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Single Failure Recovery Method for Erasure Coded Storage System
with Heterogeneous Devices
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SUMMARY As the demand of data reliability becomes more and more
larger, most of today’s storage systems adopt erasure codes to assure the
data could be reconstructed when suffering from physical device failures.
In order to fast recover the lost data from a single failure, recovery opti-
mization methods have attracted a lot of attention in recent years. However,
most of the existing optimization methods focus on homogeneous devices,
ignoring the fact that the storage devices are usually heterogeneous. In this
paper, we propose a new recovery optimization method named HSR (Het-
erogeneous Storage Recovery) method, which uses both loads and speed
rate among physical devices as the optimization target, in order to further
improve the recovery performance for heterogeneous devices. The experi-
ment results show that, compared to existing popular recovery optimization
methods, HSR method gains much higher recovery speed over heteroge-
neous storage devices.
key words: storage system, erasure code, heterogeneous devices, single
failure recovery

1. Introduction

With the data rapid growth in both size and complexity, data
centers have more and more storage devices [1]. Since stor-
age devices usually have a certain error rate, when the scale
of devices is very large, the number and possibility of error
emergence are very high [2]. In order to recover the lost data
from failed devices, today’s data center usually adopts era-
sure codes, which usually divide data into a series of chunks
with a fixed size. Erasure codes also provide some redun-
dant chunks calculating from some of the data chunks [3],
and then store them into a certain storage system named era-
sure coded storage system. When some data chunk lost, era-
sure coded storage system should retrieve a part of surviving
data/redundant chunks to reconstruct the lost data.

When suffers from devices errors, the system should
fast recover the lost chunks and rewrite them into a new de-
vice, in order to maintain the data reliability. The recovery
performance is very important for storage systems, which
attracts a lot of attention in recent years. Since more than
99.75% failure patterns are single device failure [4], most
of the existing researches focus on single failure. Due to
the different feature of scenarios and applications, the sys-
tem adopts different erasure codes. Existing single failure
optimization methods usually fit for most of the popular
erasure codes, including [5]’s method, BP method [6], STP
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method [7], et al. Although all these methods usually per-
form well on homogeneous devices, most of existing meth-
ods may not provide good performance when comes to het-
erogeneous devices, because the bottleneck turns into the
slowest device.

Focusing on this problem, in this paper we propose a
new heterogeneous device based recovery method termed
HSR (Heterogeneous Storage Recovery) method, in order to
further improve the recovery performance for heterogeneous
devices. HSR method first tests the speed rate of all devices
as an input parameter, and then uses simulated annealing
algorithm to balance the production of the loads and speed
rate among all devices. The experiment results show that,
compared to [5]’s method and STP method, HSR method
gains up to 39.6% and 17.6% higher recovery speed over
existing popular erasure codes with heterogeneous devices,
respectively.

2. Background and Our Motivation

2.1 Terms and Notations

We first give some frequently used terms and notations
based on [8]. In erasure coded storage systems, data and
parity that calculate by a set of data to improve the reliabil-
ity, are usually partitioned to chunks and stored in different
physical devices. These chunks termed “elements”, includ-
ing data elements and parity elements. The basic logic unit
of erasure coded system names “stripe”. In each stripe, the
generation of the parity elements only depends on the ele-
ments of this stripe. Each column of “stripe” calls “strip”.
To assure the reliability, each strip of the same stripe should
be mapped to different physical devices. We use di, j and pi, j

to denote the ith element of the jth column, where di, j repre-
sents data element, and pi, j denotes the parity element. We
use Di and Pi to represent data strip and parity strip, respec-
tively. Figure 1 shows an example of one stripe.

2.2 Erasure Codes

Erasure codes are widely used in reliable storage systems,
including Reed-Solomon code [9], Rotated Reed-Solomon
code [5], et al. These codes are GF(2n) based codes usu-
ally tolerating arbitrary device failures. The other impor-
tant class of erasure codes is XOR-based codes, includ-
ing Cauchy Reed-Solomon code [10], Liberation code [11],
RDP code [16], D-Code [13], et al. Cauchy Reed-Solomon
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Fig. 1 An example of one stripe.

Fig. 2 An example of 5-devices liberation code.

code is an improved Reed-Solomon code tolerating arbitrary
number of device failures. Liberation code, RDP code, and
D-Code are classic RAID-6 codes tolerating up to 2 device
failures.

Figure 2 gives an example of 5-devices Liberation
code, where the same icons mean the XOR sum of the
related elements equals to zero. E.g., in Fig. 2 (a), d0,0,
d0,1, d0,2, and p0,0 with the same icon “star”, which means
d0,0 ⊕ d0,1 ⊕ d0,2 ⊕ p0,0 = 0 or p0,0 = d0,0 ⊕ d0,1 ⊕ d0,2. Simi-
larly, in Fig. 2 (b), d0,0 ⊕ d1,1 ⊕ d2,2 ⊕ p0,1 = 0. Based on the
encoding equations, we can choose either one of the above
equations to recover d0,0 when D0 fails, which is the basic
principle of single failure recovery optimization.

2.3 Heterogeneous Erasure Coded Storage Systems

Today’s storage systems usually suffer from storage device
failures. When a device fails, the system should recover the
data from the survived devices and use new devices to re-
place the failed device to establish the new erasure coded
system. The new device and failed device have different
types and specifications forming the heterogeneous storage
systems. On the other hand, erasure coded storage system
usually rotate the map from strip to physical devices to al-
leviate the influence of writes. Figure 3 gives an example
of heterogeneous erasure coded storage systems, where the
access speed rate for solid state disks (SSDs) are higher than
hard disks (HDs).

2.4 Single Failure Recovery Methods

When suffer from device failures, erasure coded storage sys-

Fig. 3 An example of heterogeneous erasure coded system.

tems should retrieve the surviving information to recover the
lost elements. Since more than 99.75% failure patterns are
a single failure, recently researches usually focus on single
failure recovery, in which the optimization methods includ-
ing [5]’s recovery method, BP method [6], STP method [7],
SIOR method [14], SSDM method [12], et al. These meth-
ods use hybrid recovery principle [5], in order to search for
the proper recovery scheme over different scenarios.

2.5 Our Motivation

Existing single failure recovery methods usually focus on
homogeneous devices and assume that the storage devices
have similar access speed [7], [12], [14], so that the bottle-
neck is the highest loaded device. In heterogeneous stor-
age systems, the lowest accessed device is usually not the
most loaded device but the oldest device. We should pro-
pose new recovery optimization method for heterogeneous
storage systems, in order to balance the access speed and
loads among all devices.

3. The HSR Recovery Method

In this paper, we propose a new recovery method named het-
erogeneous storage recovery method (HSR method), in or-
der to speed up the recovery performance on erasure coded
storage system over heterogeneous devices. HSR method
first tests the access speed for each device as an input pa-
rameter, and then utilizes the recovery equations and simu-
lation annealing algorithm to search for the proper recovery
scheme.

3.1 Generate Recovery Equations

We first generate recovery equations for optimizing the re-
covery performance. Firstly, we generate the original equa-
tions by the encoding rules. We then generate the derived
equations by iterating the common elements from different
equations. Repeat this process, until no more new equations
have been generated. Algorithm 1 gives the pseudo-code.

Line 1 defines two parameters Eall and Euse f ul to de-
posit the recovery equations. Line 2 generates the origi-
nal recovery equations by the encoding rules of the erasure
code. Line 3–14 define a while loop, which is used for
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Algorithm 1 Generate Recovery Equations
1: initial Eall, Euse f ul

2: Eall ← encoding rules
3: while no new equation added to Eall do
4: for Each equi ∈ Eall do
5: for Each elei ∈ ei do
6: for Each equ j ∈ Eall do
7: if elei ∈ equ j then
8: newequ = equi - elei + equ j - elei

9: Eall.add(newequ)
10: end if
11: end for
12: end for
13: end for
14: end while
15: for Each equi ∈ Eall do
16: for Each elei in the lost element set do
17: if elei ∈ equi then
18: Euse f ul.add(equi)
19: end if
20: end for
21: end for
22: return Euse f ul

finding the recovery equations and storing them into Eall.
Specifically, Line 4–5 sequently go through all elements of
each equation in Eall. Line 6 go through all equations in Eall.
Line 7–8 indicate that if equi and equ j simultaneously con-
tain elei, then combine the two equations into a new equa-
tion by replacing elei. Line 9 adds the new equation into Eall.
When Eall does not add any new equation for the loop, then
end the loop. Line 15–21 utilize dual-for loop to pick out
the equations containing lost element, and then store them
in Euse f ul. The algorithm returns Euse f ul.

3.2 Search for Recovery Scheme

We then utilize the Euse f ul to search for the proper equa-
tions (i.e., recovery solutions) to reconstruct the lost ele-
ments. The basic principle is to set an array of parameters
“weights” to control the “energy”, and use the standard sim-
ulated annealing algorithm to search for the feasible recov-
ery solutions. Algorithm 2 gives the pseudo-code.

Line 1 collects the speed rate among all storage de-
vices. Line 2 initials two key parameters for the algorithm.
Line 3 defines a function, which uses to calculate the en-
ergy for simulated annealing. Line 4–7 count the number of
the required elements of each stripi, and then multiples ri as
the weight. Line 8 returns the square deviation of weight as
energy.

Line 10–31 use simulated annealing algorithm to
search for the recovery scheme. We first initiate three pa-
rameters (K, T , M) for standard simulated annealing al-
gorithm, and initiate parameter R to control the variation
from Solution to Solutionnew (Line 10). Line 11 generates
the initial Solution from Euse f ul. Line 12–13 calculate the
energy of Solution and set the expire condition. The fol-
lowing steps are used to optimize the Solution. First, we
randomly select R failed elements and denote their relative
recovery equations in Solution as Eneed replace, and then gen-

Algorithm 2 Search for Recovery Solution
1: use ri to represent the access rate for each device
2: initial parameter weight, strip
3: procedure cal energy(Solution)
4: for each stripi ∈ Solution do
5: numi ← the number of need element in stripi

6: weighti = numi × ri

7: end for
8: return the square deviation of weight
9: end procedure

10: initial parameter Euse f ul, K, T , R and M
11: Solution← Euse f ul

12: de = cal energy(Solution)
13: remain times = M
14: while remain times > 0 do
15: Eneed replace ← Select R equations in Solution
16: Enew ← select equations(Eneed replace, Euse f ul)
17: Solutionnew = generate solutions(Solution, Enew)
18: denew = cal energy(Solutionnew)
19: Δt = denew − de
20: if Δt > 0 or exp(Δt/T ) > rand()/rand max then
21: Solution = Solutionnew

22: de = denew

23: remain times = M
24: if Δt < 0 then
25: T = K ∗ T
26: end if
27: else
28: remain times − −
29: end if
30: end while
31: Return Solution

erate a replacement equation set Enew by choosing another
recovery equation for each selected failed elements. We
replace each equation of Eneed replace by its relative equa-
tion in Enew, in order to generate another stack-based so-
lution Solutionnew (Line 15–17). Afterwards, we calculate
the energy gap between Solutionnew and Solution, and utilize
simulated annealing algorithm to determine whether replace
Solution with Solutionnew or not (Line 18–19). Line 20–
30 use standard simulated annealing algorithm to optimize
the Solution. Specifically, Line 20–23 illustrate if the en-
ergy subtraction is above zero or a random condition has
been triggered, the algorithm will replace the Solution by
Solutionnew, and reset remain times to M. If the energy
subtraction is below zero and the replacing process occurs,
the algorithm reduces the temperature by parameter K and
T (Line 24–26). Else if the replacing process does not
occur, the algorithm decreases the remain times, until the
remain times equals to zero (Line 27–29). At last, the algo-
rithm returns Solution (Line 31).

3.3 Reconstruct the Lost Elements

According to the Solution returned in Algorithm 2, we can
first retrieve the needed elements from surviving devices in
parallel. We then reconstruct the lost elements by the related
equations in Solution, and write the reconstructed elements
into new storage devices.
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Fig. 4 Recovery speed for different erasure codes over heterogeneous storage devices.

Table 1 Time overhead for different recovery methods over different
erasure codes (unit: seconds).

Erasure Codes Ref. [5] STP HSR
RS (9, 2) < 1s < 1s < 1s

RS (10, 3) < 1s < 1s < 1s
Liberation (11, 2) < 1s 2s 2s
Liberation (13, 2) < 1s 3s 3s
Cauchy RS (9, 2) < 1s 3s 3s
Cauchy RS (10, 3) < 1s 8s 8s
Cauchy RS (13, 3) 1s 24s 23s
Cauchy RS (16, 4) 941s 232s 229s

4. The Search Time Analysis

We analyze the search time of HSR method by compar-
ing with Ref. [5]’s method and STP method [7], which are
popular recovery method for today’s erasure coded storage
systems. Reference [5]’s method searches for all poten-
tial stripe-based solutions for each stripe, so that the search
time is exponentially increased with the scale. STP method
and HSR method utilize simulated annealing algorithm to
search for the feasible solutions in the stack-level. The time
cost is major in the initial process of simulated annealing
algorithm, which is polynomially increased with the scale.
Therefore, when the scale is small, Ref. [5]’s method will
run fast due to the faster initial process; otherwise, STP
method and HSR method run fast due to the polynomial
complexity. STP method and HSR method have similar time
overhead, because they have the similar scale and utilize the
same algorithm concept.

We implement Ref. [5]’s method, STP method, and our
proposed HSR method based on C++ language over vi-
sual studio 2010 toolbox, and use RS code, and Cauchy RS
code [10], and Liberation code with different parameter to
evaluate the real search time. The machine has a Intel i7-
6820HQ CPU and 32GB memory. As shown in Table 1, the
search time well matches above analysis and illustrates that
the time complexity is very close to STP method.

On the other hand, the searching process only runs on
the initialization of erasure coded storage system with very
low frequency, which is not performance sensitive. The re-
covery process runs when the system suffers from disk fail-
ure, which is important for erasure coded storage systems as
discussed in Sect. 1. Therefore, we usually pay more atten-
tion on recovery performance.

5. Experiment Evaluation

In this section, we conduct a series of experiments in real
storage system, in order to illustrate HSR method achieves
good single failure recovery performance over heteroge-
neous devices.

5.1 Environment

Our experiments are run on a machine and a disk array.
The hardware environment of the machine is an Intel Xeon
X5472 processor and 12GB memory. The disk array con-
tains 13 Seagate 10K.3 SAS disks and 3 SATA-3 Disks.
Each SARS disk has 300GB capability, and each SATA3
disk has 1TB capability. The machine and disk array are
connected by a fiber cable with 800MB bandwidth. The
operation system of the machine is SUSE with Linux fs91
3.2.16.

5.2 Methodology

We select Reed-Solomon coded, Cauchy Reed-Solomon
coded, and Liberation coded storage systems as comparison,
and implement them with different parameter in the above
environment by Jeasure-1.2 [15], which is widely used for
erasure coded storage system implementation. On the other
hand, we implement [5]’s method, STP method [7] and our
proposed HSR method by C++ language over visual studio
2010 toolbox in the environment referred in Sect. 4. Please
note that the process of searching recovery solutions runs
when the erasure coded storage system initializes. The re-
covery solutions are usually stored in both memories and
permanent storage devices.

When suffer from disk failures, the storage system
should retrieve the recovery solutions from memories or
permanent storage devices, and access the surviving ele-
ments to reconstruct the lost elements. We test all potential
physical failures for all test erasure coded storage systems,
collect the real recovery speed, and calculate the average
recovery speed as evaluation metrics. For the tested era-
sure coded storage systems, we set 3 SATA disks and some
SARS disks as heterogeneous devices, and use the circularly
rotated mappings referred in Fig. 3. We set Reed-Solomon
code and Cauchy Reed-Solomon code with two parity strips.
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In addition, we consider 20 stacks for each tested cases, so
that we have to recover up to 87.04GB data from the failed
physical disk.

5.3 Result Analysis

Figure 4 shows the evaluation results for the tested era-
sure codes. We can easily observe that HSR method pro-
vides higher recovery speed than Ref. [5]’s method and STP
method. This is because HSR method balance the number
of elements and speed rate among physical storage devices
simultaneously, but other methods only consider homoge-
neous devices in which the storage devices have the similar
speed rate. In statistic, HSR method gains 11.3% to 39.6%
higher recovery speed than Ref. [5]’s method, and achieves
7.6% to 14.7% higher recovery speed than STP method for
the tested erasure codes over heterogeneous devices. The
results illustrate that HSR method has good recovery per-
formance than other tested recovery methods.

6. Conclusion

In this paper, we propose a new recovery optimiza-
tion method termed HSR (heterogeneous storage recovery)
method, in order to optimize the single failure recovery per-
formance for erasure coded storage systems with hetero-
geneous devices. HSR method uses the production of the
loaded and the speed rate among all disks as the optimiza-
tion target, and utilizes the concept of simulated annealing
algorithm to search for the proper recovery scheme. The ex-
periment results show that HSR method gains much higher
recovery speed compared to existing popular recovery opti-
mization methods over heterogeneous storage devices.
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