1874

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.9 SEPTEMBER 2019

[LETTER

Cross-VM Cache Timing Attacks on Virtualized Network Functions

SUMMARY Network function virtualization (NFV) achieves the flex-
ibility of network service provisioning by using virtualization technology.
However, NFV is exposed to a serious security threat known as cross-VM
cache timing attacks. In this letter, we look into real security impacts
on network virtualization. Specifically, we present two kinds of practi-
cal cache timing attacks on virtualized firewalls and routers. We also pro-
pose some countermeasures to mitigate such attacks on virtualized network
functions.

key words: cross-VM cache timing attack, network function virtualization,
virtualized network function

1. Introduction

Network function virtualization (NFV) enhances the flex-
ibility of network service provisioning by leveraging vir-
tualization technologies. In NFV architecture (Fig.1), a
variety of virtualized network functions (VNFs) such as a
firewall, router and content delivery networks run as an in-
stance of virtual machines (VMs) on commercial general-
purpose x86 servers. As computing resources of the host
are shared among multiple VMSs, cross-VM cache timing at-
tacks[1], [2] have emerged as a serious security threat to
network virtualization. Although a wide range of security
challenges with NFV have been extensively explored in the
literature [3], [4], the effectiveness of such attacks has ever
not been thoroughly studied.

In this letter, we look into real impacts on cross-VM
cache timing attacks against virtualized network functions.
Specifically, we realize two concrete attacks to the most
common network functions, a firewall and a router.

Firewall, located at the perimeter of networks, aims
to prevent ingression of malicious traffic from outside by
means of packet filtering. Thus, reconnaissance on the fil-
tering policy of the firewall is essential for an attacker to
successfully infiltrate the inside network [S]. Our first attack
shows how a co-located attacker can infer filtering rules of
virtualized firewalls through a cache timing channel. We
evaluate our reconnaissance technique on VyOS, a Linux-
based versatile networking operating system.

As a second attack, we show that cache timing channel
to virtualized BGP routers can be exploited to hijack benign
network traffic. BGPsec, a standardized security extension

Manuscript received March 11, 2019.
Manuscript publicized May 27, 2019.
"The author is with School of Computer and Information En-
gineering, Kwangwoon University, Seoul, Korea.
a) E-mail: yjshin@kw.ac.kr
DOI: 10.1587/transinf.2019EDL8048

Youngjoo SHIN'™, Member

+ Virtual Virtual
L | Storage
| Virtualization layer |
[CPU] [Network] [Storage]

Shared hardware resources

Virtualized infrastructure

Fig.1 NFV architectural framework

of BGP, is supposed to be resistant against such traffic hi-
jacking attacks. However, a cache timing attack to a BG-
Psec implementation is proved to weaken the desired secu-
rity. Our attack is also evaluated on a BGP-SRx prototype,
a reference implementation of BGPsec developed by NIST.

Finally, we propose some countermeasures to mitigate
cross-VM cache timing attacks against virtualized network
functions.

2. Cross-VM Cache Timing Attacks

Resource sharing between virtual machines results in cross-
VM cache timing attacks such as Flush+Reload[1] and
Prime-+Probe attacks [2].

Flush+Reload attack utilizes memory deduplication
technique in hypervisors, which enables sharing of physical
pages across multiple VMs. This attack proceeds in three
phases. During Flush phase, the attacker flushes the desired
memory line (shared with the victim) from the entire cache
hierarchy using the clflush instruction. Then, in Wait phase,
the attacker waits for the victim to execute security sensi-
tive operations. Finally, during Reload phase, the attacker
reloads previously flushed memory line and measures the
access time. If the victim has accessed the line during Wait
phase, it will be reloaded from the cache, which results in
lower reload time. If not, then the memory line still resides
in the memory therefore resulting in higher reload time.

Flush+Reload attack cannot be used when the page
sharing (i.e., memory deduplication) is not available in the
hypervisor. In this case, Prime+Probe technique [2] is an
alternative to Flush+Reload.

3. Threat Model

In our threat model, an attacker is a co-located VM that re-

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers

LETTER

sides in the same host with a victim VM, but has different se-
curity domain to the victim. The attacker has his own guest
VM run on the host with privileged access to the guest OS.
Therefore, she has a full-fledged ability to mount cross-VM
cache timing attacks against the victim VM. We assume that
a hypervisor on the host supports memory deduplication,
which is necessary for Flush+Reload attacks. However, our
attack is not confined to the specific cache timing technique.

4. Attacks on Virtualized Network Functions
4.1 Firewall Policy Reconnaissance

Firewalls are one of the most critical network appliances that
protect inside networks by filtering out adversarial ingress
packets. Firewall policy defines which packets are allowed
to pass through, usually represented as a collection of filter-
ing rules in the form of ACL (Access Control List). Each
rule describes the shape of matched packets (i.e., source,
destination address and port number, etc) and the relevant
actions (i.e., accept, drop and reject, etc).

Firewall policy reconnaissance is a scanning technique
to gather information on packet filtering rules of the target
firewall for a preliminary step prior to the network intru-
sion. In all the proposed techniques [5], [6], attackers typi-
cally perform the reconnaissance by observing what kind of
response packets are arrived for the specially crafted probe
packets.

In this section, we present a new kind of reconnais-
sance technique for co-located attackers. Instead of ob-
serving arrived packets, our method infers filtering rules by
learning the cache behavior on a host to the probe packets.

4.1.1 1iptables

Most virtualized firewall products such as VyOS, IPFire,
OPNSense and Smoothwall are constructed upon Linux ker-
nels, within which a kernel component called iptables pro-
vides the main functionality of filtering packets. Hence,
we focus on iptables as a target against our reconnaissance
technique in this section.

The overall structure of iptables is depicted in Fig. 2.
iptables defines a number of tables, among which a filter ta-
ble is associated with the way packets are filtered. This table
contains three chains of rules (i.e., FORWARD, INPUT and
OUTPUT) for filtering packets. That is, filtering rules are
applied when packets are sent to (from) local processes or
forwarded through network interfaces.

iptables is implemented based on Neffilter, a hook-
based framework for network operations. Each rule in the
filter table basically consists of function hooks, which are
invoked when the rule is being matched against packets and
the relevant action is triggered for the matched packet.

4.1.2 Attacks

In order to infer filtering rules of the target, our reconnais-

1875

PREROUTING INPUT

Filter table

Match

=) 3
Interface |

Action
{ ACCEPTIDROP REJECT Loc |
ip_forward_finish() ! [t do_tavien] feject 0] fogt0] =+

POSTROUTING OUTPUT

FORWARD

Network

Fig.2 Structure of iptables

sance technique exploits cross-VM cache timing attacks. As
a probe packet passes through networking stack, it is exam-
ined against filtering rules in the filter table. If a matched
rule is found, then a relevant action of the rule is trig-
gered for the packet. As shown in Fig. 2, a number of ker-
nel functions are called during this process. For instance,
when a probe packet just arrives at a network interface,
ip_recv() is called to handle the packet first. At the filter
table, ipt_filter_hook() and ipt_do_table() are called sequen-
tially and then the corresponding function for an action (e.g.,
reject_tg() for reject) is called.

The sequence of function calls leaves unique and dis-
tinguishable footprints on a memory and a cache, which can
be observed by co-located attackers through a cache timing
channel. Specifically, an attacker proceeds with policy re-
connaissance as follows.

1. (Flush phase) chooses memory locations of kernel
functions to be monitored and then flushes the desired
cache lines on the cache.

2. (Wait phase) waits for a fixed time slot.

3. (Reload phase) reloads the cache lines and measures
the memory access time.

We evaluate our reconnaissance technique by an exper-
iment. The experiment was conducted on a host with Intel
Xeon E5-2620v4 CPU and 32GB RAM running KVM (a
Linux-based hypervisor). The host runs two guest VMs, one
for a victim running VyOS 1.2 and the other for an attacker
running an Ubuntu Linux 18.04. VyOS" is a Linux-based
networking OS that has firewall features based on iptables.
We chose three kernel functions on the victim for call trac-
ing, ipt_do_table(), reject_tg() and ip_forward_finish().

For the experiment, two kinds of probe packets are
used, one that is accepted by the victim’s firewall policy and
the other rejected. Those packets were sent repeatedly at ev-
ery fixed interval (i.e., 500ms) from a remote host to the vic-
tim, during which a co-located attacker launches the cache
timing attack with a time slot of 100ms.

Figure 3 shows the result of the experiment. Every
dot below the threshold (i.e., 140 cycles) in the graph indi-
cates that the corresponding function was called at that time.
From the graph, we can clearly identify different types of

Thttps://vyos.io

1876

eipt_do_table rreject tg xip_forward_finish

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.9 SEPTEMBER 2019

¢ ipt_do_table reject_tg xip forward finish

T
0 5 10 15 20 25 30 35 40 45
Time (slot)

(a) ACCEPT

Xxx rExx "Iy

x
KX X XEXXEF XEE TxEx ¥
& Fr¥ o2 x3I¥s

0 5 10 15 20 25 30 35 40 45 50
Time (slot)

(b) REJECT

Fig.3 Traces of kernel function calls (a dashed line represents a threshold and a triangle represents

the time at which a probe packet was sent.)

Prefix (P):
10.1.1.0/16

Fig.4 Forged BGP updates

function call traces between those probe packets, which can
be exploited to infer filtering rules.

It is noteworthy to mention that our reconnaissance
technique has significant advantage over previous works [5],
[6]. That is, our technique allows to conduct reconnaissance
even with a crafted probe packet in which its source IP ad-
dress is spoofed. This property provides two benefits. First,
we can achieve evasiveness against intrusion detection since
the source of probing is anonymized. Second, we can ex-
tend the search space to firewall policy by eliminating the
restriction of source address on crafting probe packets.

4.2 Attacking BGPsec

In this section, we present a cross-VM cache timing attack
on virtualized BGP routers with BGPsec extension.
42.1 BGPsec
BGP (Border Gateway Protocol) is a routing protocol that
operates for an autonomous system (AS) on the top of the
Internet hierarchy. Due to a lack of authentication and in-
tegrity for messages, BGP is vulnerable to traffic hijacking
attacks. Suppose that an autonomous system AS1 originates
an address prefix (P) 10.1.1.0/16 as illustrated in Fig. 4. In
order to announce the prefix, a BGP router in AS1 sends
an update message containing (P, AS1) to its peer in AS2,
which in turn adds its AS number to the message and for-
wards it to the next peer in A3, and so on. This way,
a router in ASS5 finally receives the message containing
(PAS1,AS2, ..., AS4), which becomes an AS path to the
prefix P. However, if a malicious router in AS6 sends a
forged update message (P, AS1, AS6) to ASS, there is no
way to check whether the message is valid. Hence, all traf-
fic destined for P will be sent to AS6, not to AS4, since the
rogue AS path via AS6 is shorter than the benign AS path.
BGPsec is a security extension of BGP defined in RFC

8205, published in 2017, which aims to prevent forgery of
BGP update messages. In BGPsec, each router has a pair of
public and private key for a signature algorithm. All mes-
sages are signed with a private key prior to being forwarded
to peers, and the integrity of received messages are verified
with a sender’s public key. Thus, forgery of messages by
AS6 in the above example can be prevented. BGPsec uses
ECDSA (Elliptic-Curve Digital Signature Algorithm) with
NIST P-256 curve as its signature algorithm [7].

4.2.2 Attacks

Suppose that a victim is a virtualized external BGP (eBGP)
router in a transit AS, equipped with BGPsec functionality.
We show a cross-VM cache timing attack against a BGPsec
implementation of the victim. In our attack, the goal of at-
tackers is to extract an ECDSA private key of the co-located
BGP router.

Our attack is realized on a BGP-SRx prototype’, a ref-
erence implementation of BGPsec developed by NIST. This
prototype fully relies on an OpenSSL library for the imple-
mentation of cryptographic operations such as ECDSA sign-
ing and verification of BGP update messages.

OpenSSL is a well-known cryptographic library, thus
has been targeted by a variety of cache timing attacks for
a long time. Recently, Garcia et al. discovered a cache tim-
ing attack against ECDSA implementation with NIST P-256
curve in an OpenSSL library [8]. When a victim is execut-
ing ECDSA signing operations, this attack tries to capture
ephemeral keys by using Flush+Reload technique. Once a
sufficient number of ephemeral keys (i.e., as few as 50 keys)
are gathered through the side-channel, then a full private key
of the victim can be computed from the obtained informa-
tion with lattice methods [8].

We make use of Garcia et al.’s technique for realiz-
ing our attack on the BGP-SRx implementation. Let us
assume that an attacker is able to eavesdrop BGP update
messages containing BGPsec_PATH attribute sent from the
victim router. This attribute includes an AS path as well as
its signature generated by the victim in unencrypted form.

Our attack proceeds as follows. Initially, a co-located
attacker chooses memory locations of secret-dependent
branch instructions in ECDSA routines (i.e., BN_rshift1()
and BN_usub()) of an OpenSSL library. Then, she keeps

Thttps://www.nist.gov/services-resources/software/
bgp-secure-routing-extension-bgp-srx-prototype

LETTER

Flush+Reload probing at these locations while waiting for
a new BGP update message being received. On the receipt
of the message, the victim router should forward it to a next
hop after signing the message, during which the attacker can
obtain an ephemeral key of the signature through the cache
timing channel. This way, she repeats collecting ephemeral
keys as well as their signature captured over the network
until sufficient information is gathered to recover a signing
private key.

Note that our attack considers passive adversary model.
This is because according to BGPsec protocol, only an au-
thenticated BGP peer is allowed to send valid BGP update
messages to the victim. Hence, the attacker should wait for
the victim to receive update messages from its peer so that
signing operations are triggered. Recent surveys report that
an eBGP router in real ASes on average receives 170,000
update messages per day from its peers’. Therefore, the at-
tacker is able to collect a sufficient number of ephemeral
keys (i.e., at least 50 keys) within just 30 seconds to mount
Garcia et al.’s attack.

We evaluate our BGPsec attack on the same experi-
mental environment as in the previous section except that
a victim guest VM runs a BGP-SRx prototype. For the ex-
periment, we set up an another host located remotely over
the network, which plays a role of BGP peers. It sends BGP
update messages to the victim at the rate of 120 messages
per minute, which conforms to the rate in real ASes.

As aresult of the experiment, we successfully obtained
execution traces for each ephemeral key through the cache
timing channel but with 30% loss of the key on average due
to system noise. The loss of information was supplemented
by increasing the number of ephemeral keys to be collected.
With at most 80 (partial) ephemeral keys, we completely
recovered the ECDSA private key of the victim.

5. Countermeasures

We introduce countermeasures to mitigate cross-VM cache
timing attacks against virtualized network functions.

Resource isolation. The root cause that enables cache tim-
ing attacks is that hardware resources such as memory page
and cache are shared between a victim and a co-located at-
tacker. Page sharing across VMs (i.e., memory deduplica-
tion), which inherently allows Flush+Reload attacks, is one
of main features in most hypervisors (e.g., Transparent Page
Sharing in VMware vSphere and Kernel Same-page Merg-
ing in KVM). Thus, it should be disabled at the hypervisor
to prevent cache timing attacks.

In order to achieve strict cache isolation, we propose to
use hardware-assisted solutions. For instance, Intel Cache
Allocation Technology (CAT), equipped in Xeon proces-
sors, divides L3 cache and allocates a distinct portion of the
cache to each VM. By using CAT, we can make cache tim-
ing attacks against virtualized network functions infeasible.

Constant-time implementation Resource isolation-based

Thttps://blog.apnic.net/2018/01/10/bgp-in-2017/

1877

solutions described above requires modification of low-level
system components such as a hypervisor, which becomes
major obstacle to be adopted with ease. Constant-time tech-
nique is another option for application-level countermea-
sures. It is an implementation technique that has algo-
rithms (especially, cryptographic algorithms) run without
incurring any secret-dependent memory access patterns at
the granularity of a cache line. Scatter-gather implementa-
tion of a RSA algorithm in recent versions of an OpenSSL
library is an instance of constant-time technique. Virtual-
ized network functions equipped with cryptographic algo-
rithms (e.g., BGPsec) can achieve its security against cache
timing attacks by employing constant-time implementation
technique.

6. Conclusion

Virtualization technology provides the flexibility of network
service provisioning in NFV, but exposes a serious secu-
rity threat known as cross-VM cache timing attacks. In this
letter, we investigated real security impacts by presenting
practical attacks on the most common virtualized network
functions, a firewall and a router. In order to mitigate such
attacks, we also proposed several countermeasures through
resource isolation and the use of constant-time technique.

Acknowledgments

This research has been conducted by the Research Grant of
Kwangwoon University in 2019 and supported by the Na-
tional Research Foundation of Korea (NRF) grant funded by
the Korean government (MSIT) (No.2017R1C1B505045).

References

[1] Y. Yarom and K. Falkner, “Flush + reload: A high resolution,
low noise, L3 cache side-channel attack,” Proceedings of the 23th
USENIX Security Symposium, pp.719-732, 2014.

[2] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R.B. Lee, “Last-level cache
side-channel attacks are practical,” Proceedings of 2015 IEEE Sym-
posium on Security and Privacy, pp.605-622, 2015.

[3] M. Pattaranantakul, R. He, Q. Song, Z. Zhang, and A. Meddahi,
“NFV Security Survey: From Use Case Driven Threat Analysis to
State-of-the-Art Countermeasures,” IEEE Communications Surveys
and Tutorials, vol.20, no.4, pp.3330-3368, 2018.

[4] M. Daghmehchi Firoozjaei, J.P. Jeong, H. Ko, and H. Kim, “Security
challenges with network functions virtualization,” Future Generation
Computer Systems, vol.67, pp.315-324, 2017.

[51 M.Q. Ali, E. Al-Shaer, and T. Samak, “Firewall policy reconnais-
sance: Techniques and analysis,” IEEE Transactions on Information
Forensics and Security, vol.9, no.2, pp.296-308, 2014.

[6] A.R. Khakpour, J.W. Hulst, Z. Ge, A.X. Liu, D. Pei, and J. Wang,
“Firewall fingerprinting,” The 31st Annual IEEE International Con-
ference on Computer Communications (IEEE INFOCOM 2012),
pp-1728-1736, 2012.

[7]1 S. Turner and O. Borchert, “BGPsec Algorithms, Key Formats, and
Signature Formats,” IETF RFC 8208, pp.1-19, 2017.

[8] C.P. Garcia and B.B. Brumley, “Constant-time callees with variable-
time callers,” Proceedings of the 26th USENIX Security Symposium,
pp-83-98, 2017.

http://dx.doi.org/10.1109/sp.2015.43
http://dx.doi.org/10.1109/comst.2018.2859449
http://dx.doi.org/10.1016/j.future.2016.07.002
http://dx.doi.org/10.1109/tifs.2013.2296874
http://dx.doi.org/10.1109/infcom.2012.6195544
http://dx.doi.org/10.17487/rfc8208

