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Target-Adapted Subspace Learning for Cross-Corpus Speech

Emotion Recognition

Xiuzhen CHEN', Xiaoyan ZHOU'®, Cheng LU, Yuan ZONG'", Wenming ZHENG ", Nonmembers,

SUMMARY  For cross-corpus speech emotion recognition (SER), how
to obtain effective feature representation for the discrepancy elimination
of feature distributions between source and target domains is a crucial is-
sue. In this paper, we propose a Target-adapted Subspace Learning (TaSL)
method for cross-corpus SER. The TaSL method trys to find a projection
subspace, where the feature regress the label more accurately and the gap
of feature distributions in target and source domains is bridged effectively.
Then, in order to obtain more optimal projection matrix, £; norm and {3
norm penalty terms are added to different regularization terms, respec-
tively. Finally, we conduct extensive experiments on three public corpuses,
EmoDB, eNTERFACE and AFEW 4.0. The experimental results show that
our proposed method can achieve better performance compared with the
state-of-the-art methods in the cross-corpus SER tasks.

key words: cross-corpus speech emotion recognition, transfer learning,
domain adaptation, subspace learning

1. Introduction

Emotion recognition is a hot topic and widely used in the
fileds of human-machine interaction and signal processing,
including multiple modalities, such as speech [1], facial ex-
pression [2], physiological signals [3], [4] and so on. SER
utilizes the labeled samples to train a robust model for the la-
bel prediction of unlabeled samples, all of the samples come
from the same database and their corresponding conditional
distributions and marginal distributions are similar in gen-
eral, which can boost the good performance. However, in
real scenario, the labeled training data and unlabeled testing
data are always from different datasets, called cross-corpus
SER, thus, the general methods based on the same dataset
do not work well.

Cross-corpus SER aims to eliminate the discrepancy
of feature distributions between source and target domains.
For source domain (labeled training data) and target domain
(unlabeled testing data) come from different datasets, they
have different conditional distributions and marginal dis-
tributions such that the traditional methods of SER are no
longer applicable to the cross-corpus SER. To address these
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cross-corpus issues, the popular approach is to obtain an in-
variant feature space employing two domains to narrow the
discrepancy. Specially, various normalization schemes [5]
are firstly utilized to conduct cross-corpus SER on different
databases. With the rise of transfer learning, domain adapta-
tion methods are widely used on cross-corpus issues [6]. In
[7], an importance-weighted support vector machine (IW-
SVM) by incorporating three domation adaptation is pro-
posed for the evaluation of cross-corpus SER. Meanwhile,
Deng et al. [§] combined auto-encoder with domain adapta-
tion to propose an unsupervised framework in order to ob-
tain a common representation of source domain and target
domain.

Despite these domain adaptation methods are widely
used, Least Squares Regression (LSR) method is also a
popular subspace learning method to bridge the feature
space and the label space, which is benefitting to the la-
bel prediction of target data. Thus, to improve the per-
formance of the model, the basic idea of transfer learn-
ing is borrowed into LSR model. In [9], an Incomplete
Sparse Least Squares Regression (ISLSR) model was pro-
posed by Zheng et al. to alleviate the discrepancy in the
data distribution between the training corpus and testing
corpus, and the result shows that this model has an effec-
tive performance. Benefitting to this method, large domain-
adaptation researches based on LSR emerge continually.
Zong et al.[10] utilized a Domain-adaptive Least-Squares
Regression (DaLSR) model to handle the mismatch prob-
lems between source and target speech corpuses, which used
an additional unlabeled dataset from target speech corpus as
an auxiliary dataset and combined with the labeled training
dataset from source speech corpus for jointly training the
DaL.SR model. Although these methods can achieve good
results, how to reduce the discrepancy of feature distribu-
tions between the source and target domains in the research
of cross-corpus SER is still a challenge.

Recently, Liu et al.[11] proposed a Domain-adaptive
Subspace Learning (DoSL) method for learning a projection
matrix to transform the source and target speech samples
from the original feature space to the label space so that ev-
ery target sample can be represented by source samples. In
detail, it not only bridges the feature space and label space
by LSR, but also selects effective features contributing to
regress the label of source domain by ¢, ; norm, which are
benefitting to describe the relationship between the source
feature space and label space. Furthermore, it also contains
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a LSR term between source and target domains to eliminate
the data distributions discrepancy between source and tar-
get domains. Unfortunately, this method can not reconstruct
the target samples well when the speech samples are trans-
formed from the original feature space to the label space.
In order to overcome the shortcoming of this method, we
will extend the DoSL method and then propose the Target-
adapted Subspace Learning (TaSL) method for cross-corpus
SER in this paper, in which another projection matrix and ¢;
norm are added to get sparse features of source domain to
represent target domain features better.

2. Proposed Method
2.1 TaSL Model

In this section, some notations are given for better illustra-
tion of TaSL model in this paper. Suppose that we have two
different speech emotion corpuses, in which source speech
feature matrix and target speech feature matrix are described
asD* = [di,...,d},] e R"M and D' = [d!,...,d},] € ROV,
where k is the dimension of the speech feature in two do-
mains. Specially, M and N are the numbers of source and
target speech samples, respectively. In particular, source
speech samples have labels, denoted by L* = [[;,...,Iy] €
R*M where c is the number of speech emotion states, while
target samples are unlabeled. For L’, the values of the /; are
defined as 1 when d* belongs to the ith speech emotion class,
otherwise the values are 0.

The main purpose of our proposed method is to find a
projection subspace to make the target speech samples be
represented by the source speech samples. Meanwhile, it
can bridge the discrepancy of feature distributions between
source and target samples and then learn a regression projec-
tion matrix to predict the emotion categories of target sam-
ples. Based on this method, the objective function can be
formulated as:

N
. s T1ys)12 T gt TS 7 112
min[L* - C'DIfE+ .4 ) IC7d; - C'D'Z;

i=1

N
+u ) NZilly +7lIC Il (1)
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C and Z which are the regression coefficient matrix and the
projection matrix, used to predict the emotion categories of
target speech samples well. Meanwhile, the A, u, T are the
trade-off parameters in this function, all of them are defined
as positive values.

For the Eq. (1), it contains four terms, respectively. The
first term is least-squares loss function where || - ||z denotes
Frobenius norm, and it aims to bridge the relationship be-
tween labels and features in source domain. Then, a squared
{> norm term is used to reflect the relationship of features
between source and target domains onto the second term.
Meanwhile, we added a sparse £; norm penalty in Z; onto
the third term for better reconstruction of target domain fea-

2633

tures. Therefore, the target-adapted term will more effec-
tive to reduce the discrepancy between the features of source
and target domains. Finally, for the fourth term, it is a {5
norm penalty of the regression coefficient C, the purpose of
{>1 norm penalty is to transfer projection matrix to a group
sparse matrix by setting all elements of rows in projection
matrix to 0, since the sparse rows of projection matrix will
correspond to the speech features that contribute less to the
regress labels, namely feature selection.

Specially, for the optimation of the Eq. (1), the corre-
sponding equivalent equation is follows:

min |IL* - C'D|Iz + AICTD' - C"D*Z|I>

+ullZIly + 7lICT . 2

2.2 Optimization of TaSL

For the optimization of proposed TaSL model, Eq.(1)
can be effectively solved by Alternative Direction Method
(ADM)[12] and the Augmented Lagrangian Multiplier
(ALM) method [13]. Specifically, for this cross-corpus SER
problem, it can be easily solved by dividing it into two steps
and then update them alternately. The updating rule can be
summarized as follows:

(1) Fix Z and optimize C: in this step, the regression
coefficient matrix C will be computed, and the optimization
problem can be written as follows:

mcin IL* — CTD|[Z + AICT (D' - D*Z)|[%
+7IC by (3)

The optimization problem of (3) can be solved by using
inexact ALM. To solve this problem, we can also rewrite
the optimization problem as a simple form, following is the
equivalent equation:

arg min L, 0] - QD*, VAD"]If; +
7|C7 |, 5.2.Q=C. (4)

where D = D' — D*Z and 0 is the matrix of zero, the cor-
responding augmented Lagrangian function of this equation
can be described as:

IIL*, 0] — QT[D*, VAD']|% + r[T7(Q - C)] +
l
5IQ- Cl% +7ICT |y (5)

where T and [ are the Lagrangian multiplier and regulariza-
tion constant in this equation, furthermore, for the parameter
[, it is defined as [ > 0.

For the optimation of this step, it is similar to the op-
timation problem of (5) in [9]. Firstly, fix other parameters
and update Q, then update C, finally, check the convergence
conditions.

(2) Fix C and update Z: in this step, the optimation
function of Z is follows:
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min AIC'D' - C'D*Z|3 + pl Iy (6)

this problem is the Least Absolute Shrinkage and Selection
Operator (LASSO) problem, and it can be easily solved by
many optimization methods [14], same like one step of the
optimization problem in [15].

2.3 Cross-Corpus SER Based on TaSL

The task of cross-corpus SER mainly is using data from two
databases as training set and testing set to train models for
the classification of speech emotion, then the features and
labels of source domain are used to predict the labels of the
target domain by the trained models. Based on the idea of
our proposed method, the speech label matrix L*, speech
feature matrix D of the source domain and the speech fea-
ture matrix D’ of the target domain are given while the
speech label matrix L of target domain is unknown, then we
use the proposed method to get the learned optimal regres-
sion coeflicient matrix. Therefore, if we learn the optimal
regression coefficient matrix C, then the optimal common
feature space is obtained and the speech emotion states of
speech samples can be judged by I' = C7d!, where d! de-
notes the feature vector of testing speech samples from the
target domain, and I represents the column of L’. Further-
more, the speech emotion class of target speech samples is
defined as i when the maximum value of the I belongs i
Tow.

3. Experiments
3.1 Datasets and Protocols

In order to evaluate the performance of proposed TaSL
method, we use three public speech emotion corpuses
for cross-corpus SER, which are EmoDB [16], eNTER-
FACE [17], and AFEW4.0 [18]. Specially, EmoDB is a Ger-
man database which consists of 800 utterances and that is
recorded by professional actors, and it contains seven ba-
sic emotions (angry, disgust, fear, joy, sadness, neutral and
boredom). eNTERFACE is recorded in English and con-
sists of 1287 emotion videos from 43 subjects with six basic
emotions, such as anger, disgust, fear, happiness, sadness
and surprise. Besides, AFEW4.0 has 2577 clips with seven
basic emotions, it contains anger, disgust, fear, happiness,
neutral, sadness and surprise.

To evaluate our proposed method, we conduct our ex-
periments on above three public databases by using the
leave-one-corpus-out (LOCO) experimental protocol. In or-
der to conduct the cross-corpus experiments, the common
emotion states are choosen between two databases. Spe-
cially, in the experiments of EmoDB and eNTERFACE, we
choose five emotions (angry, disgust, fear, joy/happy and
sad) for training and the same five emotions for testing. Sim-
ilarly, for AFEW4.0 and EmoDB, six common emotions are
used, which are angry, disgust, fear, joy/happy, neutral and
sad. Meanwhile, these common emotions (angry, disgust,
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fear, happy, sad and surprise) are used in the experiments of
AFEW4.0 and eNTERFACE.

3.2 Experimental Setup

In the experiments of cross-corpus SER, we extract 384 di-
mensions features as input by the openSMILE toolkit [19],
[20]. openSMILE features are the most popular feature set
in cross-corpus SER, which contains lots of information
such as Mel-frequency cepstral coefficient (MFCC), zero-
crossing-rate (ZCR), fundamental frequency (FO) and so on.
Furthermore, all emotion features are normalized to range
of [0, 1] for better feature selection.

For this cross-corpus SER task, we designed six types
of experiments based on the EmoDB, eNTERFACE and
AFEW4.0 corpuses to evaluate our method, and the details
are as follow:

e b to e: The source corpus is EmoDB and the target
corpus is eNTERFACE.

e eto b: The source corpus is eNTERFACE and the
target corpus is EmoDB.

e b to a: The source corpus is EmoDB and the target
corpus is AFEW4.0.

e a to b: The source corpus is AFEW4.0 and the target
corpus is EmoDB.

e e to a: The source corpus is eNTERFACE and the
target corpus is AFEW4.0.

e a to e: The source corpus is AFEW4.0 and the target
corpus is eNTERFACE.

Subsequently, to evaluate the performance of our pro-
posed method, we use two different accuracy evaluation
methods, which contain the weighted average recall (WAR)
and the unweighted average recall (UAR). WAR is denoted
as WAR = %, while UAR is UAR = %, where te, tc, n and ¢
represent the number of correctly predicted test samples, the
sum of accuracy per class, the total number of test samples
and the emotion states, respectively.

In order to verify the effectiveness of our pro-
posed method, several popular methods are used to com-
pare, which are KMM+SVM [21], KLIEP+SVM [22], uL-
SIF+SVM [23], ISLSR [9], DaLSR [10], DoSL [11]. As the
baseline method, SVM is used without any domain adapta-
tion methods. Furthermore, in order to obtain better perfor-
mance, we finally set the optimal trade-off parameters (4, u
and 7) in six experiments as (0.01, 1, 1), (15, 90, 76), (1,
0.001, 10), (0.42, 10, 9.6), (0.001, 5, 14) and (1, 0.01, 10),
respectively.

3.3 Experimental Results

For the tasks of cross-corpus SER in this paper, the final
experimental results about UAR and WAR are shown on
Table 1. In particular, we can see that the proposed TaSL
method can achieve better accuracies than any other meth-
ods in most cases and it is better than baseline method SVM
in all of the experiments.

In contrast to DoSL, TaSL achieves the same accu-
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Table1 Results (UAR / WAR) of all the methods in the cross-corpus SER experiments
| Method | btoe | etob | | atob | etoa | atoe ]
SVM 30.06/30.08 | 27.83/24.27 | 26.07/25.99 | 29.87/35.02 | 20.80/18.39 | 18.68/18.72
KMM+SVM 23.08/23.14 | 40.18/44.69 | 30.39/29.78 | 38.17/46.81 | 23.79/25.72 | 19.79/19.75
KLIEP+SVM | 21.79/21.82 | 28.58/27.01 | 25.47/25.57 | 27.41/31.37 | 18.66/18.60 | 17.48/17.47
uLSIF+SVM 25.75/25.75 | 40.42/42.27 | 25.75/2593 | 36.25/44.38 | 22.61/21.21 | 18.10/18.11
ISLSR 32.52/32.59 | 42.11/50.93 | 27.73/30.19 | 36.13/46.70 | 24.24/26.20 | 22.55/22.58
DaLSR 36.36/36.40 | 44.41/52.27 | 27.51/30.19 | 37.33/47.80 | 24.67/26.70 | 21.93/21.96
DoSL 37.49/37.51 | 44.25/52.00 | 29.10/31.00 | 39.66/50.00 | 24.83/26.20 | 21.64/21.66
TaSL 37.49/37.51 | 42.64/45.60 | 29.22/31.70 | 43.69/51.76 | 24.67/26.07 | 25.19/25.21

racy in the experiment b to e, UAR and WAR of them are
(37.49%, 37.51%), better than DoSL in the experiments
atob and atoe. It reflects that TaSL can get better re-
sults than DoSL, so the added projection matrix and ¢;
norm penalty term can represent target domain features bet-
ter by getting sparse features of source domain, and TaSL
is more effective than DoSL. However, our method TaSL
is worse than DalLSR in the experiments e to b and e to a,
where DalLSR achieves 44.41% (UAR) and 52.27% (WAR)
ine to b, and 26.70% (WAR) in the experiment e to a, while
DoSL method gets 24.83% (UAR) in this experiment, this
may due to the imbalance of class samples in these cases.
Nevertheless, in comparison of ISLSR, DalLSR and DoSL,
TaSL is better than ISLSR in experiment b to e, worse than
DaLSR and DoSL. Specifically, these four methods get sim-
ilar accuracy in experiment e to a, the TaSL method perfor-
mances well in experiment a to b and a to e, respectively.
Based on these results, it is obvious that transfer subspace
learning methods are effective to cope with the cross-corpus
SER problems, especially for the method we proposed.

4. Conclusion

In this paper, we proposed a Target-adaption subspace learn-
ing (TaSL) method to cope with the cross-corpus SER tasks.
The proposed TaSL model contains the least-squares re-
gression term with €; norm for the label regression and
the target-adapted term with £, ; norm, which can not only
bridge the relationship between feature space and label
space in source domina better, but also effectively reduce
the discrepancy of feature distributions in source and tar-
get domains. Furthermore, a optimal projection common
space is obtained to regress the labels from features of
speech samples effectively and the features of target sam-
ples are reconstructed by source samples features better. Fi-
nally, extensive experiments on three speech emotion cor-
puses (EmoDB, eNTERFACE, and AFEW4.0) show that
compared with other domain adaptation methods, the pro-
posed TaSL method achieves the better performance in deal-
ing with the cross-corpus SER tasks. Although the proposed
method is effective for cross-corpus SER, the transfer per-
formance of different unbalanced corpuses is worse. In the
future, we will focus on more robust model for the problem
of imbalance sample.
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