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Investigation on e-Learning Status Estimation for New
Learners—Classifier Selection on Representative Sample Selection

Siyang YU†a), Nonmember, Kazuaki KONDO†, Yuichi NAKAMURA†, Members, Takayuki NAKAJIMA††,
and Masatake DANTSUJI†, Nonmembers

SUMMARY This article introduces our investigation on learning state
estimation in e-learning on the condition that visual observation and record-
ing of a learner’s behaviors is possible. In this research, we examined meth-
ods of adaptation for a new learner for whom a small number of ground
truth data can be obtained.
key words: e-Learning status estimation, visual sensing, interpersonal dif-
ferences, adaptation to new learner

1. Introduction

If learning is adaptive and customized to meet the needs of
each learner, learning can be effective and efficient. How-
ever, the lack of feedback regarding how learning occurs
in e-learning constrains the personalization and adaptation.
To effectively address this issue, there is a tremendous de-
mand for measuring the learners’ state in e-learning. Many
previous studies have focused on the recognition of learn-
ing states [1]–[5]. Different affective-cognitive states and
sensing modalities have been investigated based on differ-
ent perspectives. Various features have been proved to be
useful clues for observing and evaluating a learner’s learn-
ing state. However, the features are heavily dependent on
personal characteristics, and evaluating the learning state
of an individual learner is substantially affected by the in-
terpersonal differences, especially when characteristics are
not known in advance. This issue was experimentally con-
firmed in [5], which proposed a method for selecting suit-
able classifiers to estimate the state of learning based on the
set of pre-trained classifiers. Although a degree of improve-
ment in learning was observed, there are some areas for fur-
ther improvements. This study aims to investigate a method
for choosing an appropriate classifier for estimating learn-
ing states, which addresses the problem of choosing a small
number of samples and selecting a suitable classifier.
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2. Objectives and Problem

2.1 Background Conditions

We assume that the same process is performed for obtaining
the learning state classifiers in reference [5]. This process
comprises the following steps.

(a) We collected behavior samples during e-learning
from learners. In particular, nonverbal behaviors were
recorded through visual sensing without imposing any type
of constraint or intrusion on the learners. Examples of cap-
tured images are depicted in Fig. 1.

(b) The recorded video data were divided into 30-
second segments. Facial recognition is employed for each
segment, and head movements, facial features, and gazing
features are automatically detected. These detected features
comprise a 33-dimensional feature vector, as demonstrated
in Fig. 2.

(c) A small number of collaborators called prototype
learners annotate the ground truth of learning states for their
segments by introspection. The learning states are indexes
on concentration-distraction, difficulty-ease, and interest-
boredom, which were scored on a five-point scale.

(d) A support vector machine (SVM) for estimating the
scores was trained by applying the feature vectors obtained
in (b) and the ground truth of learning states in (c). The
learning states in each segment can be estimated using the
trained SVMs.

In reference [5], this process was conducted for 3119
samples by seven collaborators. Based on the condition that
training data and testing data came from the same learner,
an accuracy of 60.9%-65.6% for exact matching and 86.2%-
92.7% for lenient matching was obtained.

2.2 Study Objectives

This study aims to obtain a good classifier for a new learner,

Fig. 1 Examples of captured images
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Fig. 2 33-dimensional feature vector

i.e., a non-prototype learner, given the following assump-
tions. Sufficient data, i.e., records of learning behaviors and
ground truth of learning state, are obtained through the col-
laboration of the prototype learners. Additionally, the learn-
ing behaviors of a new learner are automatically recorded.
Meanwhile, the collection of numerous ground truth enough
to train SVM is not achievable due to the required effort and
time. Only very few “representative samples” can be an-
notated with learning states by each new learner. To esti-
mate a new learner’s learning states, we alternatively utilize
classifiers that are pre-trained by employing the dataset of
prototype learners. Various classifiers can be obtained by
including or excluding certain samples from the prototype
learners.

This idea presents a new problem of choosing an ap-
propriate classifier that demonstrates good performance for
a new learner. As one method to solve this problem, in ref-
erence [5], five representative samples were randomly cho-
sen from a new learner’s data, and a classifier that demon-
strated the best performance for the representative samples
was chosen. By harnessing this method, the selected clas-
sifier mostly demonstrated inferior performance when com-
pared with the classifier with the best performance out of
all the pre-trained classifiers. Therefore, the reduction of
the gap between the selected classifier and that with the best
performance for a new learner is an important objective.

2.3 Problem Statement

The following demonstrates a concise description of the
problem. (i) A sufficient number of samples with ground
truth from the prototype learners are given. (ii) An auto-
matic observation of a new learner is possible in the same
way that the prototype learners are observed. (iii) The learn-
ing state scores can be given only to few representative sam-
ples for each new learner.

The challenge is to determine how to choose represen-

tative samples that result in better performance. The method
for selecting a classifier was accuracy-based method be-
cause it demonstrated better performance compared to the
other methods employed in [5]. It simply chooses the clas-
sifier(s) that demonstrate(s) the best accuracy for a set of
representative samples.

3. Scheme for Selecting Representative Samples

3.1 Basic Assumptions

The proposed method of choosing representative samples is
based on the following assumptions.

A1: Frequently appearing samples can be good rep-
resentative samples. Given a representative sample that is
correctly classified, neighboring samples of a representa-
tive sample are also expected to be correctly classified if the
self-scoring is consistent throughout the learning period. A
representative sample that lies in a region of higher occur-
rence probability has more neighboring samples, which are
expected to be correctly classified.

A2: A set of representative samples that covers a wider
area of the feature space provides better accuracy. Simi-
lar to A1, not only samples neighboring to representative
samples, but also in-between representative samples have a
better probability of being correctly classified compared to
samples far from representative samples.

A3: A set of representative samples with enough vari-
ety of classes gives better accuracy. Samples with different
scores may correspond to different behaviors. It is important
to obtain enough variation in the classes of a set of represen-
tative samples.

3.2 Representative Sample Selection Based on Assump-
tions

According to the above assumptions, a set of samples with
high occurrence probability are given priority as represen-
tative samples, and the following scheme is proposed: Step
1: Estimate the probability distribution of samples obtained
from a new learner. Step 2: Apply clustering to samples
with a large probability density. Step 3: Collect represen-
tative samples by choosing one sample from each cluster.
Step 4: Select the classifier that demonstrates the best per-
formance for the set of selected samples.

For Step 1, kernel density estimation with Gaussian
kernel [6] is applied to the samples of a new learner. In
this process, the samples in which no face was detected are
excluded because they are less important in estimating the
learning state.

ρ f (x) =
N∑

i=1
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x − xi

h
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2h2
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Where ρ is a coefficient, K represents the Gaussian ker-
nel function, xi is the observation (x1, x2, . . . , xN), and h is
the smoothing parameter referred to as the bandwidth.

For Step 2, hierarchical agglomerative clustering [6] is
applied to samples with a high probability density. Clus-
tering is not applied to all the samples at once because it
is difficult to know the appropriate number of clusters for
a large number of samples. Clustering is also avoided if
the results would be poor with respect to the growth of the
sample population. In Step 3, the sample corresponding to
the highest probability density is chosen as the representa-
tive sample from each cluster. After the selection, each new
learner is asked to provide ground truth scores of learning
states for the selected representative samples. Then, in Step
4, the accuracy-based method is applied to these samples to
select the suitable classifier.

4. Experimental Results and Discussion

Experiments were conducted to verify assumptions and the
scheme for classifier selection, and as a test bed, the dataset
gathered in the previous research [5] was used. In the
dataset, 3119 samples from seven participants were col-
lected, with each data point being an observed feature vector
and the ground truth score of learning states. A total of 63
classifiers were trained, one of which was the unified clas-
sifier that is trained by all the samples, while the others are
trained by one participant’s data or by two or more partici-
pants’ data.

Leave-one-out cross validation was applied for verifi-
cation (i.e., each participant was considered to be a new
learner), and the others were considered as prototype learn-
ers. Steps 1 through 4 were applied to the data of each new
learner to obtain five representative samples, and a suitable
classifier was selected for each of the three learning states.
The selected classifier was applied to all the samples of the
new learner, and the accuracy was calculated for both strict
and lenient matching conditions.

Samples with the top 10-40% of high occurrence prob-
ability were chosen as clustering targets. An example of
dendrogram in hierarchical clustering for a new learner is
shown in Fig. 3, which illustrates how the samples are hier-
archically clustered from the bottom to the top. The hori-
zontal axis indicates the sample index, and the vertical axis
represents the distance. Five clusters were identified within
this type of hierarchical structure at the height of the dotted
line.

The average accuracy of the selected classifiers with
five representative samples (RS) is shown in Fig. 4. The
average accuracy of the selected classifiers with ten RS is
shown in Fig. 5.

The performance obtained by randomly choosing RS
is presented as the baseline for comparison, which is the
average of 2000 random selection trials per learner. The
range between max and min value of new learners is shown
too. The best overall performance among the 63 classifiers
is also presented, which is indicative of the upper bound of

Fig. 3 Example of dendrogram in hierarchical clustering

Fig. 4 Classifier selection performance comparison with five RS. The
table entries for “Min over 7 learners (worst case)” under the random se-
lection represent the average value of the minimum accuracy over seven
learners and the worst accuracy over all the trials. The table entries for
“Clustering Selection” also represent the average accuracy for seven learn-
ers and the worst accuracy.

Fig. 5 Classifier selection performance comparison with ten RS. The ta-
ble entries for “Min over 7 learners (worst case)” under the random se-
lection represent the average value of the minimum accuracy over seven
learners and the worst accuracy over all the trials. The table entries for
“Clustering Selection” also represent the average accuracy for seven learn-
ers and the worst accuracy.

performance.
The improvements of the average accuracy are not sig-

nificant with the proposed scheme, while the performance
is slightly better than that of the random selection method.
Meanwhile, the proposed method has a good characteristic
for educational service. It deterministically obtains the pre-
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Fig. 6 Classification accuracy of different sets of samples.

sented accuracy, which makes it possible to clearly avoid the
cases much worse than the average. Figures 4 and 5 depict
the accuracy of the worst cases among all the trials by the
random selection method. The chances of such bad cases
are inevitable in the random selection method. We cannot
verify the accuracy of learning state estimation unless the
new learners’ samples are thoroughly scored by taking the
learner’s considerable amount of time and efforts. There-
fore, the characteristic of the proposed scheme matches with
a natural requirement that we should avoid serious disadvan-
tage for any learners even if we lose chances of certain merit
for some other learners.

Concerning assumption A1, Fig. 6 shows the accuracy
in a 5-cluster case with strict matching conditions for the
RS, for the samples within the cluster of each RS, and for
the overall samples (AS). It is surprising that the accuracy
for the RS is only around 50% regarding the difficulty-ease
state, which is much lower than the other two learning states.
This implies that behaviors are diverse with respect to the
difficulty-ease state of the learner, and a more sophisticated
method is needed to deal with them. In addition to this is-
sue, the results indicated that a better accuracy for the sam-
ples within the clusters compared to the accuracy for the
AS is possible. However, it also implies that the amount of
improvement is not enough to achieve significant improve-
ments in the total accuracy.

Concerning assumptions A1, A2, and A3, an improve-
ment in 10-cluster cases compared to 5-cluster cases was ob-
served for concentration-distraction and interest-boredom.
With the increased number of RS, more samples of neigh-
boring or in-between RS were obtained. Variations in the
RS were also obtained. This effect can be seen based on the
improved performance, with the exception of the difficulty-
ease state. A possible reason for the worse difficulty-ease
performance may be partially due to the diverse behaviors
in these cases.

Concerning assumption A2 and A3, a high degree of
accuracy is expected if the characteristics of the RS are simi-
lar to the characteristics of AS associated with a new learner.
To verify this, we examined the relationship between the
accuracy of selected classifiers and ground truth score dis-
tribution of RS and AS. The distribution of the scores for
each learning state can be obtained from ground truth for
both the RS and AS, and Pearson correlation was observed
between their distributions. The result in strict matching is
shown in Fig. 7. Each dot represents a selected classifier.
The horizontal axis represents the correlation, and the verti-
cal axis indicates the accuracy of the classifier (i.e., between
the worst (0.0) and the best (1.0)). Two or more classifiers
are often selected in Step 4, and they are represented by a

Fig. 7 Tendency of correlation and classifier performance in strict
matching. Some of the cases in which multiple classifiers were selected
are notified by dashed closures.

group of vertically aligned dots.
A rough relationship between correlation and classifier

accuracy was observed, and selected classifiers tended to
have a higher degree of accuracy if they had a larger cor-
relation. The linear regression value was 0.16 (p < 0.01) for
strict matching criterion. It is important to note that the vari-
ations among multiple classifiers for each selection were not
negligible. With the same correlation value, the accuracy
varied among classifiers. If the best one can be chosen for
a set of RS, the accuracy would be much higher. The best
accuracy increases as the correlation increases. However, an
effective method for this purpose was not clearly identified
based on the scope and results of this study. Further investi-
gation regarding this issue should be part of future research.

5. Conclusion

In this study, we investigated a scheme for dealing with
interpersonal differences in estimating learners’ learning
states. Specifically, based on our basic assumptions, the se-
lection of RS that commonly appear during e-learning of a
new learner was examined. A slight improvement in the
average accuracy was observed, although it was not sig-
nificant. However, the proposed method did demonstrate
the advantage of avoiding bad cases. Certain characteristics
of the data and classifications were confirmed. Neighbor-
ing samples around RS were not classified well, especially
in difficulty-ease state. In addition, the distribution of the
RS displayed a significant correlation regarding accuracy,
which make them a potentially valuable indicator for future
investigations of new methods.
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