given a category (e.g., “3D models of chairs” or “mu-
sic videos covering songs”), our model can show the
characteristics of the category in derivative creation ac-
tivity (e.g., most creators put a high priority on original
work attractiveness in a category). Understanding such
characteristics in a category is important from the so-
cial scientific point of view.

• Our model can also show creator characteristics (e.g.,
a creator puts a high priority on derivative work popu-
larity). There are potentially many applications using
this data such as ads and recommendation. For exam-
ple, if a creator puts a high priority on original work
attractiveness, it would be useful to recommend origi-
nal works similar to the original works the creator used
in the past to encourage more derivative work creation.

In Sect. 6, we discuss the application of our model to a real-
world dataset and show that our model can be used to obtain
this kind of information.

Our main contributions in this paper are summarized as
follows †.

• To the best of our knowledge, this is the first study
modeling derivative creation activity. Our model can
simultaneously take into account the influences of three
factors: (1) original work attractiveness, (2) original
work popularity, and (3) derivative work popularity.

• We describe the details of inference of model parame-
ters based on the stochastic EM algorithm.

• We quantitatively evaluated our model by using deriva-
tive creation data of the music content. Our experimen-
tal results show that the model adopting all three factors
achieves the best result in terms of the log likelihood
computed by using test data. We also show that when
we consider the content popularity based on popular-
ity ranking, the method reflecting creators’ browsing
behaviors is the most effective to model derivative cre-
ation activity.

• We carried out qualitative experiments in terms of (1)
category characteristics, (2) temporal development of
factors that trigger the derivative work posting events,

†This paper is an extended version of a conference paper [9].
We extend the paper by describing the details of inference of model
parameters and by carrying out the qualitative evaluations in terms
of creator characteristics and original work ranking.

(3) creator characteristics, (4) N-th order derivative
creation process, and (5) original work ranking, and
showed that our model can be used to analyze deriva-
tive work creation activity.

The remainder of this paper is organized as follows.
Section 2 describes related work in two areas: (1) analysis
of derivative creation activity and (2) modeling influences
in social communities. Section 3 describes the model that
adopts the creator influence factor, which is used in related
work, in addition to the aforementioned three factors. Sec-
tion 4 presents a Bayesian inference procedure to infer the
latent triggers for derivative work posts. Sections 5 and 6
report on our quantitative and qualitative experiments, re-
spectively. Finally, Sect. 7 concludes this paper.

2. Related Work

2.1 Analysis of Derivative Creation Activity

A limited number of studies have investigated deriva-
tive creation activity. Eto et al. [10] developed a 3D
modeling application and a model sharing Web ser-
vice called Modulobe, which allows users to create 3D
models from scratch or based on the work of other
creators. They reported that 10.4% of models were
parents of other models and the chains of creation
reached four generations. Cheliotic and Yew [11] exam-
ined the remixing activity in the ccMixter online music
community††. They reported that derivative creation greatly
boosted the output of a community as well as increased the
diversity of the output. Hamasaki et al. [1] analyzed
derivative creation activity on Niconico†††, which is
one of the most popular video sharing Web services
in Japan. They used explicit citation information be-
tween an original work and its derivative works and
discussed certain statistics (e.g., the number of deriva-
tive works of an original work). Hamasaki et al. [12]
also developed a Web service called Songrium†††† that
helps a user browse original songs and their derivative
works by visualizing their relations.

All the studies mentioned above analyzed how deriva-
tive works had been created by using a network based on
the relationships between the original content and derivative
works. In this work, we focus on why derivative works were
created and propose a model to estimate the factors and their
influences.

2.2 Modeling Influences in Social Communities

Since estimating influences among users in social activi-
ties is useful for various applications, such as influential
user detection [13] and personalized recommendation [14],

††http://ccmixter.org
†††http://www.nicovideo.jp
††††http://songrium.jp
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many methods for estimating such influences have been pro-
posed. One major approach is to use an information dif-
fusion model such as the independent cascade model [15].
Although discrete time is assumed with this model, Saito
et al. [16] proposed a model based on Poisson processes
that allows for continuous time modeling. However, their
model requires a network of users in which a node corre-
sponds to a user and an edge between users represents the
existence of influence. To overcome this limitation, Iwata
et al. [8] proposed a model that discovers latent influences
between users without a network. Although the cascade
Poisson process [17] models a sequence of cascading events,
the model proposed by Iwata et al. [8], which is called the
Shared Cascade Poisson Process (SCPP), can handle multi-
ple sequences of adoption events for multiple items by shar-
ing parameters. Iwata et al. [8] used a Bayesian approach
to discourage overfitting during parameter inference. They
evaluated the model by using social bookmark data, where
adopting an item corresponds to bookmarking a Web page.
Tanaka et al. [18] extended the SCPP to estimate the fac-
tors that trigger item purchase events. They considered the
users’ view histories for TV advertisements in addition to
influences between users and showed that the SCPP is also
effective in modeling purchase events.

Our model extends the SCPP and the model proposed
by Tanaka et al. [18], differing from them in the following
two respects. First, in the other models, there is no need
to consider the effect of adopted items such as bookmarked
Web pages and purchased items. However, in derivative cre-
ation activity, adopted items (i.e., derivative works) also in-
fluence other creators’ creation activity. Therefore, we ex-
tended the SCPP so that we can handle the effect of both
original works and derivative works. Second, although the
other models assume that the popularity of items is constant
regardless of time, we assume that content popularity de-
pends on time. Hence, our model incorporates the time-
dependent popularity of both original works and derivative
works by considering content ranking data and the creators’
ranking browsing behavior.

In our previous work [19], we implemented a pub-
lic Web service for browsing the derivation factors called
Songrium Derivation Factor Analysis, which was devel-
oped by applying our proposed model to the original works
and derivative works uploaded to a video sharing service.
Songrium Derivation Factor Analysis has several functions
that could enable users to browse and watch videos from a
new viewpoint and decide which content they want to use to
create a new derivative work. In our previous paper [19], we
focused on application interfaces realized by the proposed
model, but did not evaluate the model itself. In this paper,
we describe the details of the proposed model and conduct
quantitative and qualitative evaluations to show the effec-
tiveness of the model.

3. Model

In an online social activity model, it is common to consider

user preference for content (we refer to the factor as original
work attractiveness) and influences among users [8], [18].
However, in derivative creation activity, the existence of user
influence is unlikely because no obvious influences among
creators (users) have been observed in derivative creation
activity analysis [1], [10], [11]. Instead, it seems that the
rich-get-richer phenomenon [20] exists in the activity [1].
Hence, we assume that the popularity of the original and
derivative works represents their exposure to creators and
that it is an important factor in modeling derivative creation
activity. Note that although we describe the complete model
as incorporating four factors (original work attractiveness,
creator influence, original work popularity, and derivative
work popularity) in this section, our proposed model incor-
porates three of these (setting aside the creator influence fac-
tor).

3.1 Notations

In this section, we summarize the notations used in our
model. Given a category (e.g., “3D models of chairs” or
“music videos covering songs”) and observation time period
T , let I be a set of original works posted to a Web service
(e.g., Thingiverse or YouTube) between time 0 and time T .
Let (tp

i j, u
p
i j) denote the jth derivative work posting event of

original work i. More specifically, creator up
i j ∈ U posts

i’s derivative work at time tp
i j. Here, U is the set of cre-

ators. Without loss of generality, we assume that derivative
work posting events are sorted in ascending order of their
timestamps: tp

i j ≤ tp
i j′ for j < j′. When Ji represents the

total number of i’s derivative works posted during the obser-
vation time period, a set of derivative work posting events
of i is given by Di = {(tp

i j, u
p
i j)}

Ji

j=1. Hence, a set of deriva-
tive work posting events of all original works is given by
D = {Di}i∈I.

Suppose creators can see the ranking of original works
on the Web service, where original works are ranked based
on the popularity computed using statistics such as view
count. Let (to

ik, r
o
ik) denote the kth ranked event of i ∈ I. That

is, i is ranked at the ro
ikth place at time to

ik. We also assume
that the events are sorted in ascending order of their times-
tamps without loss of generality: to

ik ≤ to
ik′ for k < k′. Let

Ko
i be the total number of i’s ranked events between time

0 and time T , then a set of ranked events of i is given by
Oi = {(to

ik, r
o
ik)}K

o
i

k=1. Therefore, a set of ranked events of all
original works is given by O = {Oi}i∈I.

Similarly, suppose creators can also see the ranking of
derivative works. In the same manner as with the ranked
event of the original work, let (tc

ik, r
c
ik) denote the kth ranked

event of i’s derivative work. Let Kc
i be the total number of

ranked events of i’s derivative works between time 0 and
time T ; then a set of ranked events of i’s derivative works
is given by Ci = {(tc

ik, r
c
ik)}K

c
i

k=1. Note that Ci includes ranked
events of all i’s derivative works: (tc

ik, r
c
ik) and (tc

ik′ , r
c
ik′ ) can

be ranked events of different derivative works. Finally, a set
of ranked events of all derivative works of all original works
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Table 1 Notations used in our model

Symbol Description
I set of original works
U set of creators
i original work, i ∈ I

up
i j creator of jth derivative work posting event of

original work i, up
i j ∈ U

tpi j time of jth derivative work posting event of i
ro

ik rank of kth ranked event of i
toik time of kth ranked event of i
rc

ik rank of kth ranked event of i’s derivative work
tcik time of kth ranked event of i’s derivative work
D set of derivative work posting events
O set of ranked events of original works
C set of ranked events of derivative works
T observation period
Ji number of derivative work posting events for

i in t ∈ [0,T ]
Ko

i number of ranked events for i in t ∈ [0,T ]
Kc

i number of ranked events for derivative works of
i in t ∈ [0,T ]

is given by C = {Ci}i∈I.
Table 1 summarizes the notations used in this paper.

3.2 Factors

3.2.1 Original Work Attractiveness

A creator may create original work i’s derivative work be-
cause he/she thinks that i is attractive even if it is not popu-
lar. The attractiveness of i can be due to i’s various features;
in the case of a song, the features can be the melody, beat,
lyrics, etc. We assume that each creator has a different pref-
erence for original content attractiveness. For example, a
creator may put a high priority on original work attractive-
ness when he/she decides whether or not to create a deriva-
tive work of i, while another creator may put a low priority
on it. We also assume that the post rate based on original
work attractiveness is constant in the time period from 0 to
T as described in Fig. 1(a). Here, the rate at time t repre-
sents the instantaneous probability of a creator posting i’s
derivative work at t. This kind of constant rate is known as
the “background rate” in the point process framework [21].
Based on these assumptions, we model the rate at which cre-
ator u posts i’s derivative work triggered by i’s attractiveness
as follows:

fi(u) = αiθ0u, (1)

where αi ≥ 0 is the original work attractiveness. In other
words, αi is the rate at which i’s derivative work is posted
without being triggered by the preceding events, and θ0u ≥
0 represents the probability that u is influenced by original
work attractiveness when he/she creates a derivative work,
and

∑
u∈U θ0u = 1. If u puts a higher priority on original

work attractiveness than other factors, θ0u becomes large. In
Fig. 1(a), the height of the blue line corresponds to αiθ0u.

Fig. 1 Rate at which creator u posts original work i’s derivative work at
time t.

3.2.2 Creator Influence

Creator u may create original work i’s derivative work be-
cause creator u′ posted i’s derivative work; in other words,
u is influenced by u′. We assume that the influences of u′ on
other creators are different from one creator to another. For
example, if u is a fan of u′, u′ has a larger influence on u than
on other creators. We also assume that a creator’s influence
on another creator decays over time. This assumption is of-
ten used to model information diffusion processes between
users [22], [23]. Based on these assumptions, we model the
rate at which u posts i’s derivative work at time t based on
the influence of u′ who posted i’s derivative work at time t′

as follows:

g(i,t′,u′)(t, u) =

αu′θu′ue−γp(t−t′) if t′ < t

0 otherwise,
(2)
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where αu′ ≥ 0 is the influence of u′ on other creators,
θu′u ≥ 0 represents the strength of the relation between u′

and u, and
∑

u∈U\u′ θu′u = 1, whereU\u′ is the set of creators
excluding u′. Hence, αu′θu′u means the influence of u′ on
u. Finally, e−γp(t−t′) models the decay of influence over time
with decay parameter γp ≥ 0. Note that if u′ posts i’s deriva-
tive work after u, u′ does not influence u: g(i,t′,u′)(t, u) = 0 if
t′ ≥ t.

In Fig. 1(b), three creators post original work i’s deriva-
tive works. Let the first creator (shown in red) be u′. The in-
fluence of u′ is αu′θu′u, which corresponds to h1 in the figure,
when u′ posts the derivative work. The influence decreases
as time proceeds.

In derivative creation activity, the derivative work’s at-
tractiveness may also have an influence. We assume that the
derivative work’s attractiveness is determined by the creator
of the derivative work. For example, when the creator cre-
ates a derivative work by covering an original work’s song,
we think the derivative work’s attractiveness depends on the
creator’s singing voice in the derivative work. Therefore, by
considering the creator’s influence, we can also consider the
derivative work’s attractiveness.

3.2.3 Original Work Popularity

If original work i is popular among consumers, creator u
may create i’s derivative work because his/her derivative
work might also become popular. As mentioned in Sect. 3.1,
we assume creators can see the popularity ranking of orig-
inal works. When two original works are ranked, we hy-
pothesize that the higher ranked one has a larger influence
than the lower ranked one. This hypothesis comes from the
position bias in the Web search: it has been proved that
higher ranked results receive more user attention and have
larger probabilities of being examined during search ses-
sions [6], [7]. In addition, we assume that each creator has
a different preference for original work popularity: one cre-
ator may be susceptible to popularity and put a high priority
on original work popularity when he/she decides whether to
create a derivative work of the original work, while another
creator may not. As is the case with creator influences, we
also assume that the influence of original work popularity on
a creator decays over time. Based on these assumptions, we
model the rate at which u posts i’s derivative work at time t
based on the influence of i’s popularity as follows:

ho(i,t′,r′)(t, u) =

rb(r′)ωiθ−1ue−γo(t−t′) if t′ < t

0 otherwise,
(3)

where r′ represents the rank of i at time t′, and function rb
computes the rank bias. As reported in studies on behavior
analysis of search result examination, the probability that
each ranked item is viewed dramatically decreases as the
rank drops [6], [7]. Based on the examination behavior, we
compute the rank bias as rb(r′) = 1

r′ . In Sect. 5.3, we evalu-
ate the usefulness of rank bias. The term ωi ≥ 0 represents
the influence of i’s popularity, θ−1u ≥ 0 represents the prob-

ability that u is influenced by original work popularity when
he/she creates a derivative work, and

∑
u∈U θ−1u = 1. Fi-

nally, e−γo(t−t′) models the decay of influence over time with
decay parameter γo ≥ 0.

In Fig. 1(c), the original work i appears four times in
the popularity ranking. Let r′ be the rank of the first ranked
event. The influence of the event is rb(r′)ωiθ−1u, which cor-
responds to h2 in Fig. 1(c) at to

i1. Then, the influence de-
creases as time proceeds.

3.2.4 Derivative Work Popularity

If original work i’s derivative work created by creator u′

is popular among consumers, creator u may also create i’s
derivative work because his/her derivative work might also
become popular even if u is not a fan of u′. As mentioned
in Sect. 3.1, we assume creators can see the popularity rank-
ing of derivative works. Based on similar assumptions and
the hypothesis described in Sect. 3.2.3, when i’s derivative
work was ranked r′th at time t′, we model the rate at which
u posts i’s derivative work at time t based on the influence
of i’s derivative work popularity as follows:

hd(i,t′,r′)(t, u) =

rb(r′)σiθ−2ue−γd(t−t′) if t′ < t

0 otherwise,
(4)

where σi ≥ 0 represents the influence of the popularity of i’s
derivative work, θ−2u ≥ 0 represents the probability that u is
influenced by derivative work popularity when he/she cre-
ates a derivative work, and

∑
u∈U θ−2u = 1. Finally, e−γd(t−t′)

models the decay of influence over time with decay param-
eter γd ≥ 0.

Figure 1(d), (e), and (f) show the influences of i’s first,
second, and third derivative work popularity, respectively:
the first derivative work appears three times in the ranking,
while the second and third ones appear one time. Let r′ be
the rank of the first ranked event in Fig. 1(d). The influence
of the first ranked event is rb(r′)σiθ−2u, which corresponds
to h3 in Fig. 1(d) at tc

i1. Then, the influence decreases as time
proceeds.

3.3 Derivative Work Post Rate

Based on the factors described in Sects. 3.2.1 to 3.2.4, the
rate at which u posts i’s derivative work at t is given by:

λi(t, u) = fi(u) +
∑

(t′,u′)∈Dit\u

g(i,t′,u′)(t, u)

+
∑

(t′,r′)∈Oit

ho(i,t′,r′)(t, u) +
∑

(t′,r′)∈Cit

hd(i,t′,r′)(t, u), (5)

whereDit\u = {(t′, u′)|(t′, u′) ∈ Di and t′ < t ∧ u′ , u} is the
set of derivative work posting events before t excluding u’s
one; Oit = {(t′, r′)|(t′, r′) ∈ Oi and t′ < t} is the set of ranked
events of i before t; and Cit = {(t′, r′)|(t′, r′) ∈ Ci and t′ < t}
is the set of ranked events of i’s derivative works before t.
Here, λi(t, u) corresponds to h4 in Fig. 1(g).
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4. Inference

Given derivative work posting events D, original works
ranked events O, and derivative works ranked events C, we
infer the model parameters in Table 2 by using the stochas-
tic EM algorithm. Following Iwata et al. [8], we assume
that a set of i’s derivative work posting events Di is gener-
ated from a marked point process [24] at a rate of λi(t, u).
Based on this assumption, the likelihood of the function of
D is described as follows:

P(D|O,C,α,ω,σ,Θ,γ)

=
∏
i∈I

exp

−∫ T

0

∑
u∈U
λi(t, u)dt

 Ji∏
j=1

λi(t
p
i j, u

p
i j), (6)

where α = {αl}l∈I∪U , ω = {ωi}i∈I, σ = {σi}i∈I, Θ =
{θu}u∈U+ , θu = {θuu′ }u′∈U\u, and γ = {γp, γo, γd}. Here, U+
denotesU ∪ {0,−1,−2}, where 0, −1, and −2 represent vir-
tual creators who are used for original work attractiveness,
original work popularity, and derivative work popularity, re-

spectively. The term exp
(
−

∫ T

0

∑
u∈U λi(t, u)dt

)
represents

the probability that no creator posts i’s derivative work be-
tween time 0 and time T . The integral part can be analyti-
cally calculated as follows:∫ T

0

∑
u∈U
λi(t, u)dt = αiT +

1
γp

Ji∑
j=1

αui j

(
1 − e−γp(T−tp

i j)
)

+
ωi

γo

Ko
i∑

k=1

rb(ro
ik)

(
1 − e−γo(T−to

ik)
)

+
σi

γd

Kc
i∑

k=1

rb(rc
ik)

(
1 − e−γd(T−tc

ik)
)
. (7)

Following Iwata et al. [8], we introduce latent variables
zi j ∈ {0, 1, · · · ,

∣∣∣Dit\u
∣∣∣ + |Oit | + |Cit |} to indicate the index of

the latent trigger of the jth derivative work posting event of
original work i. The terms zi j = 0,

∣∣∣Dit\u
∣∣∣+1 ≤ zi j ≤

∣∣∣Dit\u
∣∣∣+

|Oit |,
∣∣∣Dit\u

∣∣∣ + |Oit | + 1 ≤ zi j ≤
∣∣∣Dit\u

∣∣∣ + |Oit | + |Cit | indicate
that the event was triggered due to the influence of original
work attractiveness, original work popularity, and derivative
work popularity, respectively, and zi j = j′ (1 ≤ j′ ≤

∣∣∣Dit\u
∣∣∣)

indicates that the event was triggered due to the influence
of the creator who posted the j′th derivative work of i. By
using the latent variables, the derivative work post rate in
Eq. (5) can be written as λi(t, u) =

∑
z λi(t, u, z), where

Table 2 Parameters of proposed model

Symbol Description
αi original work attractiveness of i, αi ≥ 0
αu influence of u, αu ≥ 0
ωi popularity of i, ωi ≥ 0
σi popularity of i’s derivative work, σi ≥ 0
θu′u transition probability from u′ to u,

θu′u ≥ 0,
∑

u∈U\u′ θu′u = 1
γp, γo, γd decay parameter, γp ≥ 0, γo ≥ 0, γd ≥ 0

λi(t, u, z) =
fi(u) if z = 0

g(i,tp
iz,u

p
iz)

(t, u) if 1 ≤ z ≤
∣∣∣Dit\u

∣∣∣
ho(i,to

iz′ ,r
o
iz′ )

(t, u) if
∣∣∣Dit\u

∣∣∣ + 1 ≤ z ≤
∣∣∣Dit\u

∣∣∣ + |Oit |
hd(i,tc

iz′′ ,r
c
iz′′ )

(t, u) if
∣∣∣Dit\u

∣∣∣ + |Oit | + 1 ≤ z.

(8)

Here, z′ = z −
∣∣∣Dit\u

∣∣∣ and z′′ = z −
∣∣∣Dit\u

∣∣∣ − |Oit |.
By combining Eqs. (6), (7), and (8), the joint distribu-

tion ofD and latent variablesZ = {{zi j}Ji

j=1}i∈I is given by:

P(D,Z|O,C,α,ω,σ,Θ,γ)

=
∏
i∈I

exp

αiT +
1
γp

Ji∑
j=1

αui j

(
1 − e−γp(T−tp

i j)
)

+
ωi

γo

Ko
i∑

k=1

rb(ro
ik)

(
1 − e−γo(T−to

ik)
)

+
σi

γd

Kc
i∑

k=1

rb(rc
ik)

(
1 − e−γd(T−tc

ik)
) Ji∏

j=1

λi(t
p
i j, u

p
i j, zi j). (9)

We assume a Gamma prior for each of the original
work attractiveness scores αi as follows:

P(αi|a, b) =
1
Γ(a)

baαa−1
i exp(−bαi), (10)

where a and b are hyperparameters. In this study, following
Iwata et al. [8], we set a = b = 1. We also assume a Gamma
prior for each creator influence αu, original work popular-
ity ωi, and derivative work popularity σi. In addition, we
assume a Dirichlet prior over θu, u ∈ U+ as follows:

P(θu|β) =
Γ(β |U|)
Γ(β)|U|

∏
u′∈U\u

θ
β−1
uu′ (11)

We use a Gamma prior for α, ω, and σ, and a Dirichlet prior
for Θ to analytically calculate the marginalization over the
parameters. The marginalized joint distribution is computed
by integrating out those parameters as follows:

P(D,Z|O,C,γ, β, a, b)

=

&
P(D,Z|O,C,α,ω,σ,Θ,γ)P(α|a, b)

× P(ω|a, b)P(σ|a, b)P(Θ|β)dαdωdσdΘ

∝ exp

−∑
i∈I

∑
j:zi j,0

η(zi j)(t
p
i j − tizi j )


×

∏
i∈I

Ko
i∏

k=1

rb(ro
ik)Mik

∏
i∈I

Kc
i∏

k=1

rb(rc
ik)Nik

×
∏
i∈I

Γ(Li + a)
(T + b)Li+a

∏
u∈U

Γ(Lu + a)
(Ru + b)Lu+a

×
∏
i∈I

Γ(Mi + a)
(Ro

i + b)Mi+a

∏
i∈I

Γ(Ni + a)
(Rc

i + b)Ni+a
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×
(
Γ (β |U|)
Γ (β)|U|

)|U+ | ∏
u∈U+

∏
u′∈U\u Γ (Luu′ + β)

Γ (Lu + β |U|)
, (12)

where

η(zi j) =


γp if 1 ≤ zi j ≤

∣∣∣Dit\u
∣∣∣

γo if
∣∣∣Dit\u

∣∣∣ + 1 ≤ zi j ≤
∣∣∣Dit\u

∣∣∣ + |Oit |
γc if

∣∣∣Dit\u
∣∣∣ + |Oit | + 1 ≤ zi j.

(13)

Here, Mik and Nik are the number of posting events trig-
gered by the kth ranked event of i and kth ranked event of
i’s derivative work, respectively. The terms Mi =

∑Ko
i

k=1 Mik

and Ni =
∑Kc

i

k=1 Nik represent the total number of posting
events triggered by ranked events of i and ranked events
of i’s derivative work, respectively. Furthermore, Li =∑Ji

j=1 δ(zi j, 0) is the number of posting events triggered by
i’s attractiveness, where δ(x, y) = 1 if x = y, and δ(x, y) = 0
otherwise. The term Luu′ =

∑
i∈I

∑Ji

j=1 δ(uizi j , u)δ(ui j, u′) is
the number of posting events where u triggered u′’s post,
and Lu =

∑
u′∈U\u Luu′ is the total number of posting events

triggered by u. Here, uizi j = 0 if zi j = 0, uizi j = −1
if

∣∣∣Dit\u
∣∣∣ + 1 ≤ zi j ≤

∣∣∣Dit\u
∣∣∣ + |Oit |, and uizi j = −2 if∣∣∣Dit\u

∣∣∣ + |Oit | + 1 ≤ zi j, which represent virtual creators. In
addition, Ru for each creator u ∈ U is given by:

Ru =
1
γp

∑
t∈Du

(
1 − e−γp(T−t)

)
, (14)

where Du is a set of timestamps of derivative work posting
events of u, and Ro

i and Rc
i for i are computed as follows:

Ro
i =

1
γo

Ko
i∑

k=1

rb
(
ro

ik

) (
1 − e−γo(T−to

ik)
)
, (15)

Rc
i =

1
γc

Kc
i∑

k=1

rb
(
rc

ik

) (
1 − e−γc(T−tc

ik)
)
. (16)

Based on the marginalized joint distribution in Eq. (12),
we developed a stochastic EM procedure for the iteration. In
the E-step, given the current state of all but one variable zi j,
the new latent assignment of zi j is sampled from the follow-
ing probability:

P(zi j = y|D,Z\i j,O,C,γ, β, a, b)

∝
P

(
D,Z\i j, zi j = y|O,C,γ, β, a, b

)
P

(
D\i j,Z\i j|O,C,γ, β, a, b

) ,
(17)

where y ∈ {0, 1, · · · ,
∣∣∣Dit\u

∣∣∣+|Oit |+|Cit |}, and \i j represent the
procedure excluding the jth derivative work posting event of
i.

In the M-step, we estimate the decay parameters γ and
Dirichlet parameter β by maximizing the logarithm of the
joint likelihood in Eq. (12). We estimate γ using Newton’s
method. For example, the update rule of γp is given by:

γp ← γp −
∂S (γp)/∂γp

∂2S (γp)/∂2γp
, (18)

where S (γp) is given by:

S (γp) = − γp

∑
i∈I

∑
j:1≤zi j≤|Dit\u|

(tp
i j − tizi j )

−
∑
u∈U

(Lu + a) log(Ru + b). (19)

The β is estimated using the fixed point iteration
method [23]. The update rule is given by:

β← β
∑

u∈U+
∑

u′∈U\u (Ψ(Luu′ + β) − Ψ(β))

|U|∑u∈U+ (Ψ(Lu + β |U|) − Ψ(β |U|)) , (20)

where Ψ is the digamma function.
Finally, we can make the point estimates of the inte-

grated out parameters as follows:

α̂i =
Li + a
T + b

, α̂u =
Lu + a
Ru + b

, (21)

where α̂i and α̂u can be used to find attractive original works
and influential creators, respectively,

ω̂i =
Mi + a
Ro

i + b
, σ̂i =

Ni + a
Rc

i + b
, (22)

where ω̂i and σ̂i can be used to find popular original works
and popular derivative works, respectively, and

θ̂uu′ =

 Luu′+β
Lu+β|U| if u = 0 ∨ u = −1 ∨ u = −2

Luu′+β
Lu+β(|U|−1) otherwise,

(23)

which can be used to analyze influences between creators
including virtual creators.

5. Quantitative Experiments

In this section, we answer the following research questions
based on our quantitative experimental results:

RQ1 Is adopting three factors, which are original work at-
tractiveness, original work popularity, and derivative
work popularity, effective to model derivative creation
activity? (Sect. 5.2)

RQ2 What kinds of ranking bias methods are effective to
model derivative creation activity? (Sect. 5.3)

5.1 Dataset

In our experiments, we used derivative creation activity data
of music content on Niconico, which is one of the most
popular video sharing Web services in Japan. On Nicon-
ico, any user can upload and view videos, and derivative
creation activity of music content occurs frequently: ac-
cording to Songrium, as of the end of May 2019, more
than 300,000 original song videos and more than 680,000
derivative videos had been uploaded to Niconico. Most
original songs are created using singing synthesizer soft-
ware called VOCALOID [25]; we restricted ourselves to
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Fig. 2 Negative logarithm of likelihood of each model. Vertical axis and horizontal axis represent
negative log-likelihood and test periods (e.g., “1 mo.” is first set of test data), respectively.

Table 3 Statistics of our dataset

Category |I| |O| |D| |C| |U|
Sing 4,035 64,973 199,320 67,627 18,715
Dance 396 30,925 9,420 22,954 1,153
Play 583 38,726 5,526 20,492 692

original song videos of this type. With respect to deriva-
tive works, Niconico maintains three categories of deriva-
tive works: (1) sing: covering an original song, (2) dance:
dancing to an original song, and (3) play: playing an original
song on a musical instrument such as a guitar or piano. We
crawled original songs (i.e., original works) posted between
1/1/2010 and 3/31/2013 and their derivative works posted
between 1/1/2010 and 9/30/2013. Data between 1/1/2010
and 3/31/2013 were used as training data and data between
4/1/2013 and 9/30/2013 were used as test data. In each cat-
egory, we eliminated original works that had fewer than two
derivative works and creators who posted fewer than three
derivative works during the training period.

We also collected ranking data. On Niconico, users can
see the top 100 daily ranking of original songs and the top
100 daily rankings for derivatives in each of the sing, dance,
and play categories. Ranking data on one day is created
based on several statistics of the previous day (e.g., view
count and comment count) so that the ranking data represent
the work’s aggregated popularity. We crawled the top 100
ranking data in each of the original song and three derivative
content categories between 1/1/2010 and 9/30/2013. Since
only daily ranking data is available on Niconico, the times-
tamp in all our experiments is measured in days.

Table 3 lists the statistics of the dataset used in the ex-
periments.

5.2 Combination of Factors

5.2.1 Settings

[Comparison Models] Recall that we introduced four fac-
tors that can be used to model derivative creation activity.
Hereafter, let Oatt, Uinf, Opop, and Dpop denote original
work attractiveness, creator influence, original work pop-
ularity, and derivative work popularity, respectively. As
mentioned in Sect. 3, we hypothesize that a model adopt-
ing Oatt, Opop, and Dpop is the most effective. To eval-
uate this hypothesis, the following six models were com-
pared: (1) Oatt, (2) Oatt+Uinf, (3) Oatt+Uinf+Opop+Dpop,

(4) Oatt+Opop, (5) Oatt+Dpop, and (6) Oatt+Opop+Dpop,
where Oatt+Uinf, for example, represents the model that
combines the factors of Oatt and Uinf. Among the six mod-
els, (2) corresponds to SCPP [8] and (6) is our proposed
model.

[Evaluation Metric] Predictive performance is one of
the most commonly used metrics to evaluate the appropri-
ateness of a learned model [8], [26]. Predictive performance
is computed using the negative logarithm of the likelihood
for posting events (t, u) during the test period from T to T ′.
The logarithm of the likelihood is given by:

L =
∑
i∈I

−∫ T ′

T

∑
u∈U
λi(t, u)dt

 ∑
(t,u)∈Dtest

i

logλi(t, u), (24)

where Dtest
i is the test data for i. When the value of −L is

small, the predictive performance is high. To examine the
influence of the length of the test period on our results, we
examined spans of test data from one month (4/1/2013 to
4/30/2013) up to six months (4/1/2013 to 9/30/2013). In ev-
ery case, the model was trained using data between 1/1/2010
and 3/31/2013, and the test period began on 4/1/2013.

5.2.2 Experimental Results

Figure 2 shows the negative log-likelihood during each test
period in each category. During each test period, the model
that achieved the best performance is marked with “*”. In
the “sing” category, Oatt+Opop+Dpop exhibited the best
result for all test periods. In the “dance” and “play” cate-
gories, it did not perform the best for all test periods, but
it stably exhibited high performance in all categories dur-
ing all test periods. To evaluate the stability of the mod-
els, we computed the average rank of each model over six
test periods in each category. We also computed the aver-
age rank of each model over 3 categories × 6 test periods
= 18 test periods. Table 4 lists the results. We can see
that Oatt+Opop+Dpop achieved the highest average rank
over 18 test periods with relatively small standard deviation.
Although Oatt+Uinf exhibited the best results for five test
periods in the “play” category, the results in Table 4 indi-
cate the instability of the model because its average ranks
in both “sing” and “dance” categories were low. By com-
paring Oatt+Uinf+Opop+Dpop with Oatt and Oatt+Uinf,
we can show the usefulness of adopting all four factors
rather than adoption only Oatt or Oatt+Uinf. Similarly,
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Fig. 3 Negative logarithm of likelihood of each ranking bias method.

Table 4 Average rank of each model over six test periods in each cate-
gory. “All” means average rank over 18 test periods. Numbers in parenthe-
ses indicate standard deviations.

Model Sing Dance Play All
Oatt 6.0 (0.0) 6.0 (0.0) 4.5 (0.76) 5.5 (0.83)
Oatt+Uinf 3.7 (0.47) 4.7 (0.75) 1.5 (1.12) 3.28 (1.56)
Oatt+Uinf+Opop+Dpop 2.0 (0.0) 2.3 (0.47) 3.8 (1.07) 2.72 (1.04)
Oatt+Opop 5.0 (0.0) 3.0 (1.53) 6.0 (0.0) 4.67 (1.53)
Oatt+Dpop 3.3 (0.47) 3.7 (0.47) 1.8 (0.37) 2.94 (0.91)
Oatt+Opop+Dpop 1.0 (0.0) 1.3 (0.47) 3.3 (0.47) 1.89 (1.1)

comparison results between Oatt+Opop, Oatt+Dpop, and
Oatt+Opop+Dpop indicate the usefulness of adopting both
Opop and Dpop. Finally, by comparing Oatt+Opop+Dpop
and Oatt+Uinf+Opop+Dpop, we can conclude that our pro-
posed model adopting Oatt, Opop, and Dpop is the most
effective to model derivative creation activity.

5.3 Ranking Bias Method Comparison

5.3.1 Settings

As mentioned in Sect. 3.2.3, our model uses the reciprocal
rank method to bias the content ranking based on the cre-
ators’ browsing behaviors of a ranked list (hereafter, “Recip-
rocal”). To evaluate its effectiveness, we compared it with
the following two methods. The first method, “Linear,” lin-
early decreases the ranking bias:

rb(ro
ik) =

101 − ro
ik

100
. (25)

Here, rb(rc
ik) is also computed in the same manner. With

this method, it is assumed that content influence does not
dramatically decrease when the content position in the rank-
ing decreases compared to Reciprocal. The second method,
“Uniform,” does not take into account the ranking bias:
rb(ro

ik) = rb(rc
ik) = 1 regardless of the content rank. With

this method, it is assumed that all ranked content has equal
influence.

We used the negative logarithm of the likelihood as an
evaluation metric, as in Sect. 5.2.1.

5.3.2 Experimental Results

Figure 3 shows the comparison results of the three ranking
bias methods. Reciprocal outperformed the other two meth-
ods for all test periods in all categories. In addition, Linear
always outperformed Uniform: this result indicates the use-
fulness in considering the rank position of content. Based on

Algorithm 1 Calculate degrees of three factors for jth
derivative work posting event of i
Require: P(zi j |D,Z\i j,O,C,γ, β, a, b)
1: E f ⇐ P(zi j = 0|D,Z\i j,O,C,γ, β, a, b), Eho ⇐ 0, Ehd ⇐ 0, y⇐ 1
2: while y ≤ |Oit | + |Cit | do
3: if y ≤ |Oit | then
4: Eho ⇐ Eho + P(zi j = y|D,Z\i j,O,C,γ, β, a, b)
5: else
6: Ehd ⇐ Ehd + P(zi j = y|D,Z\i j,O,C,γ, β, a, b)
7: end if
8: y⇐ y + 1
9: end while

10: return E f , Eho , Ehd

these results, we conclude that Reciprocal, which reflects
the creators’ browsing behaviors, is the most effective for
modeling derivative creation activity.

6. Qualtitative Experiments

In this section, we report on the qualitative analysis results in
terms of (1) category characteristics, (2) temporal develop-
ment of factors that trigger derivative work posting events,
(3) creator characteristics, (4) N-th order derivative creation
process, and (5) original work ranking.

6.1 Category Characteristics

By using the posterior distribution of latent variables in
Eq. (17), we can analyze the impact of each of the three
factors (Oatt, Opop, and Dpop) that trigger derivative work
posting events in a category. Algorithm 1 shows the pseudo-
code for computing the strengths of the three factors for the
jth derivative work posting event of i. In the pseudo-code,
E f , Eho , and Ehd correspond to the strength of original work
attractiveness, original work popularity, and derivative work
popularity, respectively, where E f + Eho + Ehd = 1. By sum-
ming E f of all derivative works of all original works in a
category, we can obtain the strength of Oatt in the category.
In the same manner, we can obtain the strength of Eho and
Ehd in a category.

Table 5 lists the ratios of the three factors during the
training period. The ratios of the three factors vastly differed
from one category to another. In the “sing” category, the ra-
tios of Opop and Dpop were both high, while that of Oatt
was low. These results indicate that the creators in this cat-
egory are susceptible to fads and put a high priority on con-
tent popularity. In the “dance” category, the ratio of Dpop
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Fig. 4 Estimated number of derivative work posting events triggered by each of three factors per
month. Vertical axis represents the number of derivative works posted in a month.

Table 5 Ratios of estimated factors (%)

Factor Sing Dance Play
Original work attractiveness (Oatt) 14.6 17.3 42.5
Original work popularity (Opop) 40.0 21.7 40.0
Derivative work popularity (Dpop) 45.4 61.0 17.5

was higher than those of the other two factors. In this cate-
gory, not all creators can compose their own choreography.
Hence, a creator often posts a derivative work in which the
creator dances to the original song with the original chore-
ography. After that, other creators also post derivative works
in which they imitate the choreography. The results in Ta-
ble 5 show that our model described this category’s charac-
teristics well. In the “play” category, the ratio of Oatt was
high compared to those of the other two categories. This in-
dicates that creators in this category often play their favorite
original songs without being affected by fads.

6.2 Temporal Development of Factors

By using Algorithm 1, we can also analyze the temporal
development of factors that trigger the derivative work post-
ing events of each original work. In this section, we report
on the temporal development of factors per month. Given
original work i, we computed the sum of E f for each i’s
derivative work posting event every month. Similarly, we
computed the sum of Eho and Ehd every month.

Figure 4 shows example results for three original songs
that we selected for this evaluation. In each category, we
show the temporal development of factors for one original
work. The horizontal axis represents months in the training
period and the vertical axis represents the number of deriva-
tive works posted in a month. The first month in the horizon-
tal axis is the month when the original work’s first derivative
work was posted. The blue, orange, and red bars indicate the
number of posting events caused by the factor of Oatt, Opop,
and Dpop, respectively. Again, we can observe the char-
acteristics of each category. In the “sing” category, in the
early period of derivative creation activity, Oatt and Opop
had large influences. We could estimate that some deriva-
tive works created in the period became popular, after that,
other creators who put a high priority on Dpop also posted
the original work’s derivative work: this is why the influence
of Dpop increased as time proceeded. We also observed that
Oatt had some influence even at the end period of the graph.

This indicates the possibility that some creators happened to
find the original song (e.g., by keyword search) and decided
to cover the song because they were attracted to the song. In
the “dance” category, a limited number of creators who can
compose original choreography posted derivative works in
the early period (see blue bars in the first two months). Af-
ter that, many other creators were influenced by such deriva-
tive works and posted new derivative works. The influence
of Opop was low throughout the period. In the first half of
the period in the “play” category, many creators who put a
high priority on Opop or Dpop posted this original work’s
derivative works; while in the last half, creators who put a
high priority on Oatt kept posting derivative works.

6.3 Creator Characteristics

Given a creator, we aggregated E f , Eho , and Ehd for each of
his/her derivative work posting events into the three factors
and normalized their sum to 1. This enables us to analyze
the ratio at which a creator is influenced by each of three fac-
tors. Figure 5 shows the results where each dot represents
a creator. In each category, we plot the top 250 creators in
terms of the number of derivative works for visibility. In the
“sing” category, although most creators put a high priority
on Opop and/or Dpop, creators in circle A put a high pri-
ority on Oatt. For a creator in circle A, it would be useful
to recommend original works similar to the original works
he/she used in the past to encourage more derivative work
creation. In the “dance” category, creators in circle B were
likely to be those who can compose original choreography.
We can also use this finding for recommendation. In the
“play” category, creators in circle C put a high priority on
Dpop contrary to other creators. For these creators, it would
be helpful to recommend popular content in the derivative
work ranking.

6.4 N-th Order Derivative Creation Process

By using the posterior distribution of latent variables, we
can visualize the derivative creation process of an original
work. To visualize the process, for each derivative work, we
detected y, which is the maximum value in Eq. (17). When
ywas equal to 0 or indicated the index of the original work’s
ranked event, derivative work creation was triggered by the
original work; when y indicated the index of the ranked
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Fig. 5 Creator distributions based on ratio at which a creator is influenced by each of three factors.
Each dot represents one creator.

Fig. 6 Derivative works creation process of an original work in “dance” category. 0 represents the
original work, and the number j ≥ 1 give the indices of the derivative works.

event of the j′th derivative work, derivative work creation
was triggered by the j′th derivative work.

Figure 6 shows the derivative creation process of an
original work in the “dance” category. In the figure, 0
represents an original work, and j ≥ 1 represents the jth
derivative work. An edge between numbers indicates that
the lower content creation was triggered by the upper one.
In this derivative creation process, the 1st derivative work
played an important role because it triggered many deriva-
tive creations. We also observed that 9th order derivative
creation (82nd derivative work) occurred in this process.

6.5 Original Work Ranking

Finally, we show that we can generate original work ranking
in a new light based on the estimated parameters. Popularity
is an important metric when an original work ranking is gen-
erated. For example, it is common to rank videos based on
their view count. The ranking based on view count reflects
the popularity among consumers or viewers. It is also possi-
ble to consider the popularity among creators, where one of
the simplest ways is to rank original works according to the
total number of derivative works. However, this popularity
includes various kinds of factors: in our case, Oatt, Opop,
and Dpop. On the other hand, by using our model, we can
generate original work rankings based on each of the three
factors. In this section, due to space limitations, we discuss
the ranking based on Oatt.

Given a category and rank threshold l, we generate the
top l original work ranking, denoted as R1, where origi-

Table 6 Spearman’s rank correlations between ranking based on number
of derivative works and that based on original work attractiveness. “All”
means ranking that takes into account derivative works in all three cate-
gories.

l Sing Dance Play All
10 0.170 -0.0909 -0.316 -0.333
30 -0.0372 0.238 0.202 0.272
50 -0.199 0.286 0.0832 0.00101
100 -0.0439 0.105 0.357 0.0883

nal works are ranked in descending order of the number of
derivative works during the test period. We also generate
the original work ranking, denoted as R2, where l original
works in R1 are re-ranked in descending order of αi. Recall
that αi in Eq. (21) represents i’s attractiveness at the end of
the test period. Then Spearman’s rank correlation between
R1 and R2 is computed.

In addition, we generate two original work rankings
considering all three categories at once: (1) the ranking
where original works are ranked based on the sum of the
number of derivative works in three categories, and (2) the
ranking where original works are ranked based on the sum
of αi in three categories.

Table 6 lists the results. Overall, the rank correlations
were low. These results indicate that original work ranking
based on original work attractiveness largely differs from
that based on the number of derivative works, and our pro-
posed model enables consumers to see the ranked list of
original works in a new light.
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7. Conclusion

We proposed a probabilistic model for inferring latent fac-
tors and their influences in derivative creation activity. The
model incorporates three factors: (1) original work attrac-
tiveness, (2) original work popularity, and (3) derivative
work popularity. Our model takes into account content pop-
ularity obtained from content ranking data. Our experimen-
tal results using real-world derivative creation data showed
that our model adopting all three factors achieved the best
result in terms of the log likelihood. With respect to content
popularity, we showed that using reciprocal rank in content
ranking that reflects creators’ browsing behaviors achieved
the best result. In our qualitative experiments, we showed
the usefulness of our model in various aspects including cat-
egory characteristic analysis (e.g., original work attractive-
ness has a large influence in the “play” category), visualiz-
ing the spread of derivative works creation activity, etc. The
limitation of our model is that it presupposes the existence
of the ranking information. Such information can be easily
obtained in other domains such as 3D models and recipes
since the popularity-based rankings of original and deriva-
tive works are usually generated from some statistics such
as the view count and the favorite count of each work. We
therefore believe that our model is general and independent
of content types.

For future work, we are interested in extending our
model by considering additional factors. For example, some
original works may be often used to create derivative works
during Christmas. Considering such seasonality [27] is one
possible direction to extend our model.
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